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The evolution of life in our biosphere has been marked by several major innovations. Such major
complexity shifts include the origin of cells, genetic codes or multicellularity to the emergence of
non-genetic information, language or even consciousness. Understanding the nature and conditions
for their rise and success is a major challenge for evolutionary biology. Along with data analysis,
phylogenetic studies and dedicated experimental work, theoretical and computational studies are
an essential part of this exploration. With the rise of synthetic biology. evolutionary robotics,
artificial life and advanced simulations, novel perspectives to these problems have led to a rather
interesting scenario, where not only the major transitions can be studied or even reproduced, but
even new ones might be potentially identified. In both cases, transitions can be understood in
terms of phase transitions, as defined in physics. Such mapping (if correct) would help defining a
general framework to establish a theory of major transitions, both natural and artificial. Here we
review some advances made at the crossroads between statistical physics, artificial life, synthetic

biology and evolutionary robotics.
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I. INTRODUCTION: SYNTHETIC TRANSITIONS

Looking backward to the unfolding of life on our
planet, it is possible to identify several major qualitative
changes that deeply marked evolutionary history. They
have been labelled as the Major Evolutionary Transi-
tions (METSs) due to the fundamentally unique nature
of the changes involved [1]. The emergence of life, the
genetic code, complex cells, multicellular organisms and
language are some of the best known examples. They

all involve a novel class of organisation with high-order
properties not reducible to the properties of the lower-
scale units. The list of METSs differs among authors [1-7]
and in this paper we will address a revised list of major
transitions incorporating different proposals. A first clas-
sification of METs would include: (1) a loss of replicative
potential by the units once belonging to a higher-order
entity, (2) a specialisation of different units in different
tasks, which requires a nonlinear mapping between geno-
type and phenotype and (3) changes in the ways informa-
tion is processed and stored. But more importantly, we
want to consider METS under the light of the theoreti-
cal, experimental and engineering perspectives involving
the modelling, synthesis and imitation of living systems.
For example, we can create a new multicellular system
by engineering new cell-cell signals on single cells. Sim-
ilarly, a proto-grammar can emerge in a group of inter-
acting, evolvable robots. These are synthetic transitions
that are not necessarily related to standard evolutionary
paths, but they do involve ways to generate major in-
novations starting from simpler systems. We will use a
general term to label this broad class of non-natural tran-
sitions: Major synthetic transitions (MST). The study of
MST provides a whole parallel approach to natural evolu-
tion and to the origin of innovations in complex systems,
biological or artificial.

How similar are these two scenarios? Random events
are known to play some role in evolutionary history [7,8,9]
and they offer some clues to the origins (and likelihood)
of some innovations. However, convergence seems also
a widespread feature of evolved systems [10] as illus-
trated by the observation that some major innovations
have emerged independently in different groups and of-
ten sharing surprisingly similar design principles. Such
universal patterns could be a consequence of fundamental
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FIG. 1 Synthetic prebiotic chemistry. Miller’s experiment (a) provided the first evidence for an abiotic scenario of generation
of biologically relevant molecules (image courtesy of Adam Brown). The mixture is heated (1) receives electrical discharges

(2) and is condensed in (3).

(b) Many different molecules are generated, linked through a reaction network (modified from

[28]). The overall reaction network is similar to in silico networks of reactions in organic chemistry that can be obtained from
databases, as shown in (c) where nodes are molecules and connections indicate possible reactions (modified after [31]).

constraints beyond the specific nature of biological sys-
tems [11-13] and thus would be also inevitable in their
synthetic counterparts. By understanding the role of
constraints in both evolved and artificially generated in-
novations, we might achieve some understanding of the
uniqueness of the known biology that we know [14].

Other important questions that can benefit from the
analysis of MST are understanding why some transitions
seem common while others seem rather unique [7]. Are
hard-to-obtain synthetic transitions connected to hard-
to-evolve biological novelties? On the other hand, we
might also ask if there are other major transitions associ-
ated with the potentially different MST universe. What
is their nature and why are they absent in the biolog-
ical realm? No less important is the fact that major
transitions occur when a given set of preconditions is
in place. Preconditions are relevant to our discussion
since they imply the presence of a landscape of possi-
bilities pervading the emergence of a major qualitative
change. Moreover, there are remarkable commonalities
shared by disparate systems. These universal traits are
to be found in those principles stemming from the physics
of complex systems [15,16], phase transitions [17,18] and
the algorithmic logic of artificial life models [19,20]. In
this context, it has been suggested that phase transitions
[21,22] can help understanding the patterns exhibited by
METs. Since phase transitions are known to exhibit ro-
bust, universal laws [23,24] they will help understanding
the general nature of natural and artificial transitions,
perhaps opening the construction of a general theory of
what we can label as Major Transitions (MT).

Il. SYNTHETIC PREBIOTIC CHEMISTRY

We start our list with a special problem: the presence
of qualitative transitions in a pre-biological biosphere be-

fore true replicators emerged. We are thus closer to the
domain of prebiotic systems chemistry [25] which define
the landscape of pre-conditions required for the rise of
molecular replicators and genetic codes. The first at-
tempts aiming for the creation and analysis of synthetic
prebiotic systems were Stanley Miller’s electric discharge
experiments [26,27] which can be accurately simulated
using molecular dynamics [28]. Miller’s approach was
simple and elegant: take a set of candidate molecules
that were likely to be present in the primitive atmosphere
and make it react under a constant energy source (figure
la-b). The experiment generated aminoacids (AA) and
other molecules thus providing support to Oparin’s con-
jecture that biochemical complexity can arise from purely
chemical processes [29]. Further studies developed by the
Catalan chemist Joan Oré showed that relevant building
blocks of nucleic acids, such as adenine, could also emerge
using ammonium cyanide [30].

Since biochemical diversity of basic monomers per-
vades the development of true living entities, the syn-
thetic soup created in these experiments provided the
source of chemical variation to be exploited by further
innovations. In general terms, a set of reactions can be
described by a general reaction scheme:

N. Ny
Z ;A = Z B B; (1)

where ay, 3; indicate stochiometric coefficients associ-
ated to the N, substrates and N, products of the re-
actions, indicated by Ay and Bj, respectively. But too
much chemical diversity can also make more difficult re-
acting molecules to find each other. The potential net-
work of reactions rapidly explodes as is shown in fig-
ure lc, where only the 0.1% of organic molecules from
a database is included [31]. In this context, the set of
reactions shown in figure 1b is just a minimal subset of



FIG. 2 Symmetry breaking and the origin of homochiral-
ity. Using Frank’s model (see text) the potential function
Va(pr) = = [ fa(pr)dpr = B(pi/2 — pi + pi/2) associated to
the dynamics of a racemic mixture under the reaction set (1-
3) is displayed (for different ). The unstable point (open
circle) is associated to the p1 = 1/2 = ps racemic mixture,
which is unstable. Deviations from this symmetric state lead
to either [D] = 0,[L] =1 or a [D] = 1,[L] = 0 final state.

possible reactions, many of them leading to biologically
irrelevant components. Two key questions in this context
are: (a) are there multiple molecular alternatives for a
living biosphere emerging from the primitive soup? and
(b) What processes can drive the highly diverse molecu-
lar soup towards a non-random biochemistry?

The first question has been repeatedly addressed using
a broad range of approximations, and, strictly speaking,
the answer is affirmative [32]. It is possible to obtain (or
theoretically conceive) diverse and different types of or-
ganic molecules using solvents different from water and at
extreme temperatures, with two universal limitations are
the presence of non equilibrium conditions and tempera-
ture intervals allowing chemical bonds to form and break
in reliable ways. In most of these alternative chemical
scenarios it is suggested that the candidate alternatives
are feasible. But feasible does not imply that the syn-
thesis is likely to occur and -more importantly- what is
needed to generate non-random mixtures of molecules.

To depart from chemical randomness, two classes of
dynamical phenomena might have been relevant. One is
connected to the chirality problem [33,34]. A characteris-
tic pattern displayed by all biochemical species is a choice
of one given configuration of molecular structures among
the two possible (chiral) mirror forms (L and D): nu-
cleic acids incorporate only D-ribose and D-deoxyribose
while proteins use L enantiomers of amino acids. How-
ever, Miller’s-like experiments typically lead to a racemic
mixture, where both types of handedness are equally rep-
resented. The rise of replicators capable of evolving Dar-
winian selection thus requires first to solve the problem
of how to break this chemical symmetry. Evidence from
chemical analysis of meteorites indicates that aminoacids
(AA) display a slight asymmetry towards L forms. Since
comets and asteroids might have been a major source

of biomolecular precursors [35] a given asymmetry could
bias handedness.

But even if that is the case, the ideal scenario with
a dominance of a single type of form requires an expla-
nation. In this context, several models suggest that ho-
mochirality can spontaneously result from simple chemi-
cal reactions. The simplest model that accounted for this
phenomenon included two types of chemicals, indicated
by D and L and corresponding to the two forms [36,37].
They can react with an additional molecule A following
the set of reactions:

A+D 59D A+L-52L D+L-224 (2)

If we indicate by D and L the concentrations of the two
forms, we can derive the equations describing the dynam-
ics of this mixture and analyse them using linear stabil-
ity!. Let us indicate as p; = [D] and ps = [L] Assuming a
constant population constraint (CPC) i. e. [D]+[L] =1
we have:

dp
L = ip1 = Bprpz = p10(p1, p2) (3)
dp
FL = ip2 = Bp1pz = p22(p1, p2) (4)

where the first two terms in the rhs correspond to the
formation of molecules of each type and their conversion
in A. The last terms introduce a dilution associated to an
outflow. From the CPC, we have: ®(p1, p2) = p—28p1p2
and it can be shown that

B oo = B 1 - ) 1) (3)
(a symmetric solution exists for [L]). The three equi-
librium states are: p; € {0,1,1/2}. The first two
are stable, homochiral states, whereas the third corre-
sponds to an unstable racemic. A symmetry breaking
phenomenon takes place [17,18,22,23] where two alterna-
tive stable states p; = 0,1 are possible, both accessible
from p; = 1/2 through an amplification phenomenon.
This can be seen using the so called potential function
Vs(p1) defined from:

dp __Vs(p1)
dt N 8/)1 (6)

Here the potential? is defined in such a way that its max-

! For a one-dimensional system described by a single differential
equation dz/dt = f,(x), where z indicates the state of the given
variable (a population, for example) and p is a parameter or set
of parameters. The potential equilibria are defined by those x*
such that (dz/dt) at «* is zero (i. e. no changes occur) or, in
other words, f,(z*) = 0. For each fixed point we determine the
sign of the parameter A(z*) = (9fu(x)/0x). It can be shown
that a stable (unstable) point z is such that A < 0 (A > 0).

As defined, since we have dz/dt = f(z), the potential function is
simply V(z) = — f f(x)dz and it is easy to show that its maxima
and minima correspond to the unstable and stable fixed points,
i. e. those z* such that f(z*) = 0, following linear stability
analysis.

»



ima and minima correspond to unstable and stable equi-
libria, respectively. This allows to think in the potential
under a mechanical picture of balls rolling on a landscape
towards the bottom of the valleys. The specific form of
Vs(p1) is shown in figure 2. Here the (unstable) racemic
mixture (D + L) and the two alternative (stable) ho-
mochiral configurations are displayed as empty and filled
circles, respectively. Once we slightly deviate from the
perfect racemic mixture, the ball rolls down towards one
of the alternatives: the symmetry is broken towards a
given chiral configuration [37,39,40].

A different approach to the evolution of non-random
sets of molecules is provided by autocatalytic sets (ACS,
fig 3c-d) first proposed by Stuart Kauffman [41,42]. Here,
in a rich chemical soup closed loops of catalytic reac-
tions can occur, leading to an ACS, defined as a set of
molecules in which every member can be created cat-
alytically by other entities within the set. An example
(the only natural known example) is the formose reaction
[43] (figure 3a-b). As discussed by J. Peret6 ([44] and re-
frences cited) one of the fundamental questions that re-
mains open is how the first autocatalytic cycles became
incorporated into the chemistry of life. As pointed out
by this author, one major goal of both models and syn-
thetic approaches to prebiotic chemistry should address
understanding how small networks involving inefficient
reactions became large and dominated by efficient en-
Zymes.

While waiting for further evidence from synthetic
chemical networks, some relevant features of ACS are
predicted by theoretical models, such as their potential
for explosive growth. Consider a s-dimensional model
where a set of s chemical species {x1,...,25} such that
>.;xi = 1 [45]. The model involves a set of coupled
equations:

S

dl‘i :
dt = ch'kxk — Ty Z ijl'j (7)
k k

=1 J=1

provided that x;,dx;/dt > 0. Here C;; € [—-1,+1] in-
dicates the interaction strength between species ¢ and j
which can be cooperative (positive) or inhibitory (nega-
tive) and such that Cir = 0. The model evolves expo-
nentially (and inevitably) to a connected, diverse ACS.
This type of phenomenon might have influenced the early
evolution of RNA, as discussed below.

Il. SYNTHETIC MOLECULAR REPLICATORS

To address the problem of how self-replicating,
information-carrying molecules emerged in the primitive
biosphere implies considering the true nature of what sep-
arates chemistry from life. We know that the molecular
logic of self-replication based on nucleic acids is the uni-
versal code of life. But is this the only possible logical
scheme? Could it be based on different molecular sup-
ports? The earliest attempt that gave tentative answers

FIG. 3 Autocatalytic cycles. (a) The formose reaction in-
volves the formation of sugars from formaldehyde. The overall
reaction of the pathway above is of the form 24 + B — 2B,
where A and B indicate formaldehyde, and glycolaldehyde,
respectively. As B can not be created of A only, but the ex-
istence of B leads to more than one B, we say that B is an
autocatalytic compound. A simplified picture of this cycle is
shown in (b) where only the carbons are indicated. In (c) a
two-member ACS is shown and in (d) a reaction network is
shown including an ACS.

to the previous questions was von Neumann’s theory
of minimal self-replicating machines [46]. Years ahead
of molecular biology, von Neumann concluded that self-
replicating machines should be composed by: (1) a con-
structor, able to build a new system by using the available
raw materials, (2) The instructions for the constructor.
(3) a duplicator which takes the instructions and dupli-
cates them and (4) a controller required to guarantee a
reliable process. This picture is surprisingly close to an
algorithmic description of a biological replication event.
More importantly in our context, the agreement between
this theoretical picture and reality suggests that a uni-
versal logic of self-replication.

What kind of synthetic replicating systems can be con-
structed from biological and non-biological substrates?
The first example of an experimental autocatalytic (fig
4a) set was obtained by von Kiedrowski. Using short
nucleotide sequences that mutually catalyse each other’s
formation [47]. Other synthetic schemes have been pro-
posed, including peptide ligation (fig 4b) systems [48]
and several non-biological non-standard mechanisms [49].
but also other mechanisms that even lead to exponential
growth [50] despite lack of template-based replication (fig
4c). The synthetic alternatives to polymers indicate that
other mechanisms can exist capable of generating large
molecular structures. However, in general they have also
a very limited capacity of storing information, since the
units included in their molecular assemblies tend to be
homogeneous, thus preventing information growth. If a
diverse polymer is a condition for any evolvable replicat-
ing system, potential candidates include RNA and RNA-
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FIG. 4 Synthetic molecular replicators: (a) von Kiedrowski’s
template-based replication (adapted from [47]); (b) Gadhiri’s
peptide ligation system (adapted from [48]). In (c) we show
part of the replication mechanism presented in [50]. Here a
building block (R) containing two thiol functionalities leads
to a mixture of growing cyclic structures. The hexamers self-
assembly forming piled fibres that eventually break up. The
number of fibres grows exponentially in time. Adapted from
[50].

based systems [51] since they can act both as catalysts
and as templates, thus including both genetic informa-
tion stored in a sequence and a phenotype derived from
the catalytic properties of the molecule.

Many different experiments involving designed, sim-
ulated and evolved synthetic RNA molecules and ri-
bozymes have revealed promising avenues as well as lim-
itations. Interestingly, it was also shown that RNA
molecules can cooperate [51] even forming ACS [52] thus
supporting the picture of autocatalytic RNA networks.
The presence of cooperative interactions might be a cru-
cial component in defining the conditions for success of
early replicators in terms of phase transitions. In this
context, artificial models of RNA networks provide ev-

FIG. 5 Experimental realisation of a cooperative (ACS) cycle
among ribozymes (adapted from Vaidya et al. [52]). Here an
intron ribozyme from Azoarcus can be broken into fragments
that can covalently self-assemble by catalysing recombination
reactions in an autocatalytic fashion.

idence for a high probability of developing ACS under
experimental conditions [53].

There is a very important reason to suggest that these
class of RNA networks might have been a crucial condi-
tion for the growth of genetic information. Early theoret-
ical arguments [54,55] indicated that there is a maximum
length L. associated to RNA chains that scales as the in-
verse of mutation rate p (i. e. L. ~ 1/p). Beyond this
L., the system experiences a so called error catastrophe,
a phase transition where genetic information is lost. An
elegant solution to this complexity limit was provided by
the hypercycle, defined as a cyclic set of mutually en-
hancing catalytic components [56]. The hypercycle is a
system in which autocatalytic replicators also heterocat-
alytically aid each other?s replication so that replication
of each member is catalyzed by at least one other mem-
ber under a second-order kinetics®. A system of coupled
reactions involving an RNA-based ACS (figure 5) was
obtained by Vaidya et al. [52] showing that mixtures
of RNA fragments self-assemble into self-replicating ri-
bozymes through the emergence of evolvable catalytic
cycles. The synthetic RNA system thus suggests that
ACS could have been crucial to overcome some thresh-
olds of survival and information storage.

3 Although this definition poses some strong constraints on the
potential candidates to a hypercyclic dynamics, the exact imple-
mentation might not be so relevant while looking for the generic
(universal) properties of systems that include in their effective
kinetics second-order terms.
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FIG. 6 (a) Phase transition from death to living states. Using the simple model described in the text, a potential function
shows the phase change that occurs once the cooperation parameter p crosses a given threshold. (b) Phase transition in a
synthetic RNA world with molecular cooperation on a two-dimensional space. Snapshots of the catalytic polymer concentration
in the RNA polymerization model at the beginning (left), during (center), and after (right) the transition from the dead state
to the living state for different system sizes (L = 10%,10%) and with local hopping rules. Adapted from Wu and Higgs [63]

A potential drawback of cooperative systems is that
they can destabilise due to the presence of parasites [57].
However, theoretical arguments indicate that compart-
ments can strongly constrain their impact [58]. On the
other hand, the appropriate nonlinear replication kinet-
ics can help also a rapid expansion of replicators. To
illustrate this idea, let us first consider a toy model [59]
in which a set of replicators A cooperate and decay fol-
lowing;:

A-—524 24234 A-50 (8)
If we use x = [A] to indicate the concentration of repli-
cators, it is possible to show that

d

d—f = —z+sz(l —x) + pa*(1 — z) (9)
where a limiting value z,,,, = 1 has been introduced.
This system exhibits three equilibrium points, namely
z* = 0 or dead state, as well as to additional points

T LRt R ACRDEE T I

The main result of this model is the existence of a dis-
continuous (first-order) phase transition separating the
two possible phases. This is shown by using the poten-
tial function associated to our system, namely:

2 IS I4

Vi) = (U=8)F +(s—m5 +up (D)

which is plotted in figure 6a. The minima defining the
alive phase coexist with an alternative minimum where
extinction is also an alternative possibility. When p <
e = 2.25 a unique minimum is observable, associated
to the extinction scenario (or dead phase) whereas for

> e we will observe two minima, being the alive fixed
point placed in a deeper valley.

A robust result leading to a phase transition from non-
living to living was suggested by Wu and Higgs [60]
by considering a spatially extended model of catalytic
RNAs. The use of space is known to play a key role in
stabilising or even allowing some key replicator dynamics
to occur. In the RNA system, two precursor molecules
are available in the environment at concentrations F; and
F5. The RNA monomers, denoted by A, can be synthe-
sized from F;. These monomers can react with F5 to pro-
duce activated monomers, A*. RNA polymers of length
n are denoted A,,. An activated monomer can react with
a polymer to extend its length. The transitions are now:

= A Fy+ A% A* (12)

Ap + A5 A (13)
additionally, we also consider constant degradation rates

for all molecules, which decay (or are removed) at a rate
0. The associated system of equations thus reads:

% =sF —aFyA—rAA* — A (14)
dA* X *
din =rA*(A,_1 — A,) — 04, (16)

where we indicate as P =} -, A, and the polimerisa-
tion rate is given by r = ro + kP,, with P, = ZuZn A,
As it occurs with the previous model, there is also a phase
transition between a state with little or no polymerisation
and a ”living” state where the catalytic reactions lead to
high levels of polymer concentrations. If this is simu-
lated using a discrete implementation, including stochas-
tic fluctuations, a threshold of local concentrations must



be crossed in order to switch to the living state. Once
this occurs, the living state propagates through the entire
space (figure 6b). The initial local transition can require
a long time to occur, but the propagation is rather fast
[60]. If we extrapolate this to the origin of life, this rapid
spread might imply that early life just evolved once in
our planet?. In general, artificial models of spatially co-
operative replicators with and without parasites reveal
significant differences with respect to the mixed system
[61-64].

IV. SYNTHETIC GENETICS AND XENO-CODES

A crucial step towards a life-dominated planet re-
quired the establishment of a system able to expand and
adapt under changing conditions. To such goal, infor-
mation and codes might have played a central role as
a pre-condition for open-ended evolution. This requires
both the presence of an alphabet and polymer strings
as well as appropriate physical properties allowing the
molecules to fold into compact structures. Molecular
genetics grew along with information technology in the
early 1950s. Many relevant terms, including coding and
decoding, translation or transcription became adopted.
A fist glimpse of the possible nature of the molecular
code of life was suggested by Erwin Schrédinger in 1944
the idea that an information-carrying molecule should be
some class of aperiodic crystal [65].

An obvious question that has been raised by many dif-
ferent researchers is the uniqueness of the genetic code.
All known organisms in our current biosphere share a
common molecular synthetic genetic code [66] with very
little variation in the mapping between codons and AAs
summarised in figure 7a. What can happen if we scram-
ble the letters of this diagram? Could different arrange-
ments work as well as this one? The early days of decod-
ing the genetic code soon revealed that the potential size
n of codons should not exceed nor move below n = 3.
Having 20 AAs as the building blocks of proteins, four
nucleotides, small codons with n = 2 could only give
42 = 16 aminoacids while for n = 3 we have 4% = 64
and the genetic code would be able to account for the
AA repertoire provided that some amount of degeneracy
was present. Such degeneracy was known -from coding
theory- to be a potential source of robustness, since errors
in transmission can be compensated [67]. The uniqueness
of the genetic code, along with some features that sug-
gested some sub-optimal traits that it might be a ”frozen
accident” and thus opened the possibility for multiple
alternative codes. Is DNA the only possible molecular
option for our biosphere or just one among many?

4 The minimal model consistent with this set of reactions, as
pointed in [60] is dz/dt = (s +rx + kx?)(1 — x) — uz which again
exhibits a potential function similar to the Fontanari-Ferreira
model [59]
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FIG. 7 The universal character of the genetic code (a) and
evidence for its optimality was obtained through an in silico
analysis of millions of synthetic alternative codes, where the
coding for amino acids form the triplets defining codons has
been randomly scrambled. (b) By treating the genetic code
as a problem of information channels (b) we can find addi-
tional support for the optimality of the genetic code. Here we
indicate by R;; the probability of codon i to be misread as
codon j, whereas P;, is the probability of codon ¢ to encode
aminoacid p. The distance between aminoacids « and f is
indicated as Cqps.

Given the single-case scenario provided by all liv-
ing forms in our biosphere, we need to consider ”syn-
thetic” alternatives that can be reached either from com-
putational models or through the experimental synthe-
sis and analysis of new molecular codes. A system-
atic exploration of the space of possible codes based on
n = 3 codons and their mapping into different poten-
tial aminoacids was performed [68,69]. Different genetic
codes were randomly generated by partitioning the codon
space into 21 non-overlapping sets and considering the
impact of mutations on the efficiency of the code. Here
mutations to all codons were performed for each syn-
thetic code and the change in aminoacid hydrophobicity
was determined. This property is connected to a very im-
portant feature of AAs (and proteins): how they interact
with water. Hydrophobic AAs do not interact with wa-
ter whereas polar ones easily make contact with water.
Different aminoacids have different hydrophobicities, and
the analysis measured to what extent was this parameter
changed by mutations. The sampled space included 108



alternative codes, much smaller than the potential 108
but it nevertheless provides a strong argument in favor to
the optimality of the natural code. In fact, when other
biological and chemical constraints are considered, the
possible repertoire shrinks to around 270 millions of al-
ternative codes. When the frequency of codes against
their efficiency (measured in terms of the error level) was
obtained, it was found that the genetic code was the sec-
ond best or, as the authors said ”one in a million”. Here
we have a powerful case for optimality.

What are the conditions allowing a genetic code to
arise? Are there here too phase transitions associated to
the emergence of such codes? A model approach [70,71]
developed by Tsvi Tlusty considers genetic codes as noisy
information channels (figure 7b) with two sets associ-
ated with codons and AAs, respectively. An error-prone
molecular reader (left) can sometimes lead to misread
of symbol 7 into symbol j, thus leading to a misread in
the meaning space (right). The distance between the
expected and actual outputs is also considered. Specifi-
cally, let us define three key quantities, namely: (a) if
P;,, the probability that codon i = 1,..., N, encodes
the a = 1,...., Ny AA (thus we have ) P, = 1) (b)
Cop, (a, 8 =1,...,Ng) i. e. the distance matrix separat-
ing two AA (in terms of their hydrophobic properties)
and (c) R;; the probability of misreading two symbols.
We can define the following three quantities. The first
two provide a measure of the error load L and the code
diversity D:

L= RijPiaP;isCap (17)
5,j B
D =YY "(1-6i;)PiaPjsCap (18)
j B

while a third one weights the cost of the coding system,
defined by

All these quantities can be obtained from the information
channel description and allow defining a fitness function,
where code diversity is a positive entry whereas error load
and cost introduce negative components. All the three
constraints are combined by means of an energy function
H to be maximised, namely H = —L+wpD —w.C with
wp and we two parameters, to be applied to many syn-
thetic codes. The optimal code occurs at a phase transi-
tion point, where the mapping between codons and AAs
moves from random (uniform) to non-random. Right at
this point, the statistical regularities exhibited by the ge-
netic code are recovered.

Beyond the in silico counterpats, synthetic biology of-
fers the possibility of expanding the experimental reper-
toire defined by RNA and DNA. This can be done while
including the potential for Darwinian evolution [72,73].
Moreover, orthogonal ribosomes have been synthetically

Altritol Nucleic Acid Glycerol Nucleic Acid

FIG. 8 The XNA alternatives for Synthetic Genetics. Sev-
eral promising candidates have been designed and tested us-
ing a growing list of structurally diverse XNAs. The right
panel shows several examples, each capable of undergoing
Darwinian evolution.

evolved to decode quadruplet codons, thus allowing the
encoding of unnatural AAs [74]. One particularly inter-
esting path has been followed by designing, evolving and
characterising so called XNAs [74] as well as synthetic
catalysts (XNAzymes, see [75]) that allows to speak of a
synthetic genetics [76]. These studies have revealed XNA
polymerase evolution and design allows to use alternative
polymers that can undergo Darwinian evolution. Exam-
ples of alternative backbones for a given XNA are shown
in figure 8a-b. It is worth noting that the possibility of
using glycerol and other simple molecules as alternative
backbone provides a valuable approach to the origin of
the genetic code, since (as opposed to glycerol) ribose
is a complicated sugar, less likely to be formed under
prebiotic conditions [77]. A space of the possible XNAS
can be defined [73] where an idealised space of possi-
ble XNAS is constructed using three axes corresponding
to sugar, base and backbone modifications, respectively.
Most XNAs that have been studied so far (except peptide
nucleic acid or PNA) lie on these axes. More divergent
phenotypes should become accessible through a fuller ex-
ploration of the XNA space, that is, the replication and
evolution of XNAs comprising a combination of modifi-
cations to base, sugar and backbone.

V. SYNTHETIC CELLS

An old saying of biology is that ”every cell comes from
another cell”. This statement connects us with our an-
cestral cellular origins through a billions of years old tree
of life forms. The cell is the most obvious minimal unit
of life and its origins one of the crucial steps towards
our understanding of METs. Both synthetic and virtual
protocells have been designed and explored in search for
the requirements needed to move through a whole cycle
of growth, instability and division [78-81]. Cells might
have been a precondition for an expansion of complex



life. In particular, compartments might have been essen-
tial to escape from parasitic replicators and a powerful
way of enclosing together the right reaction components
at reasonable concentrations .

The challenge of creating an artificial cell has been
addressed in both top-down and bottom-up approaches
(figure 9). In the former, we start from existing genomes
Since numerous genes are involved in cell-cell communi-
cation while others have been shown to be non-essential
to cell functioning, it was earlier suggested that it would
be possible to reduce genome complexity to a minimal set
of N genes able to sustain metabolism and reproduction.
Computational and theoretical arguments suggest that
about N ~ 200 — 250 genes could be a minimal set size
[82,83] although the smallest synthetic cell, has reached
a N = 473 essential genes [84] although the function of
149 of them is unknown.

The second, bottom-up approach is closer to chemistry
and deals with the creation of protocells from the as-
sembly of interacting chemical components [78] and thus
involves a major transition between non-living and liv-
ing matter. In figure 9 we depict this as a combination
of three potential ingredients, namely metabolism (M),
compartment (C) and genetic information (G). They
can be combined in different ways, including a com-
plete protocell capable of self-maintaining itself and self-
replicating (M+C+G) but also information-free systems
(M+C) or even non-replicating systems, where polymer
self-replication might occur but not self-reproduction.
The later would correspond to a limit case involving
liposome-like systems capable of self-maintenance but
not self-reproduction. The crucial problem is how these
three components (none of them defining life) need to co-
operate among them in order to lead to a self-replicating
macromolecular entity.

Most models and implementations of protocells make
use of either micelles or vesicles (fig 10a) as compart-
ments. A canonical protocell model is provided by a
so called autopoietic system (figure 10b) where P and
S stand for the membrane precursor and the surfactant
molecules, respectively [80]. Here P is transformed into
S which is incorporated in the vesicle. If a vesicle Sy is
made of £k monomers, and assuming that monomers can
degrade, we have:

" ;
P+S; l—g> Si+1 S;i+Y ﬁ) Si+1 + W (20)
The balance between growth and division determines the
outcome of the protocell dynamics. If we indicate by
vg and vg the rates of single events (fig 10b) the vesicle

would follow d[S]/dt = (vq — vq)[S] and its solution is
thus

[S] = [Sloels )t (21)
Three potential regimes are allowed by this kind of ki-

netics: (a) growth, when v, > vq4, (b) homeostasis, for
vg = vq and collapse, when v, < vg [80]. Under this

G-free PCell Protocell non-replicating PCell

G

FIG. 9 Pathways towards synthetic cells. Two major ap-
proaches to create an artificial cell involve either a top-down
or a bottom-up approach. The first starts from a living, com-
plex cell such as Mycoplasma sp. (top) and proceeds through
genome reduction. The second makes use of a molecular
toolkit from which different forms of assembly produce dif-
ferent types of artificial protocells.

rather crude approximation, the system would be sta-
ble at criticality and capable of undergoing growth and
division cycles provided that vy > vg.

Ganty’s Chemoton model (figure 10c) provides an ex-
ample of an explicit proposal for a protocell where several
coupled cycles involving M+C+G are considered [81].
The model is spatially implicit and thus does not take
into account the requirement for membrane instabilities:
once a critical amount of material components has been
accumulated, the model artificially splits the cell in two
equal parts. The chemoton allows studying different rel-
evant problems related to the role played template com-
petition and error thresholds [85].

A major problem arises when dealing with an explicit
implementation of the physics of compartments particu-
larly in relation with the instabilities required for replica-
tion to occur. While the process of vesicle or micelle for-
mation has to do with a minimisation of energy leading to
a more or less symmetric structure, the growth-instability
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FIG. 10 Synthetic protocells. (a) A common component of most protocells is a spherical vesicle involving a lipid bilayer. In
(b) we show a minimal model of an autopoietic cell, where an external precursor P gets transformed into surfactant molecules
S and can also degrade under the presence of a given Y, into a waste product W. Here S,V and V. stands for external surface,
total and internal volumes, respectively. One version of Ganti’s chemoton is shown in (c). Here the metabolic cycle is indicated
by M = {A,} and z; are external resources. In this example, two types of templates, indicated by 11,75, coexist in the same
cell. Three different synthetic protocell cycles are shown in (d-f): (d) an RNA-based heterotrophic protocell [96] (e) Kurihara

et al’s model [97] and (f), after [98].

process involves an out-of-equilibrium process®. In order
to destabilise the system, the symmetry of the spherical
configuration needs to be broken. In this context, the
contained and its coupling with metabolism and infor-
mation define the genotype-phenotype mapping [86,37].

The efforts aimed to create an artificial cell must deal
with different ways of triggering membrane instabilities
leading to cell division. All these systems share a given
environment where available membrane precursors re-
quired to achieve a critical size. Current living systems
share a genetic control of the cell division, but early

5 Micelle formation, for example, can be described as a cooperative

reaction nAj i) A, where a closed system A, composed by n
monomers A; gets formed provided that a critical concentration
x = [A1] is present. This cooperative behaviour is an important
part of the self-organisation of micellar structures and indicates
that, once a given concentration of monomers is crossed, the sys-
tem experiences a spontaneous transition towards macromolec-
ular assemblies. These self-assembly properties are shared by a
vast range of molecular candidates, both natural and artificial.

stages in the evolution of protocells must have been de-
pendent on physical properties of membrane curvature.
Theoretical models address this in two main ways. The
first class uses a parameter ¢, (the so called reduced sur-
face%) defining the critical value associated to vesicle di-
vision. Here too a phase transition scenario is present.
A general condition for achieving a cell division cycle has
been derived in [88,89]. A simple example close to the
autopoietic cell would be a self-reproducing enzymatic
vesicle where the key reaction is given by:

P+E S LynW+E (22)

6 This parameter is defined as ¢ = S/ /36712 where S and V are
the surface and volume of the vesicle, respectively. When ¢ =1
we have a spherical, stable vesicle, whereas lower values lead
to inflated vesicles (which can burst) and higher values favour
deformed vesicles. A critical value is given at ¢. = J2. A
stable vesicle can be shown to exist within a domain 1 —€ < ¢ <
V2(1 + 1) where ¢, are measurable coefficients.



with E being, for example, an enzyme located inside the
vesicle and n waste molecules are released. This model is
a good approximation to some experimental setups using
giant vesicles that produce inside them, with the help of
a catalyst, the main membrane component [90]. For this
system, it can be shown that the critical balance obtained
when

S 1Pl — [P+ = (S5 ) (FATE) (a3)

where r;, = k[P]/NAV and £ the membrane permeabilty.
The previous equation provides a critical condition re-
quired to achieve cell division. Moreover, it introduces
constraints between different components of the system
and their couplings.

The second class of models gets closer to the physics of
membrane instability by explicitely considering this fac-
tor as part of the process. Here the use of the membrane
energy is required”.

Mathematical and experimental investigations of vesi-
cles shows that phase transitions separate spherical from
asymmetric vesicles associated to symmetry breaking
[91]. The explicit energy associated to synthetic proto-
cell growth has been introduced in different ways. These
include pattern formation through Turing instabilities
[92] or micelle-metabolism coupling in nanocells [93-95].
These artificial cell models suggests that instabilities can
be easily generated provided that a given molecule gets
asymmetrically distributed within the vesicle, thus creat-
ing spatial inhomogenities. Alternatively, the packing of
lipid molecules into a given spherical aggregate is strongly
constrained by the shape of the surfactants. Once a crit-
ical number of these molecules is reached, the aggregate
is no longer stable.

Synthetic protocell reproduction has been experimen-
tally investigated using a diverse range of settings. None
of them has been successful so far in showing a full, simple
cell cycle following the growth-deformation-instability-
division process. One candidate is a container (made
of simple amphiphiles) enclosing oligonucleotides shows
a template copying process in the cell interior [96]. The
interest of this system (figure 10d) is that shows how
prebiotically reasonable membrane compositions can be
enough to provide a system capable of division driven
by both internal and external forces. Other successful
strategies have used different alternative ways of depart-
ing from the spherical symmetric compartment. An ex-
ample of these synthetic systems (fig 10e) involved a gi-
ant vesicle (GV)-based model enclosing DNA molecules

7 The energy associated to the bending of the vesicle is defined
through the integral of the free energy on the surface. In its sim-
plest form and considering low temperatures (i. e. thermal fluc-
tuations are ignored) we have H; = fs @(C(S) — Co(8))%dS
where k[S] is the bending modulus and C(S)—Cy(S) is the mean
curvature of the vesicle surface at S. The result of the minimi-
sation of such energy function, i.e. the solutions of §H;, =0

FIG. 11 Synthetic evolved multicellularity. Using
yeast strains (a) involving single-living cells (image from
https://en.wikipedia.org/wiki/Yeast) it has been shown that
selection favouring the formation of aggregates (b) leads to
the emergence of multicellular systems (image courtesy of W.
Ratcliff). This type of experiment can be easily modelled us-
ing embodied simulations (c) where wells are represented as
physical objects that can adhere to each other.

that are amplified through PCR [97]. In this system,
membrane precursors are provided and the amplified
DNA moves within the two lipid layers, triggering a local
growth and budding process that ends in vesicle division.
In another setting [98] the artificial cells contain RNA en-
coding a self-encoded RNA replicase that can be evolved
over time. The artificial evolution experiments show that
self-replication occurs (figure 10f) with the use of PCR
and the input of fresh translation system under vigorous
mixing.

All these examples require the help of some extrinsic
factors to trigger or facilitate instability. In that respect,
synthetic versions of protocells suggest that the path to-
wards spontaneous instability and division might be more
difficult than expected. But there is also another possibil-
ity: that the origin of protocells might have required such
extrinsic factors to occur. In this context, a very active
research has also been done exploring the emergent prop-
erties associated to membranes [99]. One particularly
important finding is the potential role played by vesicles
as functional promoters and regulators of chemical re-
actions [100]. Moreover, synthetic vesicles can compete
and interact in nonlinear ways providing further layers of
complexity beyond simple compartments [101-103].

VI. SYNTHETIC MULTICELLULARITY AND
ORGANISMALITY

Multicellularity has evolved multiple times through the
history of our planet [104-106]. This transition has taken
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Stem cell

FIG. 12 Emergence of in silico proto-organisms. A simple spatial model can lead to complex multicellular assemblies involving
organismality. Using (a) a two-state model of cells with division of labor, a complex spatially organised system emerges (b)
as a result of artificial evolution under a selective medium where both nutrients and waste are present (see [133]). The spatial

dynamics is driven by a model of differential adhesion (c).
networks whose phenotypes (Pi, P, ...

place either cell increased aggregation and adhesion (as it
occurs with myxobacteria and some slime molds) or loss
of cell separation after cell division (this includes bacte-
ria and ciliates). Most classical models of the transition
to multicellularity ignored physical interactions between
cells within cell aggregates. In this context, these models
[107] have been formulated in terms of a two-loci dy-
namical system where the transition implies an increase
of cooperation among cells along with the regulation of
conflict within the emerging organism. However, spatial
structures create novel conditions that necessarily affect
the fitness of the multicellular assemblies. Considering
the embodied nature of these aggregates is not only re-
quired as an additional feature but it can actually be
crucial to understand the transition itself. It is worth
noting that the use of physical models of multicellular-
ity reveals that even under very simplistic assumptions,
complex forms easily emerge [108-113].

The transition to multicellularity required the presence
of alternative cellular states along with stable, physi-
cal interactions among previously isolated cells [114-116).
Extant multicellular systems develop under tight controls
of genetic networks [117,118]. Synthetic multicellular sys-
tems can be obtained in several ways, from non-clonal
adhesion-differentiation processes to engineered consor-
tia. In this context, achieving developmental properties
necessarily require to overcome thresholds of organisa-
tion intimately connected to transition phenomena. It
has been suggested that a small set of dynamical pat-
terning modules (DPM) might have played a major role
in the evolution of complex organisms. These DPM af-
fect adhesion, diffusion, cross-inhibition or synchroniza-
tion of cellular and tissue-level interactions through a set
of key molecular actors [119]. In this context, artificially
evolved multicellular aggregates [120] synthetic multicel-
lular analogs [121] and their model counterparts [122-124]
have shown the potential for novel explorations of an old
issue.

A different class of model involves considering cells as complex
) are defined by attractors derived from stem cells [135].

A successful strategy to create synthetic multicellular
systems was put forward in a recent set of experiments
[120] in which the authors sequentially subcultured S.
cerevisiae cells with the fastest sedimentation in order
to force the selection of cooperating aggregates (figure
11). Remarkably, after just 60 selection rounds, the so
called snowflake phenotype appeared consistently in all
cultures (fig 11b). These are roughly spherical clusters of
cells formed not by aggregation but by defective separa-
tion of cells after division. It was found that clusters did
not reproduce through events associated to single cells
but instead involved a group-level set of events. This was
achieved through a division of labor in the form of the
active control of apoptosis, which caused the asymmet-
rical splitting of the cluster once it reached a threshold
size [120].

In order to understand the origins of these multicellu-
lar structures, a simple model was developed [123] that
was also used to test other potential scenarios for the rise
of multicellular ensembles (fig 11c). Here yeast cells and
their interactions are simulated using a physical embodi-
ment, with evolving adhesion rates. The model was able
to reproduce the reported patterns in cluster size dis-
tributions and localised mortality. Moreover, the model
suggests an alternative pathway to cell clusters and their
fission based on a passive apoptotic effect of nutrient de-
privation in cells at the center of the aggregate.

An interesting observation in this area is the pres-
ence of a blurred zone at the boundaries separating
some single-celled species from full-fledged multicellu-
lar entities. Bacteria in particular exhibit multicel-
lular traits [125] specially in the face of high-stress
events [126,127]. Simple multicellular systems, such as
Anabaena or mixobacteria are such examples of mini-
mal multicellular organisation [128,129] that can involve
primitive developmental programs. A minimal form of
multicellularity are persister cells associated to cell sub-
populations that can spontaneously switch back and



forth among multiple resistant phenotypes, as a bet-
hedging strategy [130,131]. Can this mechanism pre-
date the transition to the first complex multicellular life
forms? This is connected to the origins of what Queller
and Strassman named organismality [132]. Specifically,
it would be important to know if primitive forms of cell
adhesion and diffusion under selective conditions can lead
to proto-organisms where division of labor is tied to spa-
tial organisation.

A minimal model has been proposed for the origins of
proto-organisms [133] and is summarised in figure 12a-c.
It includes (a) multistability, using a stochastic bistable
phenotype, (b) differential adhesion and (c) a selective
environment involving both nutrients (N) and harmful
(W) diffusible molecules. Cells are distributed over a
two-dimensional lattice 2. The two cell types need N
to grow whereas W causes increased cell death (fig 12a).
Only cells of type 2 can degrade waste in medium, at
the expense of reducing their growth rates. Under ap-
propriate metabolic trade-offs, it was shown in [134] that
evolution of undifferentiated multicellularity might per-
vade the coexistence of cell clusters. By adding adhesion,
it can trigger the formation of proto-organisms (see figure
12 b-c). The result is the emergence of nested substruc-
tures and the creation of an internal environment. These
results suggest very simple sets of pattern-forming rules
can produce a rich, largely unknown landscape of struc-
tures predating the evolution of multicellular organisms
[133,134]. Other types of similar proto-organisms have
also been obtained by models involving dynamic differ-
entiation under isologous diversification [135]. In this
type of model, cell types are dynamical attractors in a
high-dimensional landscape of expression (figure 12 d).

Synthetic biology offers a unique opportunity of test-
ing theories concerning the origin of multicellularity as
well as the emergence of developmental programs. Engi-
neered cellular communication has already been achieved
in different contexts allowing the creation of novel cellular
consortia [136-138]. By engineering unicellular systems
it is also possible to obtain novel forms of multicellular
assemblies, able to complex computations [139-141]. Fi-
nally, cell reprogramming and tissue niche engineering
have shown the way to design synthetic tissues and or-
gans [142,143] and explore synthetic development and its
limits [144].

VIl. SYNTHETIC SYMBIOSIS

Symbiosis refers to a scenario where once independent
replicators come to live together in close association [145].
This association is typically tied to a physical interaction
that oftentimes involves one partner embedded or in close
contact within the other and the system experiences ver-
tical transmission [146]. This close relationship can be
parasitic or mutualistic. In the first case, one partner
(the parasite) exploits the second, with no return from
the former. Mutualism describes a mutual cooperative
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loop where both partners help each other.

What are the basis for the emergence and persistence
of symbiosis? As with most of our previous examples,
definitive answers might be difficult to obtain by studying
natural systems. Instead, synthetic counterparts provide
a powerful approach to the problem and several exam-
ples illustrate how to create de novo mutualisms. Syn-
thetic biology has been successful to show that differ-
ent types of symbiotic relationships can be engineered
in novel ways [147-151]. Different strategies have been
followed, including: (a) design of auxotrophic interac-
tions (fig 13 a) creating a synthetic cooperative loop (a
hypercycle) where each partner needs a molecular fac-
tor produced by the second [152]; (b) transformation of
plant pathogens into legume symbionts [153-154]. The
experiment started from a designed chimeric strain of a
plant pathogen carrying a symbiotic rhyzobial plasmid
from a plant endosymbiont (fig 13 b). The initial strain
evolved to a full endosymbiont after two key mutations
allowing nodulation and plant cell infection. Here niche
engineering provides an additional approach to the prob-
lem, where two chosen non-cooperative species are forced
to coevolve under a forced exchange of carbon and nitro-
gen. The outcome of this experiment was a synthetic
transition from free living life forms into obligate mutu-
alists [155].

A last example is given by synthetic designed chimeric
organisms (fig 13c). Here photosynthetic microorgan-
isms were injected into zebra fish embryos [156,157] as
well as mammalian cells [156]. Such type of symbionts
exist in nature and have been found in diffferent phyla
[158]. Here the photobiont uses solar energy to pro-
vide reduced carbon as a source of energy to the meta-
zoan host, which can provide nutrients in return. Suc-
cessful invasion of mammalian cells (macrophages) by
algae was improved by engineering the photosynthetic
cells with invasins [156]. Interestingly, the algae remains
alive and even reproduce while embryonic development
takes place. This opens the possibility of future plant-
vertebrate chimeras where an additional engineering level
would allow the production of useful metabolites other
than oxygen [157,158].

The in silico approach to the emergence of symbio-
sis has also been successful and insightful, specially from
computer models of evolving digital genomes [159]. The
best known example was given by Tom Ray’s experi-
ments with the Tierra model, based on a set of replicat-
ing and mutating computer programs competing for com-
puter memory (the resource) [160]. After a first selection
for shorter, faster replicating programs, shorter programs
emerged, but unable to replicate by themselves: parasites
came to (digital) life. Similarly, on the long run groups
of slow-replicating programs were able to replicate faster
by cooperating among them. Digital evolution supports
the idea that the emergence of parasites might be an
inevitable outcome of evolutionary dynamics [161,162].
One particular instance of man-made synthetic parasites
is provided by the evolution of computer viruses (CVs).



FIG. 13 Synthetic symbiosis.
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(a) A cooperative synthetic system involving designed auxotrophic interactions [152]. (b)

Synthetic mutualism resulting from niche engineering. Here two species interact through a metabolic circuit based on carbon
and nitrogen exchange. S. cerevisiae (left) metabolizes glucose (C6H1206) releasing carbon dioxide (CO2), which is then
assimilated photosynthetically by C. reinhardtii (right) to release oxygen (02). On the other hand, C. reinhardtii metabolizes
nitrite (NO2) and releases ammonia (NH3) as a nitrogen source for S. cerevisiae [155]. In (c) we display a microscope image of
a chimera zebra fish embryo containing living photosynthetic cells [156,157].

After their early appearance, CVs became more and more
complex and diverse [163]. A crucial step in the histori-
cal development of CVs involved the creation of internal
sources of variability that mimicked natural mutations.
Variability was thus an invention, and a rather inten-
tional one, as opposed to the intrinsic, inevitable errors
that constantly take place in living systems. Moreover,
in contrast with the typically harmful effect of mutations
on viral genomes, random changes in CVs have no im-
pact to their viabllity: Here no interactions are allowed to
occur affecting functional traits. Computer viruses even-
tually evolved towards more silent, apparently harmless
designs based on their potential to ”integrate” themselves
within the host machines, where they remain undetected
[164,165).

VIIl. SYNTHETIC COGNITIVE AGENTS AND SWARMS

The emergence of a special class of biological agents,
the neural individuals [166] introduces a new layer of com-
plexity: the rise of behavioral systems [167]. In this
case, information transmission and processing is done
within individuals. Here behaviour can be defined in
terms of patterns of interactions between individuals and
their environment where the actions of the organism and
its perceptions interact, eventually affecting future ac-
tions and perceptions. Here we will consider two broad
classes of synthetic cognitive systems and the key con-
ditions for their emergence or synthesis: (a) individual
cognitive agents and (b) societies, i. e. large sets of in-
teracting agents displaying colony-level behaviour. The
latter is tied to the problem of how cooperative soci-
eties came about and how such swarm intelligence can
be engineered. Grey Walter’s work in particular was
the first systematic cybernetics approach aimed to cre-
ate robotic agents (figure 14a) [168-171] and the term
synthetic animals to refer to this class of automata ca-
pable of autonomous behaviour [172]. These simple au-
tonomous robots were capable of some complex behav-
ioral responses, including unexpected ones, as it occurred

when facing mirrors [170]. These and later [173] synthetic
animals revealed an interesting (and largely unappreci-
ated) feature, namely that the complexity of embodied
agents was not just the result of its cognitive complexity,
but of its interaction with the environment [174].

One of the most active area within robotics is grounded
in a combination of designed and evolved agents [175-
177]. Evolutionary robotics takes advantage of the search
over parameter spaces by means of artificial Darwinian
selection, which allows the synthesis of autonomous
agents [176]. This field has clearly confirmed that be-
haviour is the emergent outcome of the interactions be-
tween the agent and its environment. The subsequent de-
velopment of behavior-based robotics has also been very
useful as a pathway to approach relevant evolutionary
questions [175]. An example is the transition from swim-
ming to walking, which was required in the transition
from sea to land. Inspired in the anatomy and behaviour
of salamanders, a model of the central pattern generator
of synchronized neurons controlling locomotion was used
as a starting point for evolving its architecture and pa-
rameters to allow a switch to walking gait of a tetrapod
consistent with available information [178,179]. This is a
powerful illustration of this field as an alternative path
to uncover evolutionary innovations.

Collective intelligence and its potential synthetic coun-
terparts needs to be considered separately. The emer-
gence of the superorganism requires crossing the so called
eusociality threshold, which involves overlapped gen-
erations, division of labor into reproductive and non-
reproductive subsets and the maintenance of genetic re-
latedness [180,181]. Interestingly, Oster and Wilson [181]
explicitly mention the potential relevance of phase tran-
sitions to understand the organisation of castes in social
insects. What about the synthetic counterparts? Is it
possible to evolve or engineer synthetic swarms? It has
been pointed out that one precondition for the origin of
societies of insects was a ”get together” rule that should
operate once individuals are born. This is a key require-
ment in order to achieve a cohesive group. However,
less importance has been given to the fact that, once



FIG. 14 One of the first ”synthetic animals” (a) was build
by Grey Walter. It involved a simple wheeled robot with
sensors and actuators and reacting to light in different ways.
Mixed synthetic swarms have been created by communicating
cockroaches and their robotic counterparts (b) in order to
solve problems collectively. Robotic swarms (c¢) made of many
small robots following simple rules of interaction, can self-
organise using self-assembly rules.

such step has been achieved, group responses resulting
from phase transitions emerge too [18,182-184]. Here too
interactions among individuals can trigger system-level
responses provided that critical thresholds are reached
[18,183,185].

These transitions provide the group-level dynamics re-
quired to perform different types of tasks. A specially
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relevant example in our context is provided by an ex-
periment that combined mixed societies of artificial and
natural agents [186,187] including both real and robotic
cockroaches (fig 14b) that have to perform a two-choice
decision between two shelters. The robots were shown to
modulate the collective decision process leading to a pat-
tern that cannot occur in their absence. In other words,
the artificial component of the mixture forces the proper
swarm behaviour to occur and to test hypothesis con-
cerning the origins of swarm intelligence. Moreover, the
use of robot swarms or simulated agents working on a
given spatial domain, provided insights into eusociality
[188-191]. Novel ways of implementing large numbers of
robotic swarms [192,193] capable of using self-assembly
rules (fig 14c) have also been engineered.

Microbes are also capable of integrating sensory in-
formation, store memories and display different levels of
behavioural control [194-196]. They thus incorporate sev-
eral relevant components required to build or design com-
plex decision-making systems. In some cases, the ways
microbial colonies respond to environmental challenges
can be easily classified as a swarm intelligence problem
[194]. Alternatively, many well known examples of collec-
tive decision making could be engineered using modified
microorganisms [197] capable of implementing computa-
tional tasks with no known counterpart from the micro-
bial world.

An interesting outcome of the study of natural, syn-
thetic and robotic systems is the presence of seemingly
universal decision-making rules of organisation. Group
responses displayed by ant colonies are based on so called
quorum sensing (QS) mechanisms [198] also displayed by
microbial populations [199]. The QS rule, as well as other
amplification mechanisms pervade phase transitions be-
tween individual, disorganised behavior (ants search in-
dividually) and colony order (collective search towards
a given nutrient source). Here a signal (a pheromone,
for example) ¢ triggers its own production with constant
rate p and is proportional to the population density p.
The signal is produced following a function f(y) by in-
dividuals (present at a given density p) and decays at
a rate 0 [197]. The minimal model that captures this
is: dp/dt = f,(¢) — dp. A common form of f(y) is a
so-called Hill-like function® namely:

2
10(0) = g0 5 (24)

which gives small values for ¢ < 6 and large values oth-
erwise. Close to the threshold @ it rapidly increases. The

8 The quadratic terms that appear in this Hill function are char-
acteristic of some well known regulatory controls associated to
the presence of dimers as gene regulators. In other cases, sat-
uration functions with similar shape are related to well known
threshold-like phenomena exhibited by physiological and neural
systems.
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FIG. 15 Phase transitions from individual to collective re-
sponse through a QS mechanism, as described by V,(¢). Here
the state of the system is described by a global field ¢ that
is proportional to the system’s activity. Here we have fixed
mu = 1,0 = 0.25 and 6 = 1 (thus p. = 0.5) and different p
are used: p = 0.25,0.5,0.75.

potential function reads now:

Vo) = ggoQ — pp | — G arctan (%)] (25)
and in figure 15 we show three examples for subcritical,
critical (p. = 0.5) and supercritical densities. For p < p,
we can see that the only stable state is the ¢* = 0 point,
as expected, but the shape of V,(y) is clearly deforming
as we approach p..

Ant colonies have been often compared to brains and
neural networks [200,201]. The analogy is approximate
but useful, since allows finding universal laws too. Both
ant colonies and brains process, store and use informa-
tion about their environments while monitoring internal
colony states. However, ant colonies are made of agents
in movement, thus defining a different state of matter
compared with grey matter: insect colonies are fluid neu-
ral networks [202-204] and thus some of the crucial fea-
tures of a standard neural network are not present in
the swarm. Is the fluid state a constraint for develop-
ing more complex cognitive capacities? Are ”solid” and
"fluid” neural systems the only two solutions available?
Future work might shed some light into the invention of
eusociality [205] and the implications for defining univer-
sality classes of cognitive complexity.

IX. SYNTHETIC LANGUAGES

The transition towards a complex language is a recent
one and had an enormous relevance to human evolution.
It is also a hard problem [206]. One of the obvious facts is
the gap between the complexity of human language and
any other known biological communication system. The
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gap is due to the presence of a grammar that allows the
generation of recursive structures of potentially infinite
complexity [1,207]. Another crucial observation concerns
language acquisition in children. Around two years of
age, when the sequence babbling-one word-to words ut-
terances is replaced by full sentences [208] and children
develop grammatical competence, suggesting that this is
an indication of an innate capacity of language [209,210].
Grammar effectively defines the mapping between lin-
guistic forms and meanings. In its original formulation,
Chomsky introduced the concept of Universal Grammar
(UG) to describe the hardwired ’linguistic theory’ that is
shared by all human brains and allows children to search
the (large) space of possible human grammars [211].

Two main avenues have been followed to study the
transition to language using artificial systems. One
involves theoretical and computational models includ-
ing (a) standard replicator equations [212,123] (b) in-
formation theoretic approaches [214,215], (c) statistical
physics [216,217] or (d) the simulation of discrete agents
[218,219]. The second class deals with physically embod-
ied, robotic agents capable of sensing and tracking their
environments while naming and sharing objects and ac-
tions [220-222]. In most of these artificial models, quali-
tative (phase) transitions are also at work.

Several transitions are involved in language complex-
ity [223]. First, consider the evolutionary dynamics as-
sociated to the emergence of language coherence [224].
Let us assume that a set of possible rules G = {G}
(with £ = 1,...,n). Each G} that can generate ”valid”
messages. These have been identified as ”grammars” in
previous studies [224] but the general approach can be
applied to other features of language, including the in-
ventory of shared words. Different G’s can have similar
rules, and thus are capable of generating some common
sentences. How can a search over a very large space
G end in a common, shared grammar? We will define
A = (ai;), where a;; indicates the similarity between
G; and G;. If two individuals are communicating by
means of two different grammars, the payoff associated
to this exchange will be F(G;,G;) = (ai; + a;;)/2 and
the frequency of agents using the i-th grammar follows a
replicator-mutator equation:

n
dzi

dt = ;xjfj(X)Qij —z;P(x) (26)

where 377 | 2; = 1. Moreover, we have ® = 7, fyxy
and the matrix ();; is the probability that an agent learn-
ing G; from an individual ends using G; instead. This in-
troduces a noise in the model. If we assume the simplest,
super-symmetric model where a;; = a, and such that
Qij = 0i(q/n— 1)+ (1= 6i;)(1 —q) with 655 = 1if i = j
and zero otherwise. Here, ¢ is a learning parameter and
one solution is z; = x and z;», = (1—x)/(n—1). Assum-
ing that n > 1 (a crude approximation, since z ~ O(1/n)
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FIG. 16 Phase transitions in grammar evolution. Here the
potential function Vi(z) is represented for three different ¢
values of the leraning parameter, namely ¢ = 0.5,0.8,0.9
which are below, close and beyond the critical value g. sep-
arating multiple grammars (with a = 0.3 and fo = 0) (here
since n > 1 it corresponds to = = 0).

solutions are replaced by a zero) that the SSM follows:

dx
= -a?(g-2)—nl-g@-1)  (27)
where n = (a + fo)(1 — ¢). This model involves a phase
transition between a state associated to multiple coex-
isting grammars and one single, universally adopted one.
The shape of the potential function is given by:

72

x

V@) =nl-q% —(1-ap®(3-3) (9
and is shown in figure 16 for different values of the learn-
ing parameter ¢q. As we can appreciate, there is a regime
where many different grammars coexist (z* = 0) whereas
after a threshold g¢. is reached, a stable state is given
by a single dominant grammar for ¢ > ¢.. In general
terms, we can use this model to represent the emergence
of language coherence within populations of communicat-
ing agents. As soon as the critical threshold is reached,

a sudden jump to the single-languagesolution occurs.
The previous strategy neither takes into account most
structural and computational complexity of syntax nor
the relevance of meaning [225]. An alternative approach
to the problem incorporates a system capable of per-
ception, programmed to label objects and actions. The
use of embodied robotic agents (Figure 17a-b) revealed
several remarkable things. Omne is that embodiment
is a key requirement to evolve complex communication
[226]. Secondly, evolutionary experiments showed that,
along with a lexicon, rudimentary forms of grammar also
emerge [227] thus indicating that a grammatical net-
work organisation (figure 17b) should be expected also
in artificially evolved languages. The complexity of the
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evolved networks of word interactions has been analysed
by means of fluid construction grammars [228].

Finally, another avenue to synthetic languages is
grounded in a statistical physics approach that seeks
to explain some key universal traits such as Zipf’s law,
which establishes that the frequency of any word is in-
versely proportional to its rank [229]. Specifically, if we
rank all the occurrences of words in a text from the most
common word to the least one, the probability p(s;) that
in a random trial we find the i-th most common word S;
(with ¢ = 1,...,n) falls off as

1.,

plsi) = i (29)
with v =~ 1 and Z the normalisation constant. This law
indicates that most words are rare whereas a few are very
common, and this abundance is also connected with the
frequency of connections between words within sentences
[230]. Does Zipf’s law define a universal feature of com-
plex languages, natural and synthetic?

A toy model can be defined by considering a set of sym-
bols S = {s} and a set of objects of reference R = {r;}
that are shared by a hearer and a speaker. A given toy
language can be described by the graph that connects
the two sets, as the one shown in figure 17(b-d). Here
two efforts are defined, namely the one for the speaker,
Qs and one for the hearer, ;. Here Q, will be mini-
mal by using one or a few words to refer to all objects
(fig 17b) whereas €, would be minimised if the speaker
uses one signal (word) for each object (meaning) i. e.
a one-to-one mapping (fig 17d). Clearly, minimal effort
for one implies maximal effort for the second. A conjec-
ture [231] suggested that language complexity might be
a consequence of the simultaneous minimisation of both
efforts. This least effort principle was formalised using
information theory [232]. One way of defining the global
effort is to consider a linear (energy) function Q(X) to be
minimised:

Q) = A% + (1= N9 (30)

with A € [0,1]. This parameter tunes the relative contri-
bution of each effort. If p(s;) is the probability of using
si, the hearer’s effort is defined by the entropy

n

Q= H(S) = =3 p(si) log(p(s:)  (31)

i=1

measuring symbol diversity. Similarly, the uncertainty of
properly retrieving the right objects associated to each
signal, gives:

Qs = H(R|S) = — ZP(Si) ZP(TﬂSi)lng(Tﬂsi) (32)

where p(rj|s;) is the probability of associating the sig-
nal s; to the reference object r;. It can be shown that
minimal effort is achieved at H(S) = H(R|S) (when
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FIG. 17 Emergent synthetic languages. By using embodied
robotic agents (a) a protogrammar can emerge (image from
the Neurocybernetics group at Osnabruck) that can be traced
through the analysis of the underlying synthetic language net-
work developed by the agents. A formal model of language
(c) is described as an evolvable bipartite signal-object graph
(b-d) whose topology depends of the specific trade-offs asso-
ciated to the efforts of communicating agents, as described by
equation (30) as weighted by a control parameter A.

Ae = 1/2) and that a phase transition occurs at this
critical value (fig 17c). Zipf’s law could be the outcome
of criticality [232,233]. Indeed, the heterogeneous distri-
bution of word use defined by Zipf’s law seem to occur
close to A\;, where ambiguity is a key trait. The presence
of ambiguity is a specially relevant property here, largely
absent in embodied communicating agents, in order to
avoid combinatorial explosions [234]. Since a heteroge-
neous distribution of words might automatically lead to
an efficient navigation [230] the least effort scenario sug-
gests a unified framework to account for some crucial
features, including the roots of a proto-syntax [235].

X. SYNTHETIC MINDS

The human brain experienced an accelerated expan-
sion and differentiation through a series of events as-
sociated to successive additions of neural microcircuits
[234]. Part of these processes deal with simple but key
mechanisms that are common to humans and our ances-
tors. But some circuits seem to incorporate distinctive
traits that are related to our human condition [235]. The
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evolutionary dynamic of neural networks within complex
brains has unfolded over millions of years, eventually al-
lowing the rise of the human mind capable of symbolic
thinking and self-awareness. Here consciousness defines
a special and specially puzzling property. It has been
the focus of scholar efforts [236-238] and Darwin himself
asked "How does consciousness commence?” [239]. De-
spite its importance and implications for understanding
general anesthesia, coma or minimal consciousness, it re-
mains an unsolved problem [240]. Different paths have
been followed in search for the evolutionary origin of con-
sciousness or even potential definitions or classes [241].
These include finding evolutionary homologies [242] and
developing quantitative measures of neural correlates of
consciousness [243]. In this context, it has been sug-
gested that a parameter ® can be defined that measures
the capacity of a system to integrate information. Using
a set of postulates under an information theory frame-
work, & = 0 for non-conscious agents whereas ® > 0
otherwise, thus aiming at measuring consciousness levels
[244]. A relevant question is: when and how did con-
sciousness evolve? which necessarily requires to asume
that some kind of consciousness is present in some meta-
zoans. As pointed out by Gerald Edelman, a scientific
approach to this problem might "necessarily require the
synthesis of artifacts” [245].

Can a machine be conscious? A crucial precursor to
this question has to be found in Turing’s classical paper
Computing machinery and intelligence [246]. Although
not explicitly addressing the problem of consciousness,
Turing was the first to explore the problem of how to
detect (using natural language) intelligence in a a ma-
chine. The pursuit of cognitively complex machines per-
vades many scientific and philosophical debates since the
1950s [247,248]. The field of Artificial Intelligence soon
started to develop some systematic approaches based on
the construction of ever more complex programmed ma-
chines, sometimes emulating cognitive tasks using neural
networks but most of the time following an algorithmic
approach. The field experienced a major shift since the
rise of new approaches to machine learning known as deep
learning which is on convolutional neural networks [249].
Beyond the impressive success of their practical imple-
mentation [250] they have also raised relevant questions
concerning the workings of natural and synthetic minds
[251,252].

In previous sections we have mentioned the importance
of defining the preconditions for different major synthetic
transitions. What would be the key conditions predat-
ing the emergence of consciousness? [205,253,254] Some
advances within robotic agents suggest that key features
of the problem might be achievable by using the proper
architectures. A specially interesting examples is pro-
vided by robots capable of mirror recognition [255,256].
Since a self-aware robot would be more capable of dealing
with novel situations, several studies have been focused
towards developing robots involving internal self-models
[257]. Here the embodied nature of robotic agents and



FIG. 18 Transitions to self-awareness. Robotic agents can be
used (a) to explore the problem of mirror recognition (image
provided by Luc Steels). When equipped with an internal rep-
resentation of their internal states, they can pass the so called
mirror test. Modelling agent interactions (b-c) incorporating
a mirror system in their architecture (d) allows developing
behavioural patterns (adapted from [263]).

their capacity for visual recognition of their environment
(fig 18a) has been the key to develop robots capable of
passing the mirror test with high accuracy. By incor-
porating an internal model, artificial agents internally
simulate their own actions and their sensory effects. In
this way they can achieve behavioural advantages, par-
ticularly if these can be generated by the robot itself
[259]. These features provide the basis for the emergence
of emotional states and what some authors name func-
tional imagination, i. e. the manipulation of informa-
tion that is not directly available to an agent’s sensors
[260]. Related work involves modelling the neural ba-
sis of mirror neuron systems [261] within artificial agents
[262-264] and include explicit embodied modelling of in-
teractions and the emergence of ritualised gestures (fig
18b). Such connections open novel avenues towards a
synthetic ethology.

Is the emergence of consciousness a phase transition
phenomenon? Explicit suggestions of a tipping point
[265] propose that once some brain complexity thresh-
olds are overcome (but not below) consciousness might
be inevitable. On the other hand, consciousness requires
a neural substrate that provides a compromise between
integration and segregation [243,266] and the right trade-
off might need a brain poised at a critical (transition)
point [267]. The transition might need specific archi-
tectural changes, as suggested by the reentry hypothesis
[268] incorporated within artificial systems as multiple
positive loops [237,245]. It is interesting that research in
this area also considers the potential repertoire of lev-
els of consciousness in the anesthesized brain [266,269]
which reveal the presence of sharp transitions between
aware and unconscious states.

As a final point, we also need to consider potential de-

partures of synthetic minds (either evolved or designed)
from real brains. This includes the fluid neural networks

19

(virtual or natural) associated to collective intelligence
systems [201,203]: would an ant colony or a termite
nest have a ® > 0 consciousness level? On the other
hand, some artificial life models have shown how artificial
agents evolve highly integrated ”brains” while evolving is
complex environments [270]. But a major difference be-
tween artificial and biological candidates to a "mind” is
the potential of the former for gathering massive data
from non-local sources [271]. Given the relevance played
by embodiment in shaping minds [272,273] we should also
expect major differences associated to the distributed na-
ture of synthetic minds grounded in the use of non-local
sources of information. Similarly, we should expect new
classes of minds emerging in the future as a result from
interactions between human and embodied communica-
tion robots equipped with learning and memory [274].

XIl. SYNTHETIC ECOSYSTEMS

As a final example in our hierarchy, let us consider the
problem of designing and/or evolving synthetic ecosys-
tems. FEcosystems are complex adaptive systems, and
in many ways they can be described, under a systems
approach, as far from equilibrium structures. Synthetic
ecosystems include [275]: (a) those ecosystem that re-
sult from the evolution of communities under laboratory-
constrained conditions, (b) special species assemblies
evolved in human-created environments which often dis-
play overabundance of extremophiles and (c) engineered
communities of multiple interacting microbial organisms
resulting from partial or total designed strains from syn-
thetic biology techniques [276]. All these systems repre-
sent departures from their natural counterparts in sev-
eral ways. Moreover, we can include in this list those
synthetic ecosystems resulting from artificial life exper-
iments [159, 160,277,278] where a more or less sophis-
ticated set of physical constraints are introduced along
with evolvable genomes [279].

The canonical example of long-term evolution experi-
ments using microorganisms is provided by Lenski’s work
with E. coli, involving thousands of generations of popu-
lation transfers [280]. Many other selection experiments
have been shown to create novel adaptations not present
in our current biosphere, such as the low-pressure con-
ditions found in Mars [281]. A somewhat similar class
of unintentional evolution experiments occurs in special
contexts related to specific artificial environments, such
as solar panels [282] or coffee machines [283]. Ecosys-
tems adapted to these "alien” conditions are dominated
by extremophiles evolved under strong selection towards
specific adaptations to -for example- high temperatures
or caffeine abundance. These artificial ecosystems can
be helpful to gain insight into the evolution of extreme
communities but also for future designed ecosystems (see
below).

The rise of synthetic biology allows to create novel
ecosystems where interacting species or their niches are



engineered, with or without further artificial evolution.
Understanding the patterns of organisation of these com-
munities is a much needed task, since no species within
a given community live in isolation [284,285]. Examples
of synthetic ecosystems include different microbial con-
sortia in liquid or spatial environments involving differ-
ent forms of communication [286-289]. These ecosystems
will offer valuable information about the stability of arti-
ficial communities of interacting species, and this might
be relevant for the engineering of the human microbiome
and its alternative states [290,291] as well in potential
approaches to ecosystem bioengineering [292,293].

Since the microbiome seems to follow universal eco-
logical patterns [294] these manipulations can shed some
light into the resilience of future synthetic ecosystems re-
sulting from the release of modified organisms. In this
context, transitions between alternative states have been
also recognised as a fundamental part of their robust-
ness and fragility [295, 296]. Here some species, known
as ecosystem engineers play a crucial role in shaping the
ecology and evolution of communities and their potential
modification [297,298]. Finally, the possibility that learn-
ing can be incorporated as party of our understanding of
evolution, particularly within the context of ecosystems
[299,300] opens novel forms of thinking in evolutionary
transitions and further levels of informational complexity
to be designed or artificially evolved.

XIl. DISCUSSION

What drives the emergence of major novelties in evo-
lution? In this paper we have explored the parallel path
followed by artificial versions of those transitions that
have been identified in the historical record of life. In
some cases, the main difference involves the presence of
developmental processes that are an inevitable part of
biological complexity but are absent in most artificial
systems. An exception here are those based on synthetic
biology and thus using cells and their interactions as part
of the engineering toolkit. Development, as well as con-
straints associated to genetic similarity and other fea-
tures of real biology are largely absent in most artificial
designs grounded in hardware but also in simulated sce-
narios, with some exceptions. Since development defines
the mapping between genotype and phenotype in biolog-
ical systems, it also incorporates a big deal of complexity
that results from the tinkered nature of evolution.

Some of the transitions that have repeatedly occurred
in evolution have been also achieved in the artificial
context, including multicellularity, symbiosis or different
forms of cognitive complexity. In most cases, the basic
logic is shared by the living and the designed systems,
thus reflecting seemingly universal rules of organisation.
The universality has to be understood in terms of funda-
mental principles and minimal requirements and in this
context we suggest that phase transitions might be a
specially relevant framework here. We have illustrated
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this in different case studies where simple models cap-
ture the nature of the transition, where the qualitative
nature of the change can be seen as an instance of a phase
change not very different from those described by statis-
tical physics models. This view has been defended within
the context of origins of life studies [301] and future the-
oretical work will be needed to substantiate this conjec-
ture but it might also require to rethink the framework of
physical theories by incorporating the emergence of gen-
erative rules. This is specially important when we think
in the nature of the rules allowing the open-ended nature
of evolutionary change. In other words, novel ”phases”
come with new properties but also with internal gram-
mars that describe their computational complexity. Such
a generalised theory is still missing.

Among the examples described above, novel forms of
communication or hybrid systems also illustrate the idea
that synthetic transitions might incorporate qualitative
features not present in biology. In most cases, the dif-
ferences also arise due to the lack of a natural selection
process, where cost constraints and competition for re-
sources should play a leading role. Molecular systems can
display growth and replication processes not grounded in
the standard template-based mechanism. Genetic codes
with lower and higher combinatorial repertoires have
been constructed and replicating protocells created by
means of a mixture of growth-instability cycles and ex-
ternal triggers with no genetic control. Similarly, the
non-local nature of information processing exhibited by
robotic agents clearly departs from the limits imposed by
the embedded neural system carried with by every indi-
vidual in the natural world. Similarly, the goal of creat-
ing self-aware machines typically ignores the social con-
text and developmental path where natural minds arise.
These examples not only stress the differences, but also
suggest that in some cases (such as protocells or ma-
chine intelligence and consciousness) the path towards
the transition might be more difficult to achieve, both in
the biological and the artificial contexts.

A final point to be made is that evolution, as pointed
out by the french biologist Francois Jacob [302] does
not operate as an engineer. Evolution does not fore-
see the future and requires existing materials and rules
to build new structures. Novelties thus necessarily arise
through reuse and rewiring’. The engineer is not (in
principle) limited by such constraints, and can overcome
the messy and often non-modular nature of biological
circuits. However, it is not less true that, because of
the tinkered nature of evolution, biological structures of-
ten incorporate levels of robustness and integration that
clearly depart from their artificial counterparts. The un-
derlying landscape of evolved designs might contain prop-
erties that are not captured by the engineering-driven

9 Charles Darwin himself already stated the presence of tinkering
as part of the evolutionary process, see [303], p. 348.



version where some simplifying assumptions are made.
If that is the case, achieving some of the METSs using
synthetic paths might need to incorporate evolutionary
dynamics as an essential part of the process.
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