
Punctuated Equilibrium in the
Large Scale Evolution of
Programming Languages
Sergi Valverde
Ricard Solé

SFI WORKING PAPER: 2014-09-030

SFI	 Working	 Papers	 contain	 accounts	 of	 scienti5ic	 work	 of	 the	 author(s)	 and	 do	 not	 necessarily	 represent
the	 views	 of	 the	 Santa	 Fe	 Institute.	 	 We	 accept	 papers	 intended	 for	 publication	 in	 peer-‐reviewed	 journals	 or
proceedings	 volumes,	 but	 not	 papers	 that	 have	 already	 appeared	 in	 print.	 	 Except	 for	 papers	 by	 our	 external
faculty,	 papers	 must	 be	 based	 on	 work	 done	 at	 SFI,	 inspired	 by	 an	 invited	 visit	 to	 or	 collaboration	 at	 SFI,	 or
funded	 by	 an	 SFI	 grant.

©NOTICE:	 This	 working	 paper	 is	 included	 by	 permission	 of	 the	 contributing	 author(s)	 as	 a	 means	 to	 ensure
timely	 distribution	 of	 the	 scholarly	 and	 technical	 work	 on	 a	 non-‐commercial	 basis.	 	 	 Copyright	 and	 all	 rights
therein	 are	 maintained	 by	 the	 author(s).	 It	 is	 understood	 that	 all	 persons	 copying	 this	 information	 will
adhere	 to	 the	 terms	 and	 constraints	 invoked	 by	 each	 author's	 copyright.	 These	 works	 	 may	 	 be	 reposted
only	 with	 the	 explicit	 permission	 of	 the	 copyright	 holder.

www.santafe.edu

SANTA FE INSTITUTE

Punctuated equilibrium in the large scale evolution of programming languages

Sergi Valverde∗1, 2 and Ricard Solé†1, 3, 2
1ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
2Institut de Biologia Evolutiva, UPF-CSIC, Psg Barceloneta 37, 08003 Barcelona, Spain
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA

The analogies and differences between biological and cultural evolution have been explored by
evolutionary biologists, historians, engineers and linguists alike. Two well known domains of
cultural change are language and technology. Both share some traits relating the evolution of
species, but technological change is very difficult to study. A major challenge in our way towards
a scientific theory of technological evolution is how to properly define evolutionary trees or clades
and how to weight the role played by horizontal transfer of information. Here we study the
large scale historical development of programming languages, which have deeply marked social
and technological advances in the last half century. We analyse their historical connections using
network theory and reconstructed phylogenetic networks. Using both data analysis and network
modelling, it is shown that their evolution is highly uneven, marked by innovation events where new
languages are created out of improved combinations of different structural components belonging
to previous languages. These radiation events occur in a bursty pattern and are tied to novel
technological and social niches. The method can be extrapolated to other systems and consistently
captures the major classes of languages and the widespread horizontal design exchanges, revealing
a punctuated evolutionary path.

Keywords: Cultural evolution, punctuated equilibrium, networks, technology, programming languages, software

I. INTRODUCTION

Is cultural evolution similar to biological evolution?
Darwin’s theory of natural selection has been often used
as a basic blueprint for understanding the tempo and
mode of cultural change, particularly in relation to hu-
man language (1-3) and technological designs (4,5). Dar-
win himself became interested in the similarities be-
tween natural and human-driven evolutionary change
and shortly after the publication of The Origin of Species,
scholars started to speculate about the similarities be-
tween organic and man-made evolution (4). A crucial
component of cultural evolution, technology has received
great attention as a parallel experiment of selection, di-
versification and extinction (6). Tentative steps towards
a theory of technological innovation have been made but
the debate on the similarities versus differences between
cultural and biological change remains unabated (7). In
this context, it has been suggested (5) that innovations
occur mainly through combination of previous technolo-
gies. But several questions remain open: Can we test
such idea in a systematic way? What type of large-scale
evolutionary trends are associated to technological evo-
lution based on combination?

Most textbook examples describe historical inventions
(8) as human-driven events, where a success story marks
the creation of a new invention. Unfortunately, no sys-
tematic approach to extract phylogenetic relationships
exist (9) and only in some cases a hand-curated tree-

∗corresponding author
†corresponding author

like structure can be inferred using human expertise
and available historical records (9,10). Often, no simple
trees are obtained but instead networks with merging of
branches are found. Human languages are a clear excep-
tion to the rule, since it is possible to properly define
distances among words or other components and recon-
struct their evolutionary record (11). As it occurs with
microbial species (12) languages also display high levels
of horizontal transfer, but this can also be treated with
the appropriate tools (13). Surprisingly, almost no atten-
tion has been dedicated to the evolution of information
technology, despite its well preserved fossil record (6,14-
15). Programming languages are (along with large scale
hardware design and the Internet) the major players of
the software revolution (16). They play, within the con-
text of technological evolution, the same role of tongues
in human language. However, instead of making com-
munication possible among two individuals, they provide
the medium to single-directed communication between
humans and machines.

In this paper we use programming languages as our
case study to analyse the evolutionary patterns of techno-
logical evolution. Since the appearance in 1952 of the first
short written code (17) programming languages rapidly
emerged, diversified and propagated through different
niches (communities of users). They also coevolved with
hardware (18) and can be compared to human languages,
which also co-evolved with brains (19) although with a
significantly different status: They are both the means of
telling computers how to perform useful work (functional
perspective) and a tool to share algorithmic schemes be-
tween the programmers (a communication tool). The
evolutionary patterns of these systems, as shown below,
is punctuated and can be reconstructed in a systematic

2

way.

Data set of programming languages In dealing with
the historical record of our system, the basic elements
(nodes in a network) will be programming languages
(PLs) defined as artificial languages designed to commu-
nicate instructions to a computer (16,17). We have recon-
structed the history of the most influential PLs from the
information publicly available in Wikipedia (see SM2)
which provides contents on language syntax, history, ap-
plications and, more importantly, a list of PLs that have
influenced their design (see next section). Whenever the
historical records were found to be inconsistent, they
have been double-checked with alternative sources of in-
formation.

The data set studied here includes N=347 different
PLs spanning a period of T=59 years, from 1952 to 2010.
They belong to fairly different groups of architectures
(see below). Some of them exist today while others have
disappeared. Although the total number of different lan-
guages that have been created is much more larger than
the above number, the chosen data set captures a signif-
icant fraction of the most relevant PLs. Previous studies
of the history of PLs have considered separate version
numbers for popular languages. For example, Fortran is
an old PL that has remained in place despite experienc-
ing changes through its technological history with slightly
different versions that are easily identified as ”dialects”
of the original.

II. TECHNOLOGICAL EVOLUTIONARY TREES

The first goal of our study is to provide a systematic
way of extracting a phylogenetic tree and identify major
clades. Using our data set, connections among languages
are defined in terms of their list of influences as described
in Wikipedia. Here, we make a distinction between in-
fluence and usage. Our aim is to capture the relative im-
portance of a given innovation on the evolution of future
languages rather than its success. For example, Algol-
68 was not widely used but it had a profound impact
in subsequent developments. Similarly, ISWIM was an
abstract (never implemented) language, which nonethe-
less had a great impact in the development of functional
languages (20). Influence is a directed relation, i.e., new
languages are always influenced by older ones but not
the other way around. This allows defining a (directed,
time-dependent) graph G = (Π, E) formed by the set of
programming languages Π and a set E of links among
them (figure 1). This graph can be analysed using stan-
dard techniques (see section 1 in SM1) but it cannot used
as a proper phylogenetic map. In order to obtain an evo-
lutionary tree along with a map of horizontal exchanges,
a systematic method is required.

The previous graph allows defining the so called adja-
cency matrix A, whose elements aij = 1 if a directed link
i → j exists, meaning that the πj language is based (at
least in part) in the i−th one. Given a πi ∈ Π, it will be

100 101 102

k

100

101

102

P
(k

)

0 40
k

0
0.1
0.2
0.3
0.4
0.5

-1.48

>

10 20 30

Φ
(k
)

OO domain
FIG. 1 The network of programming languages. We dis-
play the central core of dependencies between different PLs as
gathered from our dataset (SM2). Here a directed link exist
between two programming languages if the design of the later
has been based in the structure of the previous one. Despite
of their time-dependent nature, this is far from a simple tree.
Instead, it defines a tangled, complex network. A subset of
languages (including C, Java, Pyhton and Lisp) define a spe-
cial group here (lighter balls). They are the core innovations
within the universe of PLs (see SM1).

one one hand based on other languages and can on the
other hand influence others. The out-degree kouti of πi is
the number of edges leaving it, i. e.: kouti =

∑
j aij .

It weights the number of times that a parent πi has
been used to build new, offspring languages. Similarly
the in-degree of πi is the number of edges entering it,
kini =

∑
j aji and gives the number of previous languages

that influenced the invention of πi.
Now we need a systematic way of building a phylogeny,

using for that purpose only the topological information
associated to our graph along with the time coordinate.
This can be done by following the approach of Gualdi,
Yeung and Zhang (21). The method naturally incorpo-
rates the fact that languages sharing similar parents are
likely to be technologically related. We define the the
impact of α ∈ Π impact on its offspring πi by means of:

Ii→α =
∑

j∈ωα−{i}

λsfolij + (1− λ)sautij (1)

where ωα is the set of all nodes derived from α. This im-
pact measure calculates the structural similarity between
pairs of nodes in the directed network. A node α strongly
influences node πi if α has (different) offspring πj that
is itself similar to πi. Let Γ(i) be the set of neighbours
of node i. Hereafter we use (21) λ = 1/2. The simplest
measure of neighbourhood overlap among two languages

3

c e

1

2

3
4

tim
e

4

4

32

3

2

1

1d

1

2

3

4

a

ji

↵

⌘ b
ji

↵ � �

0 0

0

0

0

0

0

0

0

0.3

0.38

0.37 0.2

0.13

00

FIG. 2 Vertical and horizontal transfer of information among
programming languages. In (a-b) we summarise the method
followed here to compute the influence backbone. Here the
balls indicate different PLs and arrows indicate influence
(which languages where used to build which). Two ingre-
dients are used when measuring the impact Ii→α of node α
on its offspring i: (a) the in-similarity or how many follower
nodes (such as η) are influenced by both i and j and (b) the
out-similarity between i and j, which weights how many au-
thor nodes (such as β and γ) influence both i and j (see text).
(c) The influence backbone Ω keeps the links with highest im-
pact (black links) and discards the others (red links).

πi and πj is:

sij = |Γ(i) ∩ Γ(j)| =
∑
l

ailajl (2)

The above measure is biased towards nodes with a
large offspring. In order to correct this effect, a more
balanced definition sets the degree of similarity between
πi and πj proportional to the probability that a two-
step random walk from πi to πj traverses any neighbour
πk (see fig 3). For directed networks, there are two natu-
rally defined similarity definitions for every pair of nodes,
namely, in-similarity and out-similarity (see below). In-
similarity is defined as:

sfolij =
1

kj

∑
l

alialj
pl

(3)

where fol stands for ”follower”. On the other hand, out-
similarity is defined as follows:

sautij =
1

pj

∑
l

ailajl
kl

(4)

where aut stands for ”authority”. Finally, these two mea-
sures are combined in (1) by taking a weighted sum where
λ ∈ {0, 1}. The above measure is a good tradeoff between
accuracy and complexity, see (22). The method gener-
ates a backbone based in identifying the most influential
parent for each language, while we also have an addi-
tional graph that keeps all the ”horizontal” exchanges

among languages. As shown below, the resulting tree and
its major branches capture the major groups (clades) of
programming languages.

III. PROGRAMMING LANGUAGE CLADES

The result of using our algorithm is shown in figure 3,
where the most relevant large-scale patterns of PL inter-
actions are displayed, actually defining the clades of our
system. In (a-b) the total number of interactions shows a
two-regime behaviour (fig 3a) with an accelerated growth
in the second phase, starting in the 1980s, matching the
emergence of personal computers (23,24). A bursty sig-
nal (fig 3b) is observed when we plot the number of in-
coming links ki for each new language. The clustered
structure involves high peaks indicating that new com-
plex languages where created out from previously exist-
ing ones. These bursts are reveal a rapid ”speciation”
among closely related languages. The in-degree distribu-
tion is broad, following a power law P (kin) ≈ kγiin with
γi ≈ 2 whereas the out degree distribution is exponential.
These features will be relevant for our interpretation of
the evolutionary trees.

Our method finds two large, separated subsets of pro-
gramming languages defining the major clades: impera-
tive (or procedural) and declarative families, along with
several smaller classes (see figure 2 in SM1). These
trees exhibit a noticeable asymmetry and, despite our
method does not include additional information beyond
influence relationships, the clades accurately maps the
known historic development of programming languages.
The largest subtree defines 197 procedural-related lan-
guages rooted in Speedcoding, the oldest language in our
database and a direct ancestor of Fortran (first widely
used programming language). The design of early proce-
dural languages was constrained by hardware costs and
application requirements. The Turing machine is the the-
oretical model underlying this class of languages, which
defines computational tasks as sequences of computer in-
structions that alter the machine state. Early computers
were memory-limited, slow and very expensive pieces of
equipment. Because of efficiency concerns, the design of
procedural languages in this period mirrored the underly-
ing Turing machine. The main purpose of early comput-
ers was scientific and data processing applications, and
this required a language capable of describing sequences
of complex calculations.

Some of the early procedural languages (like Fortran)
have persisted to this day but later on the evolution
of programming languages adopted ideas from other
paradigms. This is the case of declarative languages
whose origins are associated to the launch of artificial
intelligence (AI) in 1956. Researchers recognised the lim-
itations of procedural languages like Fortran, which are
more suited for engineering and mathematical calcula-
tions than to the sort of symbol manipulations associ-
ated to an intelligent computer. Lisp was introduced

4

0 100 200 300 400
N

0

10

20

30

40

50

60

In
de

gr
ee

 k
(N

) Java
Lisp

C

C#
Python

C++
Scheme

RubyML

1970 1980 1990 2000 2010 2020
Year

0

200

400

600

800
L(

t)

1950 1960

Fortran
C

C++

Java

Python

C#

Basic
SQL

Scratch

Algol-60

Algol-68

C

C++

Java
JavaScript

Fortran

Algol-58

Python
Ruby

Pascal

ML
Basic

Smalltalk
Logo

Self

Squeak

Scratch

Mathematica

Scheme

Lisp

Dylan

R

1954

1972
1982

1987

1993

1997

2003

c d

fe

1957

1967

1972

2008

2005

a b

g

PC epoch

FIG. 3 Large-scale evolution of Programming Languages. In (a) we display the time series of (a) the total number of languages
(N , filled circles) and of interactions (L, open circles) respectively. Notice the abrupt increase in L that takes place around
1980. In (b) number of incoming interactions against N is displayed, where PLs have been sorted chronologically. Phylogenetic
and influence maps in PLs are shown in (c-f) for the two largest groups defining lineages. Within each of these lineages, we
can reconstruct a phylogenetic subtree (d) with the vertical axis indicating release time. For example, the influence backbone
among the family of imperative PLs (1953 - 2012) is shown in (e) which gives all the horizontal transfer among them (f). The
same diagrams are shown in (g-h) for the family of functional languages (1954- 2011).

as the standard AI language, and their descendants en-
abled programmers to write code in terms of the prob-
lem domain instead of specific hardware details. These
so-called functional languages treat computation as the
evaluation of mathematical functions and avoid changes
(”side-effects”) in the machine state, unlike procedural
languages.

The functional subtree is rooted in IPL (parent of Lisp)
and consists of 47 languages (see figure 3e). Procedural
languages are more popular than declarative ones pre-
sumably because they are associated to a more natu-
ral style of programming (see below). Declarative lan-

guages like Lisp are related to mathematical abstractions
which, in general, are harder to grasp by beginners. Our
analysis suggests that AI has been a strong influence:
the sum of horizontal influences from functional to im-
perative languages is much greater than the other way
around. Other members in the declarative family, such
as logic and database paradigms define segregated small
subtrees correctly mapping specific application domains
(see section 2 in SM1).

The influence graphs describe a very interesting situ-
ation: far from observing links relating languages close
in time, bundles of links reveal very large time windows

5

connecting modern and old languages (figs 3d, f). The
zoomed diagram shown in figure 3g provides some il-
lustration of this: links exist between languages created
within the first and last decades of programming history.
These graphs support the combinatorial rule of techno-
logical evolution (5) but point to a richer picture: there
are groups of time-close languages whose properties are
recruited to build new clusters of languages far in the
future.

Modern programming languages can been understood
as combinations (”hybrids”) of different paradigms. In
the 1960’s, an international consortium designed Algol,
a successor to Fortran that incorporated functional ele-
ments taken from Lisp. By the 1970’s, there was the per-
ception that the hundreds of languages derived from For-
tran and Lisp were flawed and provided limited support
when developing complex software. A partial response
to this ”software crisis” was the convergence between the
procedural an declarative approaches in the (so-called)
object-oriented (OO) paradigm. This approach recog-
nises that programming is neither the breaking down of
calculations (imperative approach) nor the definition of
functions (functional approach) but the definition and
manipulation of domain objects (like numbers, strings,
arrays, files, graphs).

At the clade level, the organisation of the influence
backbone transitions from the historical separation be-
tween the procedural and declarative paradigms to this
pattern of convergent evolution. In many of the linages,
we have examples of languages showing clear OO traits.
For example, the best know OO language is Smalltalk
(1976), which was strongly influenced by Lisp (see fig.
3e). On the other hand, the simulation language Simula
(1960) extended Algol with concepts borrowed from the
OO paradigm.

IV. MODELING PROGRAMMING LANGUAGE
EVOLUTION

How are these patterns generated dynamically? Does
a purely combinatorial model explain the previous ob-
servations? In order to define a framework accounting
for the large-scale features of our system, we need a null
model that generates nodes (inventions) and makes new
inventions to connect with previous ones leading to a net-
work from which the phylogenetic tree can be extracted.
Moreover, if a previous invention is chosen, which is re-
lated with others, it is likely that the new node gets also
linked with those related inventions with some probabil-
ity. In other words, the model must include a process of
growth by combination incorporating the ”inheritance”
of existing correlations among technologies and must pro-
vide both vertical and horizontal relations. Such require-
ments discard standard models of cladogenesis based on
simple branching rules (25,26).

Here, we use a growing network model that fulfils the
previous requirements and leads to the observed in- and

1 10
Indegree

10-3

10-2

10-1

Cu
m

ul
at

iv
e

 F
re

qu
en

cy

1

0 5 10 15
Outdegree

10-3

10-2

10-1

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

0 100 200 300
Number of Nodes N

0

200

400

600

800

N
um

be
r o

f l
in

ks
 L

(N
)

a

b

d

q

p

q

e f

g

h

0 100 200 300 400
N

0

10

20

30

40

50

60

In
de
gr
ee

c

FIG. 4 Modeling the growth of the programming language
network. Each time step, a new node (a) is introduced. The
new node (blue) attaches to a target node (red) with probabil-
ity p. This new node also inherits every link (b) from the tar-
get node (dashed links), with probability q. Both parameters
can be estimated. The model correctly predicts the two-stage
time evolution of L(N), as shown in (c) where the real data
(filled circles) is compared with the predicted one (red) using
102 different replicas starting from the same initial condition.
A phylogenetic tree (e) and the horizontal influence map (f)
can also be constructed. The tree is somewhat similar, but
much less asymmetric than the ones shown in figure 3. The
influence graph (f) displays heterogeneity, but far from the
one exhibited by real data. The in- and out-degree distribu-
tions for model (red) and data (black) are shown in figures g
and h, respectively. Our model predicts different saturation
constants for each stage, i.e., k1M = 20 and k2M = 40.

out-degree distributions. It is based on a previous model
of tinkered graph evolution (27-29). At every step, the
network grows by introducing a new node (fig 4a-b) which
links to m randomly chosen target node πj with proba-
bility p as well as to all ancestor nodes of each target,
with probability q (see fig. 4). As defined, mp is the
mean number of ancestor languages that influence new
languages and mq is the mean number of influences also
inherited. By estimating these parameters out from our

6

empirical data set we obtain networks that are statisti-
cally close to our original graphs. In order to take into
account the fact that the number of links reaches a sat-
uration (probably because there is a limited number of
features that can be reused in further innovations) we
have modified the original model by including a Boltz-
mann saturation term to the probabilities of attachment,
namely P is replaced by

P(kj) =
P

1 + exp (−β(kj − kM))
(5)

with P = p, q and β = 0.1. Since we have a two-regime
scenario (fig 3a) we estimated two pairs of values, namely:
mp1 = 0.92 and mp2 = 2.2 where m = 2 is the average
number of randomly selected targets and p1 and p2 are
the probability to attach to any target in stage 1 and
stage 2, respectively. We can in particular match the
evolution of L of links against N (fig 4c-d). From the
final network, both the phylogenetic tree (fig 4e) and the
horizontal transfer graph (fig 4f) can be obtained.

Another structural component is well fitted by the
model. The final degree distributions (figures 4g-h) fit
very well the observed asymmetry between in- and out
degree. Two main observations can be made by looking
at the reconstructed tree and horizontal graphs: the first
is much more symmetric than the original one, while in
the second we can see widespread recombination but less
local and long-distance clusters of correlations.

V. ADAPTIVE RADIATIONS AND TREE IMBALANCE

The trees extracted from the model are much less
asymmetric than their observed counterparts. This is
deeply tied to the burstiness displayed by our system (as
can be appreciated in figure 3c). Such asymmetric growth
seems to be characteristic of evolution in living systems,
where adaptive radiations and strong differences between
clades are known to exist (30). In order to measure this
asymmetry, we use standard measures of tree imbalance
(31-32). Tree imbalance measures allow to study how
species diversity is arranged through different branches.
This can be addressed using structural measurements of
tree shape (34). Here, we will focus in the average depth
〈d〉 of a tree with N nodes, defined as follows:

〈d〉 =
1

N

∑
i

d(r, i) (6)

where d(r, i) is the path length or number of intermediate
nodes relating the root r with any other node i. Notice
that here we compute the path length for every node,
not only tree leaves (which yields a different, but related
measure, e.g., see (32).

Equation [5] is a measure of tree imbalance, i.e., the
degree to which subtrees are divided in groups of unequal
size (31). Here, the average path length is lower-bounded
by dmin = 1 − 1/N . On the other hand, the maximum

average distance dmax = (N2 − 1)/4N corresponds to a
fully imbalanced binary tree. Notice that, for large N ,
we have dmin ≈ 1 and dmax ≈ logN . We can compare
our data with the simplest null model of stochastic tree
growth. At every time step, the Equal-Rates Markov or
Yule’s model attaches two new descendant nodes to a
randomly chosen leaf node (33,34). This previous rule is
performed until a tree with N nodes is obtained.

101 102 103

N

0

1

2

3

4

5

6

7

<d
>

1.27

0.38

FORTRAN

ERM

GNC

FIG. 5 Logarithmic scaling of average depth with subtree
size. We compare the different scaling behaviour exhibited
by the evolutionary tree of Fortran-related languages (open
circles) with two models. One is the ERM model (solid line)
and the other is the model of network growth by copying
(GNC, red squares) (see text).

It can be shown that the average depth for trees ob-
tained with this model is dY ule ∼ log2(N) for large N .
Figure 5 compares the scaling of 〈d〉 for the Fortran sub-
tree with the predictions obtained with the ERM and
the GNC models. In all systems, 〈d〉 scales linearly with
logN . The slope of the scaling law in the Fortran subtree
is larger than model predictions indicating a great tree
imbalance in our phylogenies. One of the Fortran sub-
families (including descendants of Algol languages like C,
Java, and C++, see below) is much more developed than
lateral branches. On the other hand, the GNC predic-
tion is much less steep. The scaling for the ERM model
is in-between the Fortran lineage and the GNC model.

As it occurs with the tree of life (30-33) technological
trees are highly imbalanced, largely a consequence of ac-
celerated diversification events tied to innovations. This
pattern has also been found in the diversification pattern
of human languages (35,36) which exhibited strong im-
balances too. The asymmetries have been proposed to
be evidence of punctuated equilibrium (37,38). In our
system, we do identify these shifts as major innovations
associated to novel forms of engineering programming
languages. The tree imbalance, but also the bundles ob-
served in the horizontal transfer interactions are consis-
tent with such bursts of rapid modifications.

7

VI. DISCUSSION

The study cultural evolutionary patterns, particularly
when dealing with artifacts, is usually constrained by
a lack of powerful quantitative methods. The absence
of a ”genome” is a great challenge, since it prevents us
from exploiting some type of metric defining the distance
among inventions. Only human languages allowed to sis-
tematically reconstruct phylogenies while taking into ac-
count lateral transfer (13). In this paper we have shown
that a simple network approach allows to construct phy-
logenetic trees from existing databases that include in-
formation on who influenced whom in a given branch of
technological development. We have used this method
to study one important area of information technology,
namely the large-scale evolution of programming lan-
guages. Given the low level of details required to ex-
tract our networks, we predict that it can be applied to
other technological webs, including other software sys-
tems, hardware development, specific tech fields (such as
aircraft industry) and patent citation networks.

Our study is the first full systematic characterisation
of phylogenetic patterns in a cultural evolving system be-
yond the human language case study. It reveals that the
evolutionary dynamics displayed by programming lan-
guages fits the combination metaphor while reveals the
presence of a non-uniform rates of change. Such cor-
relations cannot be accounted for by our simple model.
The unbalanced phylogenetic trees and complex horizon-
tal transfer tells us that the underlying dynamics is rich
and nontrivial. It actually supports a punctuated pattern
of technological evolution. This concept has been previ-
ously explored by means of theoretical models (39,40)
and supported by available historical information (41)
and has been validated by our systematic method from
available data of technological dependencies.

It is often said that human language coevolved with
brains (19) by infecting the mind of its hosts, thus act-
ing as a sort of viral entity. Programming languages
emerged as a much needed interface to communicate hu-
man brains and programmable machines (42). They are
actually virtual machines that make possible to use di-
verse hardware systems and thus ”infect” a large variety
of devices. Their improvement made possible to use more
powerful machines but also to design even more powerful
ones. Our work provides a rationale to rigorously explore
the evolution of these virtual machines and how they co-
evolved with both computers and human programmers.
Future work should allow to test this hypothesis by con-
sidering the parallel evolutionary changes experienced by
computer hardware.

Acknowledgments We thank M. Rosas-Casals, S.
Kauffman, N. Eldredge and D. Farmer with early discus-
sions on technological evolution. This paper is dedicated
to the defenders of the last barricade before the Eglise
Sant-Merri. Our work has been supported by the Botin
Foundation. We also thank the Santa Fe Institute, where

most of this research was done.

VII. REFERENCES

1. Pagel, M (2009) Human language as a culturally
transmitted replicator. Nat. Rev. Gen. 10: 405-
415.

2. Mufwene S (2001) The ecology of language evolu-
tion. Cambridge University Press.

3. Solé R, Corominas-Murtra B, Fortuny J (2010) Di-
versity, competition, extinction: the ecophysics of
language change. J Roy Soc Interface 7: 1647-1664.

4. G. Basalla (1989) The Evolution of Technology,
Cambridge Univ. Press.

5. Arthur B (2009) The Nature of Technology. What
it is and How it Evolves. Free Press.

6. Sole R, Valverde S, Rosas-Casals M, Kauffman SA,
Farmer D, Eldredge N (2013) The evolutionary
ecology of technological innovation. Complexity 18:
15-27.

7. Eldredge, N. (2011) Paleontology and cornets:
Thoughts of material cultural evolution. Evo Edu
Outreach 4: 364-373.

8. Johnson S. (2010) Where Good Ideas Come From:
A Natural History of Innovation. Riverhead Press.

9. Lipo CP, O’Brien MJ, Collard M. Shennan SJ
(2009) Mapping our Ancestors. Aldine Transaction
Publishers.

10. Tëmkin I, Eldredge N (2007) Phylogenetics and
material cultural evolution. Curr Antrop 48: 146-
153.

11. Dunn M, Terrill A, Reesink G, Foley RA, Levinson
SC (2005) Structural phylogenetics and the recon-
struction of ancient language history. Science 309:
2072-2075.

12. Dagan T, Martin W (2009) Getting a better pic-
ture of microbial evolution en route to a network
of genomes. Phil Trans R Soc Lond B Biol Sci 364:
2187-2196.

13. Nelson-Sathi S, List JM, Geisler H, Fangerau H,
Gray RD, Martin W, Dagan T (2011) Networks
uncover hidden lexical borrowing in Indo-European
language evolution. Proc Royal Soc London B 278:
1794-1803.

14. Green T (2010) Bright Boys: The Making of Infor-
mation Technology. CRC Press.

8

15. McNerney J, Farmer JD, Redner S, Trancik JE
(2011) Role of design complexity in technology im-
provement. Proc Natl Acad Sci USA 108: 9008-
9013.

16. Sammet JE (1969) Programming Languages: His-
tory and Fundamentals. Prentice-Hall, Englewood
Cliffs, N.J.

17. Sammet JE (1972) Programming languages: his-
tory and future. Comm. ACM 15: 601-610.

18. O’Regan G (2008) A brief history of computing.
Springer, London.

19. Deacon TW (1997) The symbolic species: the co-
evolution of language and brain. Norton, New
York.

20. Landin PJ (1965) The next 700 programming lan-
guages. Comm. ACM 9(3),157- 65.

21. Gualdi S, Yeung CH, Zhang YC (2011) Tracing the
evolution of physics on the backbone of citation net-
works. Physical Review E 84: 046104.

22. Lu L, Jin C-H, Zhou T (2009) Similarity index
based on local paths for link prediction of complex
networks. Physical Review E 80: 046122.

23. Cambell-Kelly M, Aspray W (2004) Computer: A
history of the information machine. Perseus Books.
Cambridge MA.

24. Ensmenger N (2010) The computer boys take over:
Computers, Programmers, and the Politics of Tech-
nical Expertise. MIT Press.

25. Raup DM (1985) Mathematical models of cladoge-
nesis. Paleobiology 11: 42-52.

26. Mace R, Holden CJ (2005) A phylogenetic ap-
proach to cultural evolution. Trends Ecol Evol 20:
116-121.

27. Krapivsky, P. L., and Redner, S. (2005) Network
growth by copying, Physical Review E 71, 036118.

28. Valverde S, Solé R (2005) Logarithmic growth dy-
namics in software networks. Europhys Lett 72:
858-864.

29. Valverde S, Solé R (2005) Network motifs in com-
putational networks: A case study in software ar-
chitecture. Phys Rev E 72:026107.

30. Rabosky DL, Slater GJ, Alfaro ME (2012) Clade
Age and Species Richness Are Decoupled Across
the Eukaryotic Tree of Life. Plos Biol 10 :
e1001381.

31. Kwang-Tsao, S., Sokal R. R., Tree Balance, Sys-
tematic Zoology 1990, 39(3): 266-276.

32. Kirkpatrick, M, Slatkin, M, Searching for the evo-
lutionary patterns in the shape of a phylogenetic
tree, Evolution 1993, 47: 1171-1181.

33. Cotton JA, Page RDM, The Shape of human gene
family phylogenies, BMC Evol Biol 2006, 6:66.

34. Cavalli-Sforza, L. L., Edwards, A. W. F., Phyloge-
netic analysis: models and estimation procedures,
Am. J. Hum. Genet 1967, 19: 233-257.

35. Atkinson QD, Meade A, Venditti C, Greenhill SJ,
Pagel M. (2008) Languages evolve in punctuational
bursts. Science 319 : 588.

36. Venditti C, Pagel M. (2008) Speciation and bursts
of evolution. Evo. Edu. Outreach 1:274?280.

37. Eldredge N, Gould SJ. (1972) Punctuated equi-
libria: an alternative to phyletic gradualism. In:
Schopf TM, editor. Models in palaeobiology. San
Francisco: Freeman Cooper, pp. 82?115.

38. Gould SJ, Eldredge N. (1977) Punctuated equilib-
ria: the tempo and mode of evolution reconsidered.
Paleobiology 3 : 115?51.

39. Mokyr J. (1990) Punctuated equilibrium and tech-
nological progress. Am. Econ. Rev. 80 : 350-354.

40. Loch CH and Huberman BA (1999) A punctuated-
equilibrium model of technology diffusion. Manag.
Sci. 45: 160-177.

41. Levine, H. and Rheingold, H. (1987) The cogni-
tive connection: Thought and Language in Man and
Machine. Prentice Hall, New York.

	sole1
	sole

