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Spontaneous emergence of modularity

in cellular networks
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Modularity is known to be one of the most relevant characteristics of biological systems and
appears to be present at multiple scales. Given its adaptive potential, it is often assumed to
be the target of selective pressures. Under such interpretation, selection would be actively
favouring the formation of modular structures, which would specialize in different functions.
Here we show that, within the context of cellular networks, no such a selection pressure is
needed to obtain modularity. Instead, the intrinsic dynamics of network growth by duplication
and diversification is able to generate it for free and explain the statistical features exhibited
by small subgraphs. The implications for the evolution and evolvability of both biological and
technological systems are discussed.
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1. INTRODUCTION

Biological and technological systems both exhibit a
common pattern of modular organization. A mod-
ular system is formed by quasi-independent parts
that are tightly integrated within themselves but also
exhibit a certain degree of interdependency among them
(Schlosser and Wagner, 2004). Modularity is considered
a prerequisite for the adaptation of complex organisms
and their evolvability (Gerhardt and Kirschner, 1997;
Raff, 1996; Calabretta et al., 2000).

Modularity is particularly obvious in cellular net-
works (Ravasz et al., 2002), where it can be detected
at the topological level. These networks include the
webs of interactions among proteins, genes, enzymes
and metabolites or signaling molecules. It has been
argued that modularity is likely to have been selectively
favoured by evolution. In that case, explaining its
origins would require a functional view of biological
networks (Hartwell et al., 1999).

Within the context of network theory (Dorogovt-
sev and Mendes, 2003; Bornholdt and Schuster, 2003;
Boccaletti et al., 2006; Koonin et al. 2006) the given
system is represented as a graph Ω = (V, E) composed
by a set of N nodes (say proteins) V = {vi} and a
set of links eij ∈ E indicating if a connection exists
between nodes vi and vj . An example is shown in
figure 1: the human protein interaction network. Here
we can see a few proteins having a large number of links
(the hubs) surrounded by many proteins having just a
few connections. This type of heterogeneous networks
is very common and is characterized by a probability
distribution P (k) of having a node with k links which
falls off as a power law with a cut-off, i. e.

P (k) ∼ (k + k0)
−γe−k/kc (1)

†Author for correspondence (ricard.sole@upf.edu).

Figure 1. A modular network is here illustrated by means of
the human proteome (data obtained from the DIP database:
http://dip-doe-mbi.ucla.edu). Nodes are proteins and links
indicate their physical (protein-protein) interaction. A stan-
dard algorithm for identifying topological modules has been
used (see text) and effectively detects several well-defined
groups of tightly related proteins. Modules appear indicated
by different colours.

Here k0 is a constant and 2 < γ < 3 denotes the scaling
exponent (typically close to γ ∼ 2.5). The cut-off kc

is a characteristic degree indicating the presence of
a maximum number of links. The hubs tend to have
important roles (Albert et al., 2000) particularly when
looking at regulatory elements such as transcription
factors (Rodriguez-Caso et al., 2005) where the most
connected nodes are often proto-oncogenes or tumor
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Figure 2. Modularity in tinkered model networks. Here we show (a-d) the average number of modules (µ) of networks
generated using the DD model. Here µ is computed on the largest connected component for each δ and averaged over 50
replicas. We used four different α values (indicated inside each plot) and a maximal network size N = 1000. A well defined
maximum is observed at δ∗ ≈ 0.7 in all cases. The network shown in (e) is an example of the modular graphs obtained at δ∗.

supressor genes and their failure typically involves some
proliferative disorder.

At its smallest scale, modules are defined by means
of subgraphs involving three or four elements (Wolf and
Arkin, 2003). These subgraphs have received consider-
able attention in relation with the so-called network
motifs (Milo et al., 2002, 2004). Roughly speaking,
motifs are patterns of interconnections occurring in
complex networks at numbers that are significantly
higher than those in randomized networks. The analysis
of their statistical distribution reveals that each class
of natural and artificial network seems to display a
common patterns of motif abundances. The statistical
pattern is thus interpreted as functionally meaning-
ful. Under this view, motif abundances -as well as
modularity- would be a consequence of selective forces.
Is that the case? Recently, a model for the evolution
of modularity and network motifs has been suggested,
based on a genetic programming approach (Lipson et
al., 2002; Kashtan and Alon, 2005). The model evolves
electronic circuits under an environment that changes
itself in a modular manner. However, the view of net-
work substructures as resulting from pure selection or
optimization has been questioned in a number of studies
(Solé et al., 2002a; Banzhaf and Kuo 2004, Guimerà et
al., 2004; Mazurie et al., 2005; Rice et al., 2005; Valverde
and Solé, 2005; Solé and Valverde, 2006; Kuo et al.,
2006) suggesting that the abundance of motifs does not
necessarily reflect functional advantages.

In this paper we show that an alternative explana-
tion for modularity exists, associated to the inevitable
constraints imposed by the rules driving the growth of
cellular networks. Specifically, since biological entities
typically evolve by tinkering (Jacob, 1977, Solé et
al., 2002a) widely reusing, combining and reconecting
available parts, some patterns of network organization
will be essentially inevitable. As a consequence, a

both subgraph patterns and modular features would be
largely a byproduct of the network generative rules.

2. GROWING NETWORKS BY

DUPLICATION

The approach taken here is inspired by a physics view
of biological complexity (Albert and Barabási, 2002)
namely searching for generic mechanisms responsible for
global patterns. The question being addressed here is
how much of the modular organization of complex net-
works might result from just the rules of network growth
by tinkering. The view here is thus topological, with
no direct link to functional traits. In this context, we
will restrict ourselves to a graph theoretic description
of protein-protein interactions, as previously followed
by several authors (Wuchty, 2001; Solé et al., 2002b,
Vazquez et al., 2003, Pastor-Satorras et al., 2003; Goh
et al., 2005; Colizza et al., 2005; Ispolatov et al., 2005;
Foster et al., 2006). These models involve some type
of duplication-divergence (DD) growth dynamics. This
approach considers single-gene duplication events as the
leading mechanism of genome growth. This is of course
an approximation to the real complexities associated to
genome growth dynamics. Although single gene dupli-
cation is considered to be the driving force behind the
evolution of complex organisms (Wagner, 2001) several
scales of duplication need to be considered, including
whole-genome duplications (Maere et al., 2005).

After gene duplication has taken place, rapid diver-
gence occurs and many redundant genes become
silenced (i. e. become pseudogenes). Changes in wiring
are associated to the emergence of novelty and new
functionalities (Patthy, 1999). In our work presented
here we only consider such simple approximation based
on single-gene events. We will use one of the simplest
DD models of protein network evolution (Vazquez et
al., 2003) which involves the following set of rules, to
be applied a given number of times, until N nodes are
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present. Asuming that we have a graph of size n, we
iterate the following rules:

1. Duplication: choose a node vi ∈ V at random and
duplicate it, thus generating a new node vn+1.

2. Link deletion: the new node shares a set of neigh-
boring nodes {vj} with its predecessor. For each
common pair of common links, i., e. ei,j and en+1,j

we choose one of them and delete it with proba-
bility δ. This rule thus removes (probabilistically)
redundant relations among proteins.

3. Link addition: a link is added among nodes vi and
vn+1 with probability α. This is a small number
and allows new functionalitiues to emerge by link-
ing the twin proteins.

This model has been solved analytically and it has
been shown that it exhibits a phase transition at a
given deletion rate. This can be shown by constructing
a dynamical equation for the average degree Kn of
the simulated protein network after n nodes have been
introduced. It can be shown that Kn evolves following
the discrete system (Vazquez et al., 2003):

Kn+1 =
nKn + 2α + (1 − 2δ)Kn

n + 1
(2)

where we can see that the number of proteins n is also a
time scale. Using the continuous approximation Kn+1 −
Kn ∼ dKn/dn and assuming that n is large, we have a
differential equation

dKn

dn
=

2α

n
+

1 − 2δ

n
Kn (3)

By solving it, we obtain the time evolution of the
average degree:

Kn =
2α

2δ − 1
+

(

K1 −
2α

2δ − 1

)

n1−2δ (4)

It is easy to check that a steady degree K∗ is achieved
for δ > δc = 1/2, namely:

K∗ = lim
n→∞

Kn =
2α

2δ − 1
(5)

whereas for δ < δc link removal is too slow and the
average connectivity is high. There is thus a critical
deletion rate δc = 1/2 separating a strongly connected
proteome from a sparse one (which would also include
many small subgraphs). Since real protein maps are
known to be rather sparse (with average connectivities
around 〈k〉 ∼ 3 − 5) we should expect to find appro-
priate removal rates at values δ > δc. Actually, it has
been shown (Vazquez et al. 2003) that for α = 0.1 and
δ = 0.7 the model is consistent with several properties
observed in the Yeast proteome (such as scale free
topology, small world behavior, graph correlations and
robustness against node deletion). By using appropriate
measures, we will show that both modules and non-
random distributions of subgraphs are an expected
byproduct of network growth by duplication.

3. MODULARITY FROM TINKERING

3.1. Modules

We will first analyse the emergence of modular patterns
in the previously described model. In order to provide a
quantitative measure, we will use a specific algorithm‡

of community detection (Clauset et al., 2006; see also
Newman, 2006). The method considers a decomposition
of the graph Ω (figure 2) into a set Γµ of subgraphs
Ci ∈ Γµ defining a partition C. Obviously, many possible
Cr-partitions are possible. Using the adjacency matrix
of the graph, A = (aij), and assuming a given partition,
the fraction of edges that fall within subsets of C will
be given by:

f(C) =

∑

i,j aijδ(Ci, Cj)
∑

i,j aij
(6)

where δ(a, b) = 1 if a = b and zero otherwise. Using m =
∑

ij aij/2 we can also write:

f(C) =
1

2m

∑

i,j

aijδ(Ci, Cj) (7)

In order to define an appropriate modularity index,
the previous measure needs to be compared with the
expectation from a randomly wired graph with identical
number of nodes and links. Let us indicate as ki the
degree of vi, which is obtained from the adjacency
matrix as: ki =

∑

j aij .
The expected probability of having a link connecting

two arbitrary nodes vi and vj will be simply kikj/2m
and thus we can defined modularity Q in terms of
the average difference between the observed and the
expected value of f , namely

Q =
1

2m

∑

i,j

[

aij −
kikj

2m

]

δ(Ci, Cj) (8)

which is properly normalized between zero (random
network) and one (a single module is present).

The modularity of a network will be defined as
the maximum Q = max{Q} as evaluated by the search
algorithm (Clauset et al., 2006). The size of the best
partition µ defines the (potential) number of modules.
Here we apply this measure to the largest connected
component of the network generated by the algorithm
described in section 2. For each δ, and a fixed α value,
we generate 50 simulated networks, each one starting
from a small graph of four fully-connected elements and
ending once a graph with N = 103 nodes is obtained.
Four different values of α have been used. The results
are shown in figure 2, where a one-hump curve µ(δ) is
obtained in all four cases. A maximum is reached for
δ∗ ≈ 0.7 which is actually the deletion rate that gave
best fit statistics compared with yeast proteome data
(Vazquez et al., 2003).

The origins of the maximum can be understood in
terms of two basic, conflicting components associated
to the growth rules. At low δ values, the system is

‡All these approaches are heuristics. It has been shown that
modularity maximization is a NP complete problem (Brandes et
al., 2006) and thus there is in general no optimal partition
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Figure 3. (a) Subgraph census for three different protein networks: human interactome (HI, filled triangles), yeast proteome
(YP, filled circles) and the subset of human transcription factors (HTF, open squares). The exponential fit for r ≥ 2 gives:
ηHI = 1.81 ± 0.20, ηY P = 1.79 ± 0.21 and ηHTF = 1.58 ± 0.21. In (b) the corresponding graph census is shown from runs of
the DD model, averaged over 50 replicas. The exponent here is ηDD = 1.71 ± 0.20. The data for the protein networks was
gathered from the DIP database: http://dip-doe-mbi.ucla.edu and from (Rodriguez-Caso et al., 2005). In (c) some examples
of the transitions between different subgrahs (using DD rules) are shown.

highly connected, being all nodes members of the giant
component and having a large degree. As a consequence,
we should not expect to observe a large number of
modules. On the other hand, as δ increases, the network
becomes more and more sparse and for δ > δc it starts to
get fragmented. The largest component in this domain
will be formed by highly heterogeneous groups of loosely
linked subgraphs. Close to the transition δc many
elements belong to the largest connected component,
but the number of modules is not large since they share
many links. With increasing δ it is more likely to find
groups of connected nodes that still share few links. But
further increasing δ implies breaking of Ω into many
small subgraphs which will display a low modularity.

3.2. Subgraph census

A second level of analysis can be performed by consid-
ering the frequency of subgraphs of a given size, also
known as subgraph census (see Wasserman and Faust,
1994 and references therein). Here we have studied the
census of n = 4 subgraphs, since it provides a reason-
able number of different structures. More importantly,
most examples whose functional relevance have been
described in detail fall within this class (Milo et al.,
2002, 2004; Valverde and Solé, 2005).

The results are shown in figure 3, where we can
compare the observed patterns of subgraph abundances
in real (a) and simulated (b) networks, respectively. For
the real datasets, we have used the human interactome,
the subset of transcription factors and the yeast pro-
teome. The plots display the percent of subgraphs found
in each network against the subgraph rank r. After a
plateau, the frequency of subgraphs rapidly decays as
an exponential function, i. e.

N(r) ∼ e−ηr (9)

with η ≈ 1.8. Such pattern is also found in the dis-
tribution of subgraphs obtained from the DD model.
Using the δ∗ value that gives the maximum number

of modules we also obtain an exponential decay, with
ηDD = 1.71 ± 0.20, consistently with the real datasets.

The common pattern shared by both real and simu-
lated graphs is consistent with a rule-driven mechanism
of network evolution. In this context, it is interesting
to see that the different subgraphs are easily connected
through DD events (figure 3c).

4. DISCUSSION

What drives the emergence of modularity in evolu-
tion? Is it a function-driven mechanism or instead the
byproduct of more fundamental, dynamical rules, as
it has been suggested in other contexts? (Kauffman,
1993). Although it is true that modularity is an essential
feature of biological structures, our analysis suggests
that it might be a byproduct of the multiplicative
nature of duplication-rewiring mechanisms. Such a tin-
kering process (Jacob, 1976; Solé et al., 2002) inevitably
leads to fluctuations in network structure due to its
multiplicative nature: the rich gets richer and the
graph will be organized around hubs. Moreover, the
local amplification of subgraph abundances obtained
from the DD process is also responsible for the decay
observed in N(r).

The presence of an optimal level of modularity at
a given δ value is an important result of our study
with potential implications to evolution by selection,
at least at some levels. Selection might have been
present at the level of link deletion. By removing the
right amount of links, a large connected graph can be
obtained, which will be both heterogeneous (and thus
robust against random node deletion) and modular. In
this context, although our results do not rule out the
role of selection and functional adaptation in explaining
modularity, they suggest that strong constraints are
imposed by the rules of network growth. Thus topo-
logical patterns (including heterogeneity and modular
organization) would be an emergent property of evo-
lutionary tinkering. Evolvability might have strongly
benefited from such features, since heterogeneity and
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modularity immediately favour robustness and special-
ization, respectively. Further work should explore how
these results can be extended to a more detailed level
of description of network evolution.
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