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Abstract

Counsider an n-person game that is played repeatedly, but by different agents. In each period, n players are
drawn at random from a large finite population. Each player chooses an optimal strategy based on a sample of
information about what other players have done in the past. The sampling defines a stochastic process that,
for a large class of games that includes coordination games and common interest games, converges almost
surely to a pure strategy Nash equilibrium. Such an equilibrium can be interpreted as the “conventional”
way of playing the game. If, in addition, the players sometimes experiment or make mistakes, then society
occasionally switches from one convention to another. In this case some conventions (i.e., equilibria) are
a priori more probable than others. Moreover, as the likelihood of mistakes goes to zero, only some of the
equilibria have positive probability in the limit. We show how to compute these stochastically siable equilibria
using the theory of perturbed Markov processes.
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THE EVOLUTION OF CONVENTIONS
H. Peyton Young

The individual is foolish but the species is wise.
Edmund Burke

A convention is a pattern of behavior that is customary, expected, and self-enforcing. Everyone
conforms, everyone expects others to conform, and everyone wants to conform given that everyone
else conforms [Lewis, 1967]. Familiar examples include driving on the right when others drive on
the right, going to lunch at noon if others go at noon, accepting dollar bills in payment for goods if
others accept them, and so forth. Conventions need not be symmetric. Men conventionally propose
to women, Sailboats on the port tack yield the right-of-way to sailboats on the starboard tack. In
some regions, tenant farmers customarily get one-third of the harvest and landlords get two-thirds,
whereas in other regions the reverse convention holds [Bardhan, 1984]. For each role in such
asymmetric interactions there is a customary and expected behavior, and everyone prefers to follow
the behavior expected of him provided that others follow the behavior expected of them. Under these
circumstances we say that people follow a convention. A convention is an equilibrium that everyone
expects. But how do expectations become established when there is more than one equilibrium?

One explanation is that some equilibria are @ priori more reasonable than others. A deductive theory
of this type has been proposed by Harsanyi and Selten (1988). A second explanation is that agents
focus their attention on one equilibrium because it is more prominent or conspicuous than the others
(Schelling, 1960). Yet a third explanation is that, over time, expectations converge on one
equilibrium through positive feedback effects. Suppose that a game is played repeatedly, either by the
same or different agents. Past plays have a feedback effect on the expectations and behaviors of those
playing the game now because people pay attention to precedent. Eventually, one equilibrium
becomes entrenched as the conventional one, not because it is inherently prominent or focal, but
because the dynamics of the process happen to select it.

This evolutionary explanation for the origin of conventions has been suggested in a variety of papers
(Lewis, 1967; Sugden, 1986; Warneryd, 1991], but the precise dynamics of the process by which
expectations and behaviors evolve has not been clearly spelled out. In particular it is not clear
whether it works. Does the process converge to an equilibrium, and if so, are all equilibria equally



likely to be selected? We shall show that the process does converge provided that the underlying game
has an acyclic best reply structure, and provided there is sufficient stochastic variability in the players'
respsones. In this case, society is at or close to a Nash equilibrium most of the time. Not all Nash
equilibria are equally likely to be selected, however. In fact, typically only one Nash equilibrium will
be observed with high probability in the long run, We shall show how to compute these equilibria
using the theory of perturbed Markov processes.

2 ine of the model

We consider a fixed n-person game that is played once each period. The players are drawn at
random from a large, finite population of individuals. Each player chooses an optimal strategy based
on his beliefs about his environment, which he takes to be stationary. He forms his beliefs by

looking at what other agents have done in the recent past. Since gathering information is costly,
however, each player knows only a small portion of the history, that is, he bases his current actions
on a sample of plays from recent time periods. We shall also assume that the players occasionally
experiment with different strategies, or simply make mistakes.

The strategies that the agents choose in the current period are recorded and the game is played again in
the next period by another random draw of n agents from the fixed population. Each of these agents
takes a random sample of previous plays and reacts accordingly. Actions in earlier periods therefore
have a feedback effect on actions by agents in-later periods. Given that the population is large,
however, 1t is unlikely that the same agents will meet again, or that the action of any one individual
will have a substantial effect on the evolution of the process. So the agents are more or less justified
in ignoring the feedback effects of their own actions on future plays of the game.

The adaptive dynamics described above define a Markov chain whose states are the histories of play
truncated to a finite number of periods. It is similar to fictitious play in that agents choose best
replies to other agents' past actions. In fictitious play, however, agents base their decisions on the
entire history of actions by other agents. Here we assume that agents base their decisions on limited
information about actions of other agents in the recent past, and they do not always optimize. These
assumptions seem less fictitious than fictitious play, hence we call this process adaptive play.

For general n-person games, adaptive play need not converge to a Nash equilibrium, either pure or
mixed, as we shall show below by example. Nevertheless, there is an important class of games for
which it does converge. These games have the property that, from any initial choice of strategies,
there exists a sequence of best replies that leads to a strict, pure strategy Nash equilibrium. This
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class includes, but is substantially more general than, coordination games and common interest
games. For these weakly acyclic games, adaptive play converges with probability one to a pure
strategy Nash equilibrium provided that the samples are sufficiently incomplete and the players never
make mistakes. Incompleteness is essential because it creates enough stochastic variability to prevent
the process from becoming stuck in suboptimal cycles. Finite memory is essential because it allows
past miscoordinations to be forgotten eventually. Once a given equilibrium has been played for as
long as anyone can remember, then this equilibrium becomes entrenched as the "conventional” way of
playing the game. It is an absorbing state of the process. One cannot say in advance, of course,
which equilibrium will become the conventional one, since this depends on the vagaries of the
process and on the initial state. What can be said is that some equilibrium will eventually be selected
with probability one, and it will not be a mixed strategy equilibrium.

If the players occasionally experiment or make mistakes, however, then more can be said. In this
case the process has no absorbing states; rather, it has a stationary distribution that describes the
relative frequency with which different states are observed in the long run. We shall show that, if the
_probability of mistakes is small, then this stationary distribution is concentrated around a particular
subset of pure strategy Nash equilibria. In fact, typically it puts almost all the weight on exactly one
equilibrium. This stochastically stable equilibrium will be observed with probability close to one
when the noise is very small (Foster and Young, 1990). This concept differs in an important respect
from other notions of equilibrium stability (such as evolutionarily stable strategies), which are based
on the idea that the equilibrium should be restored if it is subjected to a small, one-time shock.! In
our model, stochastic flucuations due to sampling error and mistakes are not one-shot affairs, but
form an integral part of the dynamics.

Several other recent papers deal with similar topics. Kandori,' Mailath, and Rob (1991) consider an
evolutionary learning process defined on 2x2 matrix games in which every player plays every other
player in every period, and the strategy choices constitute the state in the next period. Successful
strategies are adopted with higher probability than unsuccessful ones, and there is a small probability
that players make mistakes. They show that this stochastic process selects the risk dominant Nash
equilibrium when the mistake probability is small. Canning (1991) examines a more general class of
learning models in which agents adapt their behavior to the current state and occasionally make
mistakes. He shows that, under certain regularity conditions, the stationary distribution of the
perturbed process converges 1o a stationary distribution of the unperturbed one. Canning's results are

1 Models of equilibrium selection based on this concept include Axelrod (1984), Fudenberg and Maskin
(1990), Samuelsor and Zhang (1990), Crawford (1991), and Samuelson (1991). For other models of
evolutionary dynamics in games see Samuelson (1988), Nachbar (1990}, and Friedman (1991).



quite general, but they do not tell us what the limiting stationary distribution looks like.2 In this
paper we show specifically how to compute the limiting stationary distribution of such processes by
solving a series of shortest path problems. We shall then apply this result to compute the
stochastically stable equilibria of adaptive play. For 2x2 matrix games the risk dominant equilibrium
is the unique stochastically stable equilibrium. In games with more strategies, the two concepts

differ.

3. Adaptive play

Let G be an n-person game in normal form, and let S; be the finite set of strategies available to player
i.  Let N be a finite population of individuals that is partitioned into n nonempty classes Cy, Cp,

..., Cp. Each member of Cj is a candidate to play role i in the game. For example, Cy is the class
of men, Cy is the class of women, and the game is Battle of the Sexes. We shall assume that all
individuals in class i have the same utility function u;(s) for strategy-tuples s = (81, 52,...,8p) €
[1S;, which we shall identify with outcomes.

Lett=1, 2,...denote successive time periods. The game G is played once each period. In period
t, one individual is drawn at random from each of the n classes and is assigned to play the
appropriate role in the game. It will be convenient to refer to the individual playing role i as player

"i" even though the identity of this individual may change from one period to the next. Player i
chooses a pure strategy s;(t) from his strategy space according to a rule that will be defined below.

The strategy-tuple s(t) = (s1(1), sp(1), . . ., sp(t)) is recorded and will be referred to as the play at
time t. The history of plays up to time t is the sequence h(t) = (s(1), s(2), .. ., s(t)). We assume
that the histories are anonymous: it does not matter who played a given strategy in a given period,
only that it was played by someone.

The agents decide how to choose their strategies as follows. Fix integers k and m such that
1<k<m. Inperiodt =m,each player inspects k plays drawn without replacement from periods
t-1,t-2,....,t-m. The draws are independent for the various players. Concretely, we may
think of each player "asking around" to find out how the game was played in recent periods. The
agent stops when he has obtained information about k different plays within the last m periods. Itis
not necessary to assume that the agent samples every subset of k plays with equal probability; it is
enough that he sample every such subset with positive probability. For notational simplicity, we shall

2 Qther models of selection based on stochastic dynamical processes include Fudenberg and Harris (1991),
Evans and Honkapohja (1991), and Kirman (1991},



assume that all agents have the same m and k, although this is not essential for the results. We shall
also assume, for the sake of generality, that the first m plays are randomly selected. Thus we can
think of the sampling process as beginning in period t =m + 1 from some arbitrary initial sequence of
m plays h(m) = (s(1), s(2), ..., s(m)).

The above decision rule defines a finite Markov chain on the state space H consisting of all sequences
of length m drawn from ITS;, beginning with some arbitrary "initial" state h(m).

SUCCESSOR. A successor of a state he H is any state h'e H obtained by deleting the left-most

element of h and adjoining a new right-most element .

The process moves from a state to a successor state in each period according to the following
transition rule. Let h be the current state. For each s € S;, let p;(slh) be the probability that agent i
chooses s. We assume only that p;(sth) > 0 if and only if there exists a sample of size k to which s is

i's best reply, and that pj(slh) is independent of t. Then the probability of moving from h to h'is

Phh' = Iio; o pi(silh) if h'is a successor of h and s is the right-most element of h* (1)

1

Php' =0 otherwise.

We call this process adaptive play with memory m and sample size k.
4, Convergence of ive pl i

Let us begin by observing that, if adaptive play converges to an absorbing state, then that state is a

strict pure strategy Nash equilibrium played m times in succession.  Suppose, indeed, that h =
(s1,...,s™) is an absorbing state. For each agent i let s; be i's best reply to some subset of k plays

drawn from h, and let s = (s1,..., Sp). By assumption, there is a positive probability of moving
from h to h' = (82, . . ., s™, §) in one period.  Since h is absorbing, h = h' and hence sl =52,

Continuing in this fashion we conclude that sl=g2= =glh=g Hence h = (s, s,. . ., 8).
By construction, s; is a best reply to some sample of k elements from h. Hence s; is a best reply to

s_j foreachi. It must also be a unique best reply to s_;, because otherwise the process could move
to a successor that is different from h. So s is a strict, pure strategy Nash equilibrium. Conversely,
any state h consisting of m repetitions of a strict, pure strategy Nash equilibrium is clearly an
absorbing state. Such a state will be called a convention.



If adaptive play converges to an absorbing state, then clearly the game must have a strict Nash
equilibrium in pure strategies. This is not a sufficient condition for convergence, however.
Consider the following variation of an example due to Shapley :

EXAMPLE 1, a b c d
a 2,1 00 1,2 -1,-1
b 1,2 2,1 0,0 -1,-1
¢c 0,0 1,2 2,1 -1,-1
d -1-1 -1,-1 -1,-1 3,3

Here d is a best response to itself, but it is not a best response to any mixture of a, b, and ¢, If the
initial state does not involve d, then adaptive play (like fictitious play) cycles. Consider, for example,
the case where m =2 and k = 1. Let the first two plays be (a, a) and (a, ¢). In period 3, Column
will sample one of Row's previous two choices (both a) and react by playing c. Row will sample
-one of Column's previous two choices (a or ¢) with equal probability and react by playing aorc. So
the next play will be (g, ¢) or (c, ¢) with equal probability. The process therefore moves from state
[(a, a), {a, c)] to state [(a, c), (a, c)] with probability one-half, or to state [(a, c), (¢, ¢)] with
probability one-half. The subsequent transitions form a cycle of length six imbedded within a cycle
of length twelve, as shown in Figure 1. This cycle constitutes an irreducible, recurrent class of the

Markov process defined by (1).

Figure 1. An irreducible class of adaptive play with m = 2, k = 1. The top line shows Row's
choices, the bottom line shows Column's choices,

When cycling is built into the best reply structure of the game, as in the above example, we cannot
expect adaptive play to converge. Nevertheless, there are many games that do not have a cyclic
best-reply structure. Consider a two-person coordination game in which both agents have the same
number of strategies, and each agent strictly prefers to play his jth strategy if and only if the other
agent plays his jth strategy for every j. Clearly there is no cycling problem here: once one of them
chooses a pure strategy and the other responds optimally, then they have achieved a coordination

equilibrium,



To take another example, suppose that the agents have common interests: for every two strategy
tuples s and s', either everyone strictly prefers s to s' or everyone strictly prefers s' to s. Given an

arbitrary strategy-tuple s that is not a strict Nash equilibrium, there exists some agent i who can do
better by playing s;' instead of s;. Lets'= (si', s_j). If §' is not a strict Nash equilibrium, there is

some agent j who can do better by playing S " instead of s'j. Lets"= (Sj", s'_j), and so forth. At
each step of this adjustment process everyone's utility increases, so the process cannot cycle and it
must end at a strict, pure strategy Nash equilibrium.

This construction can be generalized as follows. Let G be an n-person game in normal form on a
finite strategy space [1S;. Define a directed graph I'(G) such that each vertex of I is an n-tuple of

strategies s € [IS; and for every two vertices s and §' there is a directed edge s — s' if and only if
s # &' and there exists exactly one agent i such that s;'is a bestreply to s_j and 8'; =s_j. I(G)is

the best reply graph of G.

ACYCLIC GAME. A game G is agcyclic if its best reply graph contains no directed cycles. It is weakly
acyclic if, from any initial vertex s, there exists a directed path to some vertex s* from which there is

‘no exiting edge (a sink).

Every sink of I'(G) is clearly a strict Nash equilibrium in pure strategies. So a game is weakly acyclic
if, and only if, from every strategy-tuple there exists a finite sequence of best replies by one agent ata
time that ends in a strict, pure strategy Nash equilibrium. We shall show that, for this class of games,
adaptive play converges with probability one provided that sampling is sufficiently incomplete and the
players do not make mistakes.

Let G be a weakly acyclic n-person game. For each strategy-tuple s, let L(s) be the length of a
shortest directed path in I'(G) from s to a strict Nash equilibrium, and let LG = maxg L(s).

THEOREM 1. Let G be a weakly acyclic n-person game. If m/k =2 LG + 2 then adaptive play

converges with probability one to a convention.

- Proof. Fix k and m, where m/k 2 LG +2. We shall show that there exists a positive integer M, and
a positive probability p, such that from any state h, the probability is at least p that adaptive play
converges within M periods to a convention. M and p are time-independent and state-independent.
Hence the probability of not reaching a convention after at least tM periods is at most (1 - p)t, which
£0€eS 10 ZEero as r — oo, |



Let h = (s(t-m+ 1), ..., s(t)) be the state in period t 2 m. In period t + 1 there is a positive
probability that each of the n agents samples the last k plays in h, namely, (s(t- k + 1), . .., s(t)) =
7. There is also a positive probability that, from periods t + 1 to t + k inclusive, every agent draws
the sample 1 every time. Finally, there is a positive probability that, if an agent has a choice of
several best replies to M, then he will choose the same one k times in succession. Thus there is a
positive probability of a run (s, s, . . ., s) from periods t + 1 to t + k inclusive. Note that this
argument depends on the agents' memory being at least 2k - 1, since otherwise they could not choose
the sample 1} in period t + k.

Suppose that s happens to be a strict Nash equilibrium. There is a positive probability that, from
periods t + k + 1 through t + m, each agent will sample only the last k plays, in which case the unique
best response of each agentiis sj. So they play s for m - k more periods. At this point an absorbing

state has been reached, and they continue to play s forever.

Suppose instead that s is not a strict Nash equilibrium. Since G is weakly acyclic, there exists a
directed path s, s, .., st in I'(G) such that s? is a strict Nash equilibrium. The first edge on this
pathiss — §'. Leti be the index such that s'.; =s_j and si' is a best reply to s.j.  Consider the
event in which agent i samples from the run of s established in periods t + 1 to t + k and responds by
playing s;', while every agent j # i draws the sample 1} = (s(t - k + 1), . .., 8(t)). By assumption,
the best response of every agent j to this sample is s;. These events occur together with positive

probability, and there is a positive probability that they occur in every period fromt +k + 1 to t + 2k,
assuming that m > 3k - 1. The result isa run of §' = (s, s.j) for k periods in succession,

Continuing in this fashion, we see that there is a positive probability of obtaining a run of s, followed
byarunofs'... followed eventually by a run of sT. Each run is of length k, and the run of s*
occurs from period t+ kr+ I'tot + kr + k. To reach this point may require that some agent look
back kr + 2k - 1 periods, namely, from period t + kr + k to period t - k + 1.  This is possible
because of the assumption thatm /k 2Lg + 2.

After this, the process can converge to the absorbing state (sT, s, ..., sT) by period t + kr + m if
each agent samples the previous k plays from periods t + kr + k + 1 to t + kr + k + minclusive.

Thus we have established that, given an initial state h, there is a probability py, > 0 of converging to
an absorbing state within M =kr + k + m periods. Letting p = minpe gy pp > 0, it follows that from



any initial state the process converges with probability at least p to an absorbing state within at most
M periods. This completes the proof. '

We do not claim that the lower bound L + 2 is best possible for all weakly acyclic games, but
incomplete sampling is a necessary condition for this result. Consider the following version of
"Battle of the Sexes™:

EXAMPLE 2,
Yield Not Yield
Yield 0,0 1,vV2
Not Yield v 2,1 0, 0

Let k = m, so that both players sample the same m plays in each period. Consider any initial
sequence of m plays in which the players have always miscoordinated, that is, they both yielded or
they both failed to yield in each period. Let f be the frequency with which they yielded in this
sequence. In the next period, Row vields if and only if 1-f > fv'2, and Column does the same.
So they miscoordinate again. (Since f is rational, the inequality is always strict so we never have to
consider ties.) Thus, if they begin in a state of perfect miscoordination, then they miscoordinate
forever. The same holds if memory is unbounded, as in fictitious play: if they miscoordinate on the
first move, then they will continue to miscoordinate forever.

The virtue of incomplete Sampling is that it introduces stochastic variation into the players' responses.
They may coordinate by chance, and if they do so ofien enough the process eventually locksinto a
pure strategy Nash equilibrium. This equilibrium then becomes the conventional way of playing the
game, because for as long as anyone can remember, the game has always been played in this way.
Therefore sampling does not matter any more, because no matter what samples the agents take, their
optimal response will be to play the equilibrium that is already in place.

3. Adaptive play with mistakes

Theorem 1 relies on the assumption that, while agents base their decisions on limited information,
they always choose a best response given their information. This assumption is clearly unrealistic.
Agents sometimes make mistakes; they may also experiment with nonoptimal responses. In this case
the stochastic process does not converge to an absorbing state, because it has no absorbing states.
Mistakes constantly perturb the process away from equilibrium, If we assume, however, that all
mistakes are possible and that the mistake probabilities are time-independent, then the process does
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have a unique stationary distribution. Hence we can study its asymptotic behavior. When the
probability of mistakes is small, we shall show that this stationary distribution is concentrated around
a particular convention (or, in the event of ties, a subset of conventions). These may be interpreted as
the stochastically stable conventions, that is, the ones that will be observed with positive probab111ty
in the long run when the noise is small but nonvanishing.

Fix the sample size k and memory m. Suppose that, in each time period, there is some small
probability €A; > O that player i experiments by choosing a strategy randomly from S; instead of

optimizing based on a sample of size k. The ratio Aj/A; is the relative probability with which a player
of type i experiments as compared to a player of type j. The factor £ determines the probability with

which players in general experiment. The event that i experiments is assumed to be independent of
the event that j experiments for every i # j. For every i, let gj(s|h) be the conditional probability that

i chooses s € Sj given that i experiments and the process is in state h, where 3. g; q;(sih) = 1 for
everyiandh. We shall assume that q;(slh) is independent of t, and that g;(slh) >0 forall s € S;.

The latter assumption is made for ease of exposition; as we shall see later, it suffices to assume that
the gj(.) have enough positive support that every state is reachable from every other state in a finite

number of periods by agents who experiment,

A priori we do not know the distributions q = (q1(.), @2(.), . . ., gn(.)) or the relative probabilities
of experimentation A = (A1, A2, ..., Ay ). It turns out, however, that this does not matter. If the

overall probability of experimentation € is small, and if the agents experiment independently of one
another, then the selected equilibria are independent of q and A.

The perturbed process ma).r be described as follows. Suppose that the process is in state h at time t.
LetJ © N be a subset of j players, 1 <j<n. The probability is & (TTjey A) (g (1 - €X;) that

exactly the players in J experiment and the others do not. Conditional on this event, the transition
probability of moving fromhto h'is

Qpp = ITiey qitsiihy ITies pifsilh) if h'is a successor of h and s is the right-most element of h'
Qpp =0 otherwise.

If no agent experiments, then the transition probability of moving from h to h' in one period is Py,
as defined in (1) . 'This event has probability [T;-; ,(1 - €Aj). The perturbed Markov process

therefore has the transition function;

10



Py = (KL - €AD) Py + (5 € ([Tjeg ) gy (1 - 1) Qpy - @)
1=1,n JEN, J#¢

This process will be called adaptive play with memory m, sample size k, and experiment probabilities
ehig. |

A ic behavior of ive pl

We shall now characterize the asymptotic behavior of adaptive play when the overall probability of
experimenting €is close to zero. Let us view P*(g) as a function of &, noting that P*(0) =P. Leth
and h' be two distinct states. If P*(g) is in state h at time t, there is a positive probability that all
players will experiment for m periods in succession and arrive at state h' at time t + m. Hence P*(g)

is irreducible. It is aperiodic because there is also a positive probability that the process could first
arrive at state h' at period t + m + 1. Hence P*(€) has a unique stationary distribution py,(e), where

Up(€) is the limiting probability of being in state h after t periods as t — oe.

STOCHASTIC STABILITY.3 A state he H is stochastically stable relative to the process P*(g) if
lim o_,q UpK(€) > 0.

Over the long run, states that are not stochastically stable will be observed infrequently compared to
states that are, provided that the probability of mistakes € is small. If there is a unigue stochastically

stable state, then it will be'observcd almost all of the time when € is small.

For a general n-person game, we shall characterize the stochastically stable states of P*(g) and
show that they are independent of q and A. If the game is weakly acyclic, then every
stochastically stable state is a convention, and typically it is unique.

MISTAKE, Let h'be a successor of h and let s be the right-most element of h'. A mistake in the
transition h — h'is a component s; of s that is not an optimal response by agent i to any sample of

size k from h.

A mistake can only arise if a player experiments, but an experimental choice need not be a mistake,
since it could (by chance) be an optimal choice.

3_ This notion was introduced for general stochastic dynamica? systems by Foster and Young (1990), and
was applied to an adaptive model for playing 2x2 games by Xandori, Mailath, and Rob (1991),

11



RESISTANCE. For any two states h, h' the resistance r(h, h') is the total number of mistakes in
the transition h — h'if h' is a successor of h; otherwise r(h, h") = oo, '

Let us now view the state space H as the vertices of a directed graph. For every pair of states b,
h'insert a directed edge h — h'if r(h, h') is finite, and let r(h, h') be its "weight" or "resistance.”
The edges of zero resistance correspond to the transitions that can occur under P*(0). Let Hy,
Hp, ..., Hyx be the irreducible, recurrent classes of P*(0). These classes have the property
that, from every state h there exists a path of zero resistance to some class Hy. No state outside of
a class Hy, is reachable by a path of zero resistance from any state inside Hy, but within Hy, there is

a directed path of zero resistance from every state to every other. Given any two distinct classes
Hy; and Hy, and any two states h € Hy; and h' € Hy, consider all directed paths from h to h',

There is at least one such path, because the perturbed process P(g) is irreducible. Among all such
paths, choose one with least total resistance, and let this resistance be denoted by r;y,. Computing
Iyv amounts to solving a shortest path problem in a directed graph. Note that ry;y, is independent of

the particular choice of h and h', because every two states within the same class are accessible from
each other by paths of zero resistance.

Now define a directed graph & on the set of indices V = {1, 2, . . ., v*} as follows: forevery u,
v €V there is a directed edge (u, v) from u to v, and 1y is its "weight” or "resistance." The

following concept is due to Freidlin and Wentzell (1984).

v-TREE. For every ve V, a v-tree on G is a subset t of edges with the property that, for every
vertex u # v, there exists exactly one directed path in T fromu to v.

For each ve V, let T, be the set of all v-trees on G. The "resistance” of a v-tree 1 is the sum of the

resistances of its edges,

I‘(T) = E ruu' . . (3)
(u,0)eT

STOCHASTIC POTENTIAL. The stochastic potential of the irreducible class Hy, is the least resistance
among all v-trees:

p(v)=min n1) @
Te T,
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Computing p(v) for a given set of weights 1y, is a standard problem in combinatorial optimization
known as the arborescence problem. There exist algorithms for solving it in the order of (v¥)2
steps {Chu and Liu, 1965; Edmonds, 1967; Tarjan, 1977].

THEOREM 2. Letr G be an n-person game on a finite strategy space, and let P*(g) = P*(k, m, q, A,
&) be adaptive play with parameters m2k21,q>0,A >0, and € >0. The stochastically stable
states of P* are precisely the states contained in the irreducible recurrent classes of P*(0) that have
minimum stochastic potential.

COROLLARY. If G is weakly acyclic and m/k 2 L + 2, then the stochastically stable states of
adaptive play are the convention(s) of minimum stochastic potential.

Theorem 2 follows from a general theorem on perturbed Markov processes that we prove in the
Appendix. The corollary is a direct consequence of Theorem 2 and Theorem 1.

Note that the numbers i'uv, and hence the potential function p, depends only on the number of
mistakes in making various transitions, not on the relative probability with which specific mistakes
are made. Hence the stochastically stable states are independent of the probability distributions
Ajq;. This is important, for in applications one would rarely know the relative probabilities of
various mistakes, only that they are possible. What matters is that the probability of mistakes is
small, and the agents make them independently of one another. ‘

The potential function is computed in three steps. First we identify the irreducible classes of the
process P*(0) without mistakes. In general, these classes can be quite complex, as the discussion
in section 4 shows. If the game is weakly acyclic and the sampling is sufficiently incomplete,
however, then Theorem 1 tells us that the irreducible classes correspond one-to-one with the strict
pure strategy Nash equilibria. In this case the irreducible classes are easy to compute. The second
step is to compute the path of least resistance from every irreducible class to every other. This
involves solving a series of shortest path problems. The third and final step is to construct a
complete directed graph with these resistances as weights, and to find the arborescence having least
weight. This identifies the stochastically stable.convention(s). In the remainder of the paper we
shall illustrate the computations for 2x2 and 3x3 matrix games.

13



1. The 2x2 case.

Let G be a 2x2 matrix game with two strict Nash equilibria in pure strategies. It isclear that G is
acyclic and LG =1. Without loss of generality we may write G in the form

1 2
1 a11, b11 212, b1z
2 a1, bag ap2, bz

where ajj >apy, bii>b1z, ap2 >ajp2, and by > byy. The strict, pure strategy Nash
equilibria are (1, 1) and (2, 2). Theorem 1 implies that, if m/k > 3, then adaptive play without
mistakes has two absorbing states: hi = ((1,1), (1,1), .. ., (1,1)) and hy = ((2,2), 2,2), . . .,
(2,2)). To determine which of these states is stochastically stable, we must compute the path of
least resistance from hj to hy, and the path of least resistance from hy to hy.

Let hi be the state at time t = m. To go from hq to hy requires that at least one player choose

strategy 2 by mistake. Moreover, he must choose strategy 2 so often that the other's optimal reply
is also strategy 2 for at least one sample of size k, for otherwise the process cannot lock in to the
absorbing state hy. '

Suppose, for example, that Row chooses 2 by mistake from periods t=m+ 1 tot=m + k'
inclusive, and from then on Row makes no further mistakes. These choices are marked 2* in
Table 1.

Period I 2...m m+l m+2...m+k' m+k'+1...m+k'tk m+k+k+l ...
Row 1 1...1 2% 2% 2% 1 v 1) 2
Couommn 1 1...1 1 1 1 2 2 2

Table 1. A succession of k' mistakes by Row causes the process to converge to hp, 2% denotes
a mistaken choice of 2, 1(2) an optimal choice of either 1 or 2.

If Column draws a sample that includes these k' choices of 2, as well as k - k' choices of 1, then
Column'’s best reply is 2 provided that

(1-k/kby2 + (k/kbaa 2 (1-k/k) byg + (k/k) 21,
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that is,
k' > —bji=byo k. 5)
bj1-b1a-bp1 +b22 '

If equality holds in (5) then strategy 2 is among Column's best replies, so Column will play it with
positive probability.

Suppose that (5) holds and that Column's sample happens to include Row's mistakes in every
period from m + k'+- 1 to m + k' + k inclusive. This event has positive probability if m 2
k+k'- 1. Then Column's best reply is to play 2 from periods m + k'+ 1 to m + k'+ k and none
of these choices are mistakes. In period m + k'+ k + 1 suppose that Row samples Column's
choices of 2, while Column samples Row's choices of 2. This event has positive probability if m
2 k'+ k. Then their best replies are to play 2. In the next period there is again a positive

probability (if m is large enough) that both sample enough choices of 2 to want to play 2 again, and
so forth. So with positive probability the process converges to the absorbing state hy with no

further mistakes. In other words, k' mistakes is sufficient to move the process from hy to hy

provided that k' satisfies (5) and m/k is large enough.

Similarly, the process converges with positive probability to hj if Column chooses 2 by mistake k"

times, where
k"> a]1.-321 k.
a11-a12-a21 +a2

Ry=min{ _ajj-ay; , _byy-bjpo L
ajj-ajp-ap1+ag2  b1i-bra-baj+b22
For every real number x, let [x] denote the least integer greater than or equal to x. We have just

shown that the resistance in going from hq to hy is [R1k]. A similar argument shows that the
resistance in going from hy to hi is [Rok] where

Ry =min{ _app-217 , _byp-byg }.
aj1-a12-ag1 +agz b1i-b12-boy+b22

If Ry 2 Ry, then (1, 1) weakly risk dominates (2, 2) [Harsanyi and Selten, 1988]. If R1 >Ry,
then the unique stochastically stable convention is hy for all sufficiently large values of k and m/k.
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If R1 = Ry, then both h{ and hy are stochastically stable conventions for all sufficiently large
values of k and m/k.

THEOREM 3. Let G be a 2x2 matrix game with two strict Nash equilibria in pure strategies. For all
sufficiently large k and mik, the stochastically stable conventions correspond to the weakly risk

dominant Nash equilibria.

2, Ihﬁ 3)(3 Casc

When the agents have three or more strategies, matters become more complicated. In this case
there is no simple formula analogous to risk dominance that identifies the stochastically stable
equilibria. First, the path of least resistance must be computed from every equilibrium to every
other. Then a minimum arborescence problem must be solved for each equilibrium. We shall

illustrate by solving an example.

EXAMPLE 3.
1 2 3
1 6,6 0,5 0,0
2 5,0 1,7 535
3 0,0 55 8,8

The pairs (i, i) are the strict, pure strategy Nash equilibria, i = 1, 2, 3.  Let h; denote the
convention in which (i, i) is played m times in succession. Theorem 1 says that these are the
absorbing states of the unperturbed process provided that m/k 2 3. Let us compute the path of
least resistance from every convention to every other for a fixed k and m, assuming always that

m/k = 3.

Suppose that the perturbed process is in state h1. To exit to hp or h3, one agent must choose a
sufficient number of 2's or 3's (or both) to cause the other agent to choose 2 or 3. Since the game
is symmetric, it does not matter which player makes the mistakes and which player reacts.
Assume that the Column player chooses 2 at least k" = [(1/8)k] times in succession. If Row

samples these choices (plus k - k" choices of strategy 1), then Row's best reply is also strategy 2.
At this point there is a positive probability that the process will converge to hy with no further

mistakes. Thus the resistance in going from hj to ho is [(1/8)k]. Moreover, the least resistant
path is direct in the sense that it only involves strategies 1 and 2.

16



Not all paths of least resistance are direct, however. For example, suppose that the process is in
- state h3 and we want to exit to state hp. The direct route is for one player to choose strategy 2 by
mistake at least [(3/5)k] times, which causes the other player to reply with strategy 2. But if one
player chooses strategy 1 by mistake at least [(3/8)k] times and at most (5/6)k times, then the best

reply of the other player is strategy 2. Thus, if k is large enough, the indirect route has lower
resistance.

The resistances between every pair of equilibria are shown in Figure 2. For each vertex h; there
are three hj-trees, and the hj-tree of least resistance determines the stochastic potential of hy, as
shown in Figure 3.

(5/6)k

h3-

(2/5)k

Figure 2. Pairwise resistances for the pure strategy equilibria of Example 3.
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hy hy hg plhg)=(18)k + @Sk

@5k 25k

Figure 3. Computation of the potential for each of the three absorbing states h;.

Thius the stochastically stable convention is uniquely hy whenever k > 36 and m/k = 3. But the risk
dominant equilibrium is (3, 3). The distinction between the two concepts is roughly this: risk
dominance selects the equilibrium that is easiest to flow into from every other equilibrium considered
in isolation. Stochastic stability selects the equilibrium that is easiest to flow into from all other states
combined, including both equilibrium and non-equilibrium states.

9, Conclusion

In this paper we have shown how an equilibrium can evolve in a game that is played repeatedly by
different agents. The model is similar to fictitious play in that agents' expectations are shaped by
precedent. It differs in that the agents base their choices on an incomplete knowledge of recent
precedents and they occasionally make mistakes. These assumptions seem more natural than the
deterministic dynamics of fictitious play, so we can justify them on the grounds of realism. They

also play an important technical role: by introducing noise into the dynamic adjustment process, they
select among pure strategy Nash equilibria for weakly acyclic games, and among more complex
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regimes for general n-person games. Unlike some other models of equilibrium selection, these
perturbations are not one-shot affairs but are an integral part of the evolutionary process. This leads to
a different criterion of equilibrium selection than the classical ones such as risk dominance (except in
the 2x2 case).

Several questions remain to be explored. One is the sensitivity of the selection mechanism to memory
and sample size. For 2x2 games we showed that the stochastically stable equilibria are independent
of m and k so long as m/k and k are sufficiently large. It is not clear whether this result holds for
weakly acyclic games in general, although we know of no examples in which it fails to hold. This
issue will be examined elsewhere. Second, the model could be enriched by allowing the agents more
decision-making scope. For example, they might learn as they play the game repeatedly, they might
make inferences about the others' decision rules, and they might choose optimal sample sizes. These
additions will complicate both the state space and the stochastic process, but if agents make mistakes
infrequently and independently of each other, then the stochastically stable states can be analyzed
using the techniques developed above. We have deliberately chosen to focus on the case where agents
do not learn in order to make the point that the selection mechanism operates at the social rather than at
the individual level. Individuals do not necessarily learn, but eventually society does.
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Appendix

Here we shall prove a general result on finite Markov chains of which Theorem 2 is a special case.
Let P be a stationary Markov chain defined on a finite state space X. Suppose that this process is
subjected to a small perturbation or noise. By this we mean that with high probability the process
follows the transition function P, but with small probability certain transitions occur that could not
have occurred via P. We shall assume that the perturbed process can be modelled as a stationary
Markov chain on X with transition function P(g), where € is a scalar parameter that measures the

overall level of noise, P(0) = P, and the following three conditions hold:

P(g) is defined and continuous in some nontrivial interval 0 <e< a, (6)
P(g) is aperiodic and irreducible forall 0 <e < a N

¥x,ve X, ny () #0 forsome € >0 impliesd! r20 s.t. 0 < lim €7 Pxy () < . (8)
eE—0

We shall call a finite Markov process P(g) satisfying (6) - (8) a regular perturbation of P(0).
Condition (7) implies that the perturbed process P(€) has a unique stationary distribution li(e) for
every 0 <e <a. Condition (8) says that every transition x— y either has zero probability for all
£ > 0, or its probability is on the order of €' (for some real r > 0) as € becomes small. In the former
case we set (X, y) = oo, and in the latter case we set r(x, y) =r. The number r(x, y) will be called
the resistance of the transition x ->y. Condition (6) implies that

limg_y( €0 Pyy (€) = limg_y0 Pyy (€) = Pyy (0).

Hence r(x, y) = 0 if and only if ny (0) > 0, that is, feasible transitions under P(0) have zero

resistance.

We remark that the process P*(k, m, q, A, €) defined by (2) in the text is a regular perturbation with
. respect to €, and the resistance of a one-period transition is the minimum number of mistakes required

to make it.

The perturbed process P(€) has a unique stationary distribution pi(g) for all € > 0, while the
unperturbed process may have many stationary distributions. We are going to show that limg_,g
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HL(€) = W, where L is one of the stationary distributions of P(0). Thus the effect of the perturbations

is to select among the stationary distributions of P(0)# We shall show further that the limiting
distribution p depends only on the resistances r(x, y). Hence it is enough to know the order of

magnitude of various transition probabilities in order to compute the limiting distribution.

To characterize the limiting distribution u, we shall view the states x € X as the vertices of a directed

graph G, whose edges are the ordered pairs (x, y) such that 1(x, y) is finite. Fix an arbitrary state z
€ X. A z-tree T is a subset of directed edges such that, for every vertex x # z, there exists a unique
directed path in T from x to z. . For every z € X, let T, be the set of all z-trees in G. Since P(g) is

irreducible for each £ > 0, there exists a path of finite resistance from every state to every other state.
Hence for every z € X, T, # ¢. The resistance of a z-tree T is the sum total of the resistances of its

edges, that is,

X(T) = T 1(x, y).
x.YeT

The stochastic potential of a state z is

¥(z) =min 1(T). (9
TeT,

LEMMA 1. Let P(€) be a regular perturbation of P(0) and let ju() be its stationary distribution. Then
lim ,_,g H(€) = 1 exists, U is a stationary distribution of P(0), and forevery x € X, [ix >0 ifand

only if ¥{x) is 2 minimum.

The state x is stochastically stable if lim ;_,g Uy (€) > O [Foster and Young, 1990]. Lemma 1 says
that the stochastically stable states are precisely the states with minimum stochastic potential.

PROOF. We employ a general method for computing stationary distributions due to Freidlin and
Wentzell (1984). Let P' be the transition function of any aperiodic, irreducible, stationary Markov
process defined on the finite space X. For each z € X, define the number

4 Canning (1991) proves that lim £->0 H(e) is a stationary distribution of lim ;_, P(¢) under more
general conditions, but he does not characterize the support of the limiting distribution.
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Pz = ) I-IP'xy-
TE'J'z (x,y)eT

P'z is positive because P' is irreducible. Let

Bz = p'z/(Z px) > 0.
xe€X

If may then be verified that P'u = y, from which it follows that [ is the unique stationary distribution
of P’ [Freidlin and Wentzell, 1984, Lemma 3.3].

Now let us apply this result to the process P(g) hypothesized in the Lemma. Let

Pz(a) = 2 H ny (E.) . (10)
TeT z (x,y)eT

By the above result, the stationary distribution of P(g) is given by the formula

Vze X, Hz(€) = pL(€) /X px(e) . (11)

xeX

Define ¥(z) as in (9) and let y = min, ¥(z). Given z € X, choose a z-tree T and consider the identity

e I Pyy (&) = (DY IT £T(%¥) Pyy (@), (12)
(x, y)eT x yeT

Since r(T) is finite, r(x, y) is finite for every (x, y) € T. Hence 0 <%i£1° eTx,y) Pyy (<,
Taking the limit as £ — 0 on both sides of (12) we obtain

limg o €Y IT Pyy ®) = 0 if y<r(T),
(x,9)eT

and
limg_yq &Y I1 ny (€) > 0 ify=1(D),
(x,y)eT

With p,(€) as defined in (10) it follows that
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lim 0 €Y p,(€) = 0 if Yy <Y() (13)

and
lim . yg&¥py (€) > 0 if y="1z). (14)

By (11), _
Hz(€) = &Y py(€) [Zxe X €Y px(E)- (15)

From (13) - (15) it follows that, for every z € X,

limg_yq () =0if y<¥(z),

-and
limg_, U (E)>0if Y=Y2).

Hence y = lim ..,g W(E) exists, and its support is the set of states z that minimize Y(z). Since pU(€)
satisfies P(g)jL(g) = p(e) for every & > 0, it follows from the continuity of P(g) that P(O)u = .
Hence | is a stationary distribution of P(0). This completes the proof of Lemma 1.

Since y is a stationary distribution of P(0), i, = O for every state z that is not recurrent under P(0).

To find the stochastically stable states, it therefore suffices to compute the potential function only on
the recurrent states. Let the irreducible, recurrent communication classes of P(0) be denoted by X, .

.., Xy*. By definition, every two states within the same class X, are accessible from each other

by transitions in P(0), that is, by paths having zero resistance. From every state in X there exists a
path of zero resistance to at least one of the classes Xy, but no state outside of a class Xy, is accessible

by such a path from any state inside it.

We shall show that the potential function is constant on every class Xy, and that it may be computed

by finding a path of least resistance from every irreducible class to every other and then solving an
arborescence problem on v* vertices rather than on the whole state space X.

Let the indices {1, 2, ..., v¥} =V be the vertices of a graph. For each pair of indices (u, v), let

Tyv be the least resistance among all directed paths that begin in X, and end in X. (For this purpose
it is sufficient to fix any two states x € X; and y € Xy, and find a least-resistant path from x to y.)
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A v-tree on V is a subset T of directed edges such that for every vertex u # v there exists exactly one
directed path from u to v. Let 7y, be the set of all v-trees on V. For each veV find the v-tree of least

total resistance and let this resistance be denoted by p(v):

pV)=min Xryy. (16)

€Ty (U, v)eT
LEMMA 2. p(v) is the stochastic potential of all states x € X,.

PROOF. Fix u such that 1 <u < v* and fix an arbitrary element x; € X;. Let p be defined as in
(16). We shall show first that y(x;) < p(u). Then we shall show the reverse inequality.

Fix a u-tree T on the vertex set {1, . . ., v*} such that 1(T) = p(u). For every v # u, there exists
exactly one outgoing edge (v, v') € 1. In the graph G, choose a directed path Dy from Xy to Xy
having resistance 1+, and denote the initial vertex on this path by xy. Since X, is a communication
class of P(0), we may also choose a directed tree Ty, on the subset of vertices Xy, such that from every
vertex in Xy, there is a unique directed path in Ty, to v, and 1(Ty) = 0.

Let E be the union of all of the edges in the trees Ty, (v # u) and all of the edges in the directed paths
Dy where (v, v') € 1. By construction, the set of directed edges E contains at least one directed
path from every vertex in X to the fixed vertex x,;. Therefore it contains an xy-tree T and

KT) € 1(E) =X1(Ty) + Z1Dyy) = 0+ Xryyr = plu).

lsvsvy (v,v)e1 (v, v)e=z1
By definition, y(x,;) < r(T), and hence %¥(x,;) < p(u) as claimed.

To show that ¥(xy,) 2 p(u), fix a state x;; in X; and fix an xy-tree T such that Y(xy) =r(T). Define a

Jjunction in the tree T to be any vertex y with at least two incoming T-edges. Label the junction "w" if
there exists a path of zero resistance from y to the class Xy, There exists at least one such class Xy,

because these are the absorbing classes of the process P(0). If there are several, then choose any one
of thern as the label.

For every v # u, fix a state Xy in X, and label it "v". These vertices xy, together with xy, will be

called special vertices. Every labelled vertex is either a special vertex or a junction (or both), and the
label identifies a class to which there is a path of zero resistance. Define the special predecessors of a
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state x € X to be the special vertices x,, that strictly precede x in the tree T such that there is no other

special vertex Xy strictly between x and xy in T,

If a junction is labelled "w" and x., is a special predecessor of this junction,
then the unique path in the tree from Xy to the junction has resistance at least ty,.  (17)

This property clearly holds for the tree T because any path from xy to a junction labelled "w" can be
extended by a zero resistance path to the class Xy, and the total path must have resistance at least
Iyvw. We shall now perform certain topological operations on the tree T that preserve property (17),

Suppose that T contains a junction y that is not a special vertex, and let its label be "w", We
distinguish two cases, depending on whether the special vertex xy, is or is not a predecessor of y in

the tree.

Casg 1. If xy is not a predecessor of y in the tree (see Figure 4), cut off the subtree consisﬁng of all
edges and vertices that precede y and glue them onto the tree at the vertex X

Figure 4. Case 1 surgery : before after.

- Case 2. If xy, is a predecessor of y (see Figure 5), let (z, y) be the last edge on the unique path from
Xw toy. Cutoff the subtree consisting of all edges and vertices that precede y except for the subtree

consisting of (z, y) and all the predecessors of z, and glue them onto xy.
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after,

Figure 5. Case 2 surgery: before

Both of these operations preserve property (17) because xy, and y have the same label "w.

Moreover, they do not change the total resistance of the tree. Each operation reduces by one the
number of junctions that are not special vertices, so we eventually obtain an x,-tree T* in which every

junction is a special vertex. Moreover, r(T*) = r(T) and (17) is satisfied.
Now construct a u-tree T on the vertex set V as follows. For every v and w in V put the directed

edge (v, w) in 1 if and only if xy is a special predecessor.of x, in T*. By construction, ¢ forms a u-
tree. Let D*y,y be the unique path in T* from xy to X. These paths are edge-disjoint because

every junction is one of the special vertices. Hence
o(T) =1(T*) 2 3¢y yye r FD*yw)-
Property (17) says that i{D*,) 2 1y, for all (v,w) € 1. Hence
z(v,w)ls'l: (D¥yyw) 2 z(v,w)e‘r Tyw -

Since T is a u-tree on V, Xy yyer Tyw 2 p(u). By choice of T, ¥(xy) = r(T). Putting all of this
together we obtain Y(x,,) 2 p(u), as was to be shown. This completes the proof of Lemma 2.

Together, Lemmas 1 and 2 yield the following characterization of the stochastically stable states of the
perturbed process P(g).
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THEOREM 4. Let P(g) be a regular perturbation of P(0) on the state space X, and let X1, . . . , Xy* be
the irreducible recurrent classes of P(0). The stationary distribution of P(€) converges to a stationary
distribution of P(0) as € — 0, and the stochastically stable states are precisely the states contained in
the irreducible classes Xy, that minimize p(v).
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