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Abstract

We consider the problem of financing two productive sectors in
an economy through bank loans, when the sectors may experience in-
dependent demands for money but when it is desirable for each to
maintain an independently determined sequence of prices. An ideal-
ized central bank is compared with a collection of commercial banks
that generate profits from interest rate spreads and flow those through
to a collection of consumer/owners who are also one group of borrow-
ers and lenders in the private economy. We model the private economy
as one in which both production functions and consumption prefer-
ences for the two goods are independent, and in which one production
process expereinces a shock in the demand for money arising from an
opportunity for risky innovation of its production function. An ide-
alized, profitless central bank can decouple the sectors, but for-profit
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commercial banks inherently propagate shocks in money demand in
one sector into price shocks with a tail of distorted prices in the other
sector. The connection of profits with efficiency-reducing propagation
of shocks is mechanical in character, in that it does not depend on
the particular way profits are used strategically within the banking
system. In application, the tension between profits and reserve re-
quirements is essential to enabling but also controlling the distributed
perception and evaluation services provided by commercial banks. We
regard the inefficiency inherent in the profit system as a source of costs
that are paid for distributed perception and control in economies.
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1 Preamble

The problems of decoupling scale and structure in plumbing: Con-
sider a problem faced by designers of plumbing for hotels. Trunk lines supply
hot and cold water to many taps in many guest rooms. Sinks, showers, and
toilets draw water from the trunks in uncoordinated and unpredictable ways.
The water flow demanded from a trunk is a variable that aggregates across
users who tap the trunk, the scale of which is subjected to ongoing shocks in
the course of normal usage. Water also has pressure, and the relative pres-
sure in hot and cold lines allows the guest taking a shower to set the desired
temperature by adjusting two valves. Pressure might be called a “structural”
feature of the plumbing system. In good circumstances – which even in crude
plumbing systems may be approached under conditions of constant demand
– the pressure across the trunk is stable over time and may even be constant
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across taps.1 Stability both in space and in time are essential to the system’s
providing its key services.

However, under shocks to the scale of flow, in a plumbing system with-
out well-designed reservoirs of pressure, scale shocks create pressure shocks.
Showering in hotels a generation or two ago offered a well-known adven-
ture: a guest somewhere would flush a toilet, and the patron in the shower
would briefly scald and then freeze. This sequence might repeate dozens of
times in the course of a single shower in a large hotel on a busy morning.
Plumbing designed with inadequate technology fails to buffer scale shocks in
demand from propagating into the structure variables of the water flow: the
time-dependent sequence of pressure values at all the valves.

Scale and structure problems in money supply and prices: A math-
ematically analogous problem arises in economies. Multiple sectors demand
funds for ongoing business and to cope with cycles, take risks, and respond
to their unknown outcomes and other surprises. Many of these are uncoor-
dinated and unpredictable demand shocks to the money supply, which is a
scale variable of the economy. The price system in an economy is a struc-
tural property dual to its money supply [1]. Prices across sectors, or across
time within a sector, need not be constant, but in a well-functioning economy
they should reflect a consistent response to agents’ marginal utilities or other
relevant measures of valuation. In particular, it may be a design objective
for a banking system that prices in a sector not be subject to ongoing rip-
ples or other disturbances that arise purely through financial frictions, due
to demand shocks for money in other sectors. Governments and bankers face
problems of system design of a purely mechanistic nature – meaning that
they apply in a wide range of strategic contexts – analogous to the problems
faced by plumbing engineers who deliver a different quantity (water) also
subject to inertia and friction and by its nature not compressible.

Innovation as a source of shocks that require economics beyond
General Equilibrium

A pair of articles by Shubik and Sudderth [2, 3] considers innovation as
a process that creates demand shocks through the problem recognized by

1This is true for taps at the same elevation; we leave aside corrections for gravity which
are not central to the point of this illustration.
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Schumpeter [4], of “breaking the circular flow of funds”. The financial design
problems that arise from contexts with innovation are inherently dynamical.
They offer perhaps the most direct widespread class of economic phenomena
that require a robust theory falling essentially outside the General Equilib-
rium paradigm.

In this paper we use the cost innovation model of Shubik and Sudderth as
a testbed to study the banker’s problem of decoupling sectors in an economy.
Under idealized theoretical conditions, a model banking system can both
function as a strategic dummy and also decouple production and consump-
tion sectors if they are not otherwise coupled through substitution effects.
However, actual banking systems do not operate under idealized theoretical
conditions. They face uncertainty throughout the economy, and they require
distributed and scalable services of perception and evaluation. The limited
monolithic structure of a central bank that is easily modeled in theory, is
replaced in operation with an ecology of one or more central banks and a
collection of competitive commercial banks operating in the private sector
and responsive to its fluctuating demands for service and its geographic and
demographic distribution [5].

The policy tools used to grant commercial banks the independence they
require to fulfill their functions, while still controlling the quality of risk in
their portfolios, include reserve requirements (set reserve ratios and possibly
also minimum reserve quantities) and profits which guide the banks’ strategic
actions and provide a layer of abstraction between the commercial banks op-
erational decisions and their owners’ preferences. Profits create an incentive
to make bank money available, while reserve requirements control its scarcity.
The design problem is to balance the forces of incentive and constraint to
achieve policy objectives for the banking system as a whole.

Shubik and Sudderth consider the general problem of control in strategic
reserve banking. Here we do not address that higher-level problem, but in-
stead consider the pre-strategic (more purely mechanical) question of whether
the existence of profits creates inherent limits in the extent to which banking
systems can decouple demands for money from propagation of price shocks.
We consider an explicitly time-dependent economy with many periods of
production and consumption, in which stability of the price system within a
sector is essential to planning an optimal program of output and distribution.
We consider only 100% reserve banking, so that profits of commercial banks
arise only through the opening of interest rate spreads between the rates on
loans and on deposits.
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The paper compares the interface that a simple central bank could present
to an economy if there were no need for perception and control, with the
interface that a comparable for-profit commercial bank presents. In cases
where the central bank can decouple sectors, we find that the introduction of
interest rate spreads, which are needed to create a profit motive, inherently
cross-couples sector prices.2 In the comparison, all interest rates are treated
as parameters (rather than strategic variables), so this is a purely mechanistic
effect, holding independent of the strategic context to which profits might
be put in more elaborate models that seek to capture larger-scale regulatory
dynamics.

Stock and flow distinctions as a further measure of cross-sector
propagation of disturbances

We use a continuous-time analogue of the discrete period innovation model of
Shubik and Sudderth [2, 3] because scaling analysis on the approach to this
limit makes precise the distinction between stocks and flows. Stocks include
outstanding (revolving) loan levels and inputs to production, while flows
include streams of interest payment, velocity of money, and consumption
rates of goods. We show below that in an idealized economy where money
demands and prices are buffered between systems, the inter-sector loan levels
within the economy, and the overall money supply and its exchange with the
banks, are also distinguished in their scaling behavior. Inter-sector loans scale
as stocks that remain finite in the continuous-time limit, while total money
supply and net private-sector credits or debts on which interest payments
change the money supply, go to zero in the continuous-time limit as the
velocity of money (a flow variable) becomes the regular property of that
limit.

The introduction of profits that couples cross-sector production decisions
also couples inter-sector and aggregate debt levels, breaking their indepen-
dent scaling behavior in the idealized efficient economy. Thus profits that
couple scale shocks to structure shocks do so in several dimensions.

2The coupling is in linear proportion to the spread at sufficiently small spreads.
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2 Innovation, chance, growth, cycle and the

money supply

2.1 Efficiency, arbitrage and equilibrium

The no arbitrage and the efficiency conditions do not coincide with incom-
plete markets, but the property of no arbitrage can still be defined and re-
flects the individualistic behavior property of the noncooperative equilibrium.
Once we give up the comforting fiction of complete markets we still have the
definition of Pareto Optimality as an ideal and a clean picture of efficiency;
but we have no individualistic solution that guarantees its attainment. A wel-
ter of theoretical problems appear in the construction of indices to measure
efficiency with incomplete markets. It is well known that one can construct
comparative measures between two mechanisms and possibly decide that one
is more efficient than the other over a given parametric range. There is also
the important empirical problem of trying to measure just how inefficient is
a market structure with incomplete markets when compared with the same
structure with complete markets.

If we accept the position that any market mechanism requires resources
to operate it, then even Pareto optimality is challenged.

2.2 No arbitrage and varying the money supply

If prices in a monetary economy are to be consistent with competitive mar-
kets3 there are several scenarios that call for the variation of the money
supply. They are exogenous uncertainty, strategic uncertainty, the presence
of growth and cycles in the economy. All call for a flexible money supply
if cash flow constraints are to be avoided. Possibly the most interesting
scenario involves innovation where the financing of the risk involved in in-
novation calls for a flexible money supply. We use this as the context for
much of the investigation below. We note that the ability to vary the money
supply confers considerable economic power on the agent able to do so.

We address specifically cost innovation and the breaking of the circular
flow of funds.

3An added condition is that prices are stationary when the real goods distribution is
stationary. This raises further complications involving incentives and information condi-
tions in an economy where all laws are not indexed against inflation or deflation. This
problem is not considered further here.
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2.3 A closed economy with producers, consumers, com-
mercial and investment banks and a central bank

We preface our mathematical analysis with a verbal discussion of both the
modeling problems, simplifications and basic questions.

The minimal number of agent types we need to illustrate a mechanism
that varies the money supply is three. They are an aggregate set of con-
sumers; producers and a central bank.

The consumer/stockholder/passive saver is the one set of natural legal
persons required. The others are corporate legal persons all owned by the
“natural persons”. They are the firms, and possibly a collection of commer-
cial banks.

The central bank differs from the other legal persons as being part of
government. We first describe the central bank.

2.3.1 The central bank

The central bank’s powers may be modeled in many ways. The simplest is
as a strategic dummy endowed with the ability to accept deposits or to make
loans with unlimited issue of the only legal money in the system. A formal
game can be defined if either the central bank sets interest rates at which
it will lend or pay on deposits, or it sets a limit on the amount of money it
offers in net supply.

• In virtually all of the existing national monetary systems, not only do
central banks exist, but so do commercial banks. This raises the ques-
tion: Why do commercial banks exist, if the central bank can vary the
money supply by itself? As Bagehot noted [5] the commercial banks
(and bill jobbers) perform as perceptors and evaluators of the state
of business and the need for credit over the whole space of a nation.
The Soviet Union did not utilize a commercial banking system inter-
nally. It utilized bureaucratically run branches. We do not consider
their perception functions here; but observe that we may formulate the
construction of a four agent model where there are consumers, produc-
ers, the central bank and commercial banks where the central bank has
delegated much of the variation of the money supply to the commer-
cial, for-profit banks. With this structure several questions must be
answered:

9



• Can the commercial banking system be competitive?

• If so, in what dimensions do they compete?

• Can they be designed to transmit fully the policy of the central bank?

• Do reserve requirements play a role?

• What are the permitted strategies of the commercial banks?

• How are the banks’ profits defined?

In our belief in the virtue of separating out problems we limit our analsysis
here to the influence of the commercial banks on shock transmission.

3 The flexibility of commercial banks

In an enterprise economy the central bank may delegate the detailed adjust-
ments of the money supply to a commercial banking system. The problems
of economic coordination need to be resolved. The particular instruments
and rules of this delegation, require a set of minimal models to demonstrate
this systematically. For simplicity, to begin with, we consider the commercial
banking system as a strategic dummy designed to provide a flexible money
supply for an economy with variable monetary needs.

4 Preliminaries

“The doorkeeper laughs and says: ‘If you are so drawn to it, just
try to go in despite my veto. But take note: I am powerful. And
I am only the least of the door-keepers. From hall to hall there is
one doorkeeper after another, each more powerful than the last.
The third doorkeeper is already so terrible that even I cannot
bear to look at him.’ ”

– Franz Kafka, Before the Law

Above we have presented a brief verbal sketch of why one may need a
flexible money supply. We now provide a formal model to achieve this goal.
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What might appear to be relatively simple mechanisms require computa-
tion or simulation of specific examples in order to illustrate even behaviorally
simplistic economics.

We offer a quote from Kafka that we deem apposite in dealing with eco-
nomic models where the equations of motion can be tightly defined over the
whole state space.

The task of abstracting the reason why a variable money supply is needed,
and the construction of the minimal institutions that fill that need, is to ac-
knowledge the diversity of instantiations both have taken historically. The
rise of fractional reserve banking in London in the last half of the 19th cen-
tury, and the real bills doctrine in a range of conceptions from Jean-Baptiste
Say to Adam Smith, were formulations of parts of this problem. Contempo-
rary discussions of the feasibility (and consequences) of control of the money
supply through interest rates versus open-market operations, and of desirable
reserve levels for banks, are different mechanistically but should be under-
stood as addressing the same fundamental questions in an age where money
and credit diversity are much larger than they were in the age of Smith.

5 Varying the money supply with credit

5.1 Sources of need for a flexible money supply

The different needs for a flexible money supply can be captured in formal
models in a variety of ways. Often one-period models suffice to illustrate
limitations in the quantity or distribution of money. In these cases, the
difference between efficient and inefficient function of the financial system
may be defined in terms of the alternative between interior and boundary
solutions.

5.2 Separating scale from structure

We abstract the need for a variable money supply as a need to separate

scale from structure in production and exchange economies. All societies un-
dergo variations in the desired volumes of trade. These may be cyclical as in
harvest seasonalities, episodic driven by good or bad harvests, immigration
and emigration, innovation, etc., or progressive driven by growth or decline
of population or productivity. All these variations in the capacity for pro-
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duction and consumption, which drive variations in the desirable volume of
trade, we regard as scale fluctuations. A well-functioning economy also must
converge on a range of price systems, both inter-sectorial and inter-temporal,
including interest rates for money loans. These we regard as properties of
the structure characterizing equilibria or near-equilibria. The stability of
these price systems and the extent to which they can approximate reserva-
tion prices of agents determine the efficiency of the economy in extracting
surplus, and are essential to any program of rational planning.

In its most basic abstraction, the goal of monetary policy is to accom-
modate the needs for scale fluctuations in an economy, without causing scale
shocks to propagate to cause disruptions of structure where such propaga-

tion can be avoided by monetary design or regulation. Obviously, many scale
shocks inherently result in shocks to prices, production, or consumption, as
when innovations in substitute goods change which consumption bundles are
preferred. We regard as “avoidable” propagations those that result entirely
from limits on the volume and distribution of money, across sectors in which
production technologies or consumption preferences are not inherently cou-
pled.4 Informally, a money supply that is too “rigid” or “incompressible”,
such as a fixed stock of gold in circulation, will generically propagate shocks
in the production or consumption volume in any sector into ripples of price
change across all sectors and through time, until money can be redistributed
to approximate a new equilibrium for the circular flow. Alleviating this rigid-
ity is a goal of varying the money supply that can be recognized in a variety
of monetary mechanisms across societies and in different eras.

An important and general hazard and technical challenge for institutions
that provide a variable money supply is ensuring consistency in the quality of
credit and the pricing of risk. These are essential to the stability particularly
of intertemporal price systems. The problem of credit risk evaluation is not
easily centralized, and is a primary driver to grant the status of legal tender
to privately created bank credit. The Real Bills Doctrine of Adam Smith
may be understood as an early mechanism to permit open-ended variability
in bank credit while providing criteria for credit quality that could be used
by banks evaluating a range of distinct contracts. Reserve levels in modern
central banking and commercial banking systems are another mechanism
that attempts to regulate credit quality implicitly through lending prices

4This abstraction is easy to define in models. Validating the abstraction for actual
economies may be more or less difficult depending on the sectors considered.
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and leverage.

5.3 A class of minimal models

As in previous work comparing the functionality of alternative money sys-
tems [6, 7], we construct a single underlying model of production, consump-
tion, and trade, which creates a template for a family of strategic market
games (differing in their financial system models) for which explicit non-
cooperative equilibria can be computed. A formal specification of the models
is given below; here we give a brief summary in order to explain the main
purpose of the construction. Two kinds of storable goods define two pro-
duction sectors. Production in each sector occurs by a simple intput/output
function, which converts an initial stock of the good into more of the same
good at a rate that depends on the size of the working stock.5 Working stocks
are ideally storable, though they can be wasted (so that the constraint on the
quantity of goods available is an inequality rather than an equality). Each
good is also consumable. In solutions without waste, goods persist from the
time they are produced until the time they are consumed.

Production within each sector is performed by competing firms which
are jointly owned by individuals who are also consumers of the produced
goods. Production, trade, and consumption all occur in a sequence of many
simply-structured, equivalent periods, and the establishment of a circular
flow is a feature of time-stationary non-cooperative equilibria that balance
output rates by the firms against marginal utilities of consumption by the
consumer/owners.

Innovation is modeled as the possibility for one group of firms to attempt
to change the production function in a single (particular) period, at the cost
of one-time consumption of a fraction of their working stock. The attempted
change succeeds with a probability ξ < 1. Although the cost of production
is reduced and the limiting output rate is raised for firms that successfully
innovate, the initially-reduced working stock cuts their output rates until that
stock can be rebuilt from the output, which may require many periods. Firms
that attempt to innovate and fail suffer the stock reduction but retain the
pre-innovation production function. The problem of whether innovation is

5Our models resemble the von Neumann growth model, restricted to a single good.
However, in our production function the rate of output is a non-linear rather than a linear
function of the input stock.
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desirable can be posed in either of the two goods-sectors independently,6 and
the general structure of solutions for the depletion and subsequent restoration
of productive stocks serves as a reference for these sectors in a monetary
economy.

The specific feature of this real-goods economy that allows us to measure
effiency of money and banking systems is that only one good undergoes the
opportunity for innovation. The other good has time-stationary production
and consumption parameters, which we choose to be separable. Therefore it
has no intrinsic reason to be influenced by innovation in other sectors. We
demonstrate, however, that buffering the two sectors in the economy becomes
difficult if models are not permitted an unrealistic degree of fine-tuning, and
this is a basis of the need for substructure within the banking sector.

5.3.1 Many-period models, and the passage to continuous-time
limits

The Bellman equations for many-period strategic market game models, in
which the non-cooperative equilibria are non-stationary, are generally diffi-
cult to solve if the periods cover non-infinitesimal quantities of goods pro-
duced, traded, and consumed (that is, if they correspond to non-infinitesimal
intervals of real time).7 Some of these difficulties diminish if we take model
periods to correspond to infinitesimal time periods, and scale production,
trade, and consumption to be infinitesimal accordingly. We will refer to this
scaling limit as the continuous time (or “continuum”) limit for a many-period

6We do not digress to derive the solution for Robinson Crusoe here, because its im-
portant features are subsumed in the solutions we demonstrate. A more systematic in-
troduction to this class of models, including a separate solution for Robinson Crusoe as a
reference, will be given elsewhere.
There are essentially three levels of models that require consideration for a complete

exposition of basic distinctions. They are

• Crusoe without money,

• the price-taking individual firm with money,

• the oligopolistic firm without money.

The first two should produce the same physical allocations but differ in the presence or
absence of money.

7The source of the simplification is that difference equations and discrete series reduce
to differential equations and integrals, though the structure and meaning of the Bellman
equations remains unchanged.
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strategic market game.
Singular events, such as the choice to innovate a firm’s production func-

tion and the required consumption of stocks, remain events that occur within
a single period, so in the continuum limit they become singular, but this cre-
ates no difficulties as long as the continuum is defined as a limit of discrete-
period models.

5.3.2 Continuous time defined through equivalance classes

Formally, we treat economic processes that occur in continuous time as pro-
cesses that may be modeled with any of a sequence of discrete-time models,
with time intervals ∆t that go to zero along the sequence. One performs
calculations in discrete time so that definitions of moves in the game are
unambiguous, but then requires that all economically relevant structure in
the solution does not depend on ∆t. More formally: the continuous-time
limit is defined if there is a scaling of the other quantities in the model with
∆t for which observables evaluated at two different times t1 and t2, which
are held fixed as ∆t is varied, converge on finite limiting values as ∆t → 0.
Therefore a continuous-time limit is associated with an equivalence class of
discrete-time models.

The formalization of continuous time in terms of scaling and limits pro-
vides a systematic way to partition stocks from flows. Within any single
discrete-time model, all quantities may be represented as stocks within pe-
riods or changes of stocks between periods. When an equivalence relation
over ∆t is introduced, those changes in stocks that are to be interpreted
as flows are required to vanish in linear proportion to ∆t. The constant of
proportionality in this scaling relation – the rate of the flow – is held fixed
and is one of the parameters that defines the equivalence class. By such
scaling relations, in continuous-time models, stocks, flows, and shocks are
distinguished mathematically as well as descriptively.

5.3.3 The economic meaning of continuous-time limits: how many
timescales represent economically significant commitments
of a model?

It is possible to take a more conceptual view of continuous-time limits than
merely technical tricks that simplify Bellman equations. In conventional
discrete-period models, the period length is a dynamically important time

15



interval in the model. It interacts with other model features such as non-
linear production functions or utilities, and this interaction is one source of
complexity in Bellman equations. In a continuous-time limit, since stocks
and flow converge on regular limits as ∆t → 0, the period length ceases
to be a model property that influences economic dynamics. For problems
such as shock and recovery in production, consumption, and the circular
flow of funds, the natural timescales of economic dynamics are determined
by production functions, utilities, and interest rates, and only by these model
properties.

5.3.4 The use of continuum limits to separate dimensions of eco-
nomic dynamics

It is not necessary to use continuous-time limits only at the limit point ∆t →
0. The existence of a well-defined and regular limit ensures that solutions to
discrete-period models at small but nonzero ∆t also exist and that they are
approximated (to various orders in ∆t) by properties of the limiting solution.
For many applications it is useful to approximate these short-period solutions
in terms of the structural parameters at the limit point.

The most important pair of economic quantities in short-period models
are the money supply and the money velocity. In the continuous-time limit,
with production and consumption per period scaled in linear proportion to
∆t, solutions with stable prices also have regular continuum limits for the
velocity of money, and solutions for the money supply that scale as ∆t times
this velocity (by definition of the velocity of money).

When banks are introduced that can both inject or extract money in
circulation, and also mediate loans between agents, the two quantities will
generally scale differently. Changes in the money supply, in efficient or nearly-
efficient solutions, scale as O(∆t), like the original money supply. Interest
streams between agents in steady circular flows are rates, which thus ap-
proach regular limits as ∆t → 0. Hence any inter-agent balances at the
bank likewise scale as O(1); that is: the debts accumulated between agents
at the bank can become arbitrarily larger than the money in circulation, in
efficient solutions.

A second way in which a money system can be inefficient is that it can
couple inter-agent lending to changes in the whole-economy money supply.
If such a coupling arises, it creates a severe instability. A drain of O(1) can
deplete the money in circulation in a time of O(∆t). Conversely, an addition
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of money at O(1) can lead to prices that grow to O(1/∆t). The continuum
limit therefore offers ways to test the monetary system’s capacity to buffer
quantities with different natural dependence on turnover time, as well as
different sectors.

5.3.5 Relation of consumer/owners to firms and banks

The models provide a minimum level of distinction sufficient to define eco-
nomic sectors for goods production, and centralized versus distributed bank-
ing activities. In order to make all strategic actors price-takers, each type is
modeled on a continuum. In order to minimize strategic complexity in the
relation of ownership to control, with respect to the risk of failed innova-
tion, we distribute ownership through uniformly-distributed shares of firms
or banks. We do, however, retain a distinction between owners of firms of the
two types, so that the economy creates income consequences from innovation,
which bear on the role the banks play.

The specific structure of firms, consumer/owners, and banks is:

Firms: The economy has two goods, and we index production or consump-
tion associated with these with subscripts i ∈ {1, 2}. For each of the two
goods, a continuum of firms exist, which we index with a coordinate in the
continuous interval [0, 1]. (We will not denote this index explicitly to reduce
notational clutter; any production function, consumption utility, working
stock, etc., with subscript i ∈ {1, 2} implicitly refers to a particular firm or
individual.)

Consumer/owners: Each type of good is also associated with a group of
consumer/owners, also indexed with a coordinate in the continuous interval
[0, 1]. All owners of a given type own equal shares of all firms of that type,
and no shares of firms of the other type. Share ownership determines how
firms deliver profits to owners, and in the case of firms that can engage in
risky innovation, uniform share distribution leads to the same decision (to
innovate or not to innovate) for all firms of the same type, and distributes
the profit risk over all owners of that type.

The central bank: In economies with a central bank, the central bank is
an atomic actor and a strategic dummy. It is not owned by any agents in the
economy, and does not define or deliver profits. Its function is both to define
the rules of monetary function, and to control the injection or extraction of
money (either directly, or through commercial banks).
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Commercial banks: In economies with a commercial banking sector, a
single kind of commercial bank exists. Commercial banks are in some cases
modeled as strategic dummies acting according to fixed rules, but the pur-
pose for which they are introduced ultimately requires that they be strategic
profit-maximizers, so that the profit incentive in a context of regulatory con-
straint guides their function within the economy. Therefore from the start we
introduce commercial banks (in the cases where they occur) as a continuum
of competitive corporations, again indexed with a coordinate in the contin-
uous interval [0, 1]. All consumer/owners (so, the owners of both types of
firms) jointly own the commercial banks. Again each owner owns a uniform
distribution of shares of all banks, so that each bank’s profits are distributed
uniformly among all owners.

5.3.6 The different models to be considered

1. Fixed money supply: The minimal solution in the absence of bank-
ing assumes a fixed supply of money in circulation, without reserves.
The money could be gold or government fiat. Its fixed supply causes the
shock from innovation in one good to strongly impact prices and output
levels in the other good. The non-cooperative equilibrium in this game
is an inefficient outcome corresponding to the pre-institutional (with
respect to banking) economy.

2. An idealized central bank: If the economy does not require dis-
tributed commercial banking, a benevolent central bank can vary the
money supply and mediate borrowing and lending among agents in-
ternal to the economy without interest rate spreads or leveraging. We
show that this solution, with finely tuned parameters, can perfectly de-
couple the two goods sectors, so that the shock from innovation in one
sector does not affect output in the other. This outcome defines the ef-
ficient function of the monetary system, and shows that it is achievable
in a constructive solution. The buffering of the two production sectors
is possible despite the fact that agents of different types experience
relative wealth variations, so their consumption of goods is altered by
innovation.

3. Commercial banks with interest rate spreads and 100% re-
serves: In a first step toward defining a profit-seeking commercial
banking sector, we introduce commercial banks that borrow “fiat money”
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from the central bank, and are permitted to issue bank credit to con-
sumers in 1:1 ratio8 to their holdings of fiat. The commercial banks
can still enable steady-state production outcomes with many of the
scaling properties of the efficient solution, if interest rates are finely
tuned. However, they necessarily transmit shocks from the innovated
to the non-innovated good, in proportion to the size of the interest rate
spread.

We formalize this model as though the central bank has set the spread
parametrically thereby reducing the commercial banks to strategic dum-
mies. We suggest that it is the unmodeled evaluation function followed
by the decision to lend or not to lend where important competition
enters into banking.

5.4 Formal definition: the production and consump-
tion problem

This section defines the scaling relations for production and for utility of con-
sumption, in which rates of production and consumption give the invariant
functional relations.

All discrete-period games, from which the continuum limit is defined,
consist of a long sequence of periods with a time index t. The index is incre-
mented by ∆t, and the maximal value taken by t is some number T , which
is the last period of the game. (We will return below to the way this period
is selected, in order to address problems of robustness and interpretation
of terminal conditions.) The period in which innovation occurs is indexed
t = 0. Dynamically equivalent games can be defined either by initiating the
sequence of periods at some time t = tinit ≪ 0, and allowing the economy
to converge to a steady state by t = 0 (because the dynamics to be defined
below does produce such convergence, as we will demonstrate), or we could
take the starting period as t = 0. For simplicity we will use t = 0 as the
initial period, and as initial conditions we will provide firms with working
stocks of goods, and agents with quantities of money in hand, which equal
the fixed-point values with pre-innovation production functions.

8We could intrduce a k:1 gearing ratio here with a little extra work, but our illustration
does not need it.
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5.4.1 Production functions in continuous time, and a sell-surplus
market for goods

In order to associate a quantity of goods production with intervals of real
time [t1, t2], across a class of models which may have variable period length
∆t, it is necessary to separate well-defined stock variables from well-defined
flow variables. For any firm, we use a variable st (with further indices as
needed to specify the firm’s type, introduced in the next sub-section) to
denote the firm’s working stock at the beginning of the period indexed t.
The firm’s output is characterized fundamentally by a rate of production,
which depends on the working stock, which we denote by f(st) (with other
indices as required to distinguish types). In discrete-period models with
period length ∆t, the amount of the good produced within a single period
is therefore f(st)∆t. We take the incremental increase of goods through
production to happen at the beginning of the period, following which firms
may sell some of the goods, to be purchased and consumed by consumers
within the same period.

Each firm chooses a quantity qt∆t of goods to offer at a buy-sell trading
post [8], in which consumers bid money to purchase the good. This quantity is
a strategic variable, and can be varied over the range qt∆t ∈ [0, st + f(st)∆t].
However, we denote it with the factor ∆t made explicit, because in non-
cooperative equilibria, the quantity qt will have a regular limit as an offer

rate as ∆t → 0.

5.4.2 Two production sectors; one can innovate

Goods of types 1 and 2 are produced by firms having production functions
denoted respectively f1 and f2. If we denote by si,t the stock of a firm
producing good i in period t, the forms we will assume for the production
rates are:9

fi(si,t) ≡ fi,∞ − ρπe
−2si,t . (1)

fi has dimensions of a rate, so both fi,∞ and ρπ are rates. We will choose
ρπ to equal the discount rate from the definition of firms’ discounted profits

9These forms are smoothed versions of a linear production function with a limiting
output and corner solutions, developed by Shubik and Sudderth [2, 3]. Corner solutions
provided a convenient way to truncate discrete-period models to a single period, but in the
continuous-time setting, the smoothed production rate produces a simple decomposition
of solutions.
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(introduce below, after the market clearing rule has been defined), to simplify
the forms of solutions in worked examples. Nothing apart from simplifying
presentation depends on this choice. Well-defined models require that we
choose fi,∞ ≥ ρπ so that production is non-negative for all si,t ≥ 0. In order
to use certain small-deviation approximations in examples below, we will set
fi,∞/ρπ & 1, but nothing in the model depends on finely tuning the values
of these parameters.

The production rate f2 is assumed to be a fixed function at all periods in
all models. The production function f1 is eligible to change, in period t = 0,
into a new production function

f̃1(s1,t) ≡ (1 + θ) f1(s1,t) , (2)

for all periods t ≥ 0, with θ > 0 a fixed parameter. This change of form is
the game’s representation of successful innovation.10

If firms of type 1 try to innovate in period t = 0, they must consume
a quantity s(cost) from their stocks s1,t at t = 0. Innovation succeeds with
probability ξ < 1. Firms that attempt to innovate and fail still consume the
stock s(cost), but are left with the previous production function f1.

5.4.3 The carry-forward of goods by firms

The carry-forward equation for the working stock si,t held by any firm of
type i, at all values of i and t aside from the innovation event by firms of
type-1, is

si,t+∆t ≤ si,t + fi(si,t)∆t− qi,t∆t. (3)

The inequality indicates that the working stock could be wasted but cannot
increase except by means of production.

The continuous-time limit is obtained from Eq. (3) by dividing by ∆t,
and replacing the difference (si,t+∆t − si,t) /∆t by the derivative dsi/dt, to
obtain a differential equation relating stocks to flows:

dsi
dt

→ fi(si)− qi. (4)

10The form (2) is the smoothed counterpart to a combination of “cost innovation” and
“capacity innovation” in the terminology introduced by Shubik and Sudderth [2, 3]. The
rate of production for s1,t . 1/2 is larger by the factor (1 + θ), generating the same output
at less input cost. The saturation level f1,∞ likewise increases by the factor (1 + θ), so
that maximum output capacity likewise increases. This combination is simpler, for the
smoothed production function, than either cost innovation or capacity innovation alone.
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We return to the definition of firms’ profits after defining the consumption
and trade problem for consumers.

5.4.4 Consumption utilities in continuous time

We first introduce the functional form of utility. As a dummy index, let c1
(without further subscripts) be the rate of consumption of good-1 by any
consumer in any particular time period, and let c2 be the rate of consump-
tion of good-2, by that consumer.11 Utility for the period’s consumption
must likewise be defined in terms of a rate in order to permit a well-defined
continuous-time limit. The utility rate is a function of the two consumption
rates. In this cascade of models we take the separable form

u(c1, c2) = −ρ
(

e−c1/γ1 + e−c2/γ2
)

. (5)

ρ is a constant related to the natural rate of discount, which we define below,
needed to provide the correct dimensions for u,12 and γ1 and γ2 are two scale
factors that determine the relative price elasticities of the two goods. Note
that since c1 and c2 are rates, γ1 and γ2 must likewise have dimensions of
rates, since the input to the exponential function must be a pure number.

From this base form, which is the same for all consumers, we can introduce
an indexed notation for utilities of each of the two types of consumers, in
terms of the goods produced by the firms they own and the goods produced
by the firms they do not own.

For a consumer of type i, we denote by ci,t the rate of consumption of
the good that his own firms produce (now indexing the good relative to the
consumer’s type), and c̃i,t the rate of consumption of the good produced by
firms of the other type.13 To define a notation that will allow us to refer to
agents of either type, denote by ui the utility rate for a consumer of type i.

11Thus, in the discrete-period model, the amounts consumed in one period are c1∆t and
c2∆t.

12The absolute magnitude of this constant does not matter for the definition of u(c1, c2);
only the dimension of a rate is required. We use the rate ρ in the discount factor as this
avoids introducing a further arbitrary parameter.

13To express this more didactically,˜is used to indicate exclusion, or opposition in binary
sets: ı̃ means whichever value in {1, 2} that is not the value taken by index i. c̃i indicates
the consumption rate of the good that is not the consumption rate ci.
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In terms of Eq. (5), u1,2 are given by

u1(c1, c̃1) ≡ u(c1, c̃1)

u2(c2, c̃2) ≡ u(c̃2, c2) . (6)

The variables that define any consumer’s state at the beginning of each
period are a supply of money-in-handmi,t, and in cases where consumers may
make deposits or take out loans with either a central bank or a commercial
bank, a balance ai,t at the bank. The account balance ai,t may be of either
sign as long as the conditions on money and credit permit.

The consumer’s strategic variables within any period are quantities bi,t∆t
of money to bid on goods made by the firms of his own type, and b̃i,t∆t to
bid on goods of the other type, along with deposits di,t∆t to make to the
bank. (We refer to them as “deposits” to define the sign convention for the
transfer of money between the consumer and the bank; if some di,t is negative
it is a withdrawal.) Therefore, like consumption levels, bi,t, b̃i,t, and di,t are
denominated as rates.

5.4.5 Market clearing

The rate at which total bids are made on good i in the buy-sell trading post
in any period t is related to the rates of bidding by the two agent types as

Bi,t = bi,t + b̃ı̃,t. (7)

The price of good i in period t is denoted pi,t. From the clearing rule for the
Dubey-Shubik buy/sell model [8], it is given by

pi,t =
Bi,t∆t

qi,t∆t
=

Bi,t

qi,t
=

bi,t + b̃ı̃,t
qi,t

. (8)

The price is defined either as a ratio of per-period bid and offer quantities,
or as a ratio of their corresponding rates, since factors of ∆t cancel in the
ratio. Thus price level can converge to a regular continuous-time limit if the
bid and offer rates do so.

The rates at which goods are delivered to consumers from trading posts
are their consumption rates, which evaluate in the buy/sell game to

ci,t =
bi,t
pi,t

c̃i,t =
b̃i,t
pı̃,t

. (9)
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5.4.6 Profit rates for firms and (when applicable) commercial
banks

Firms are defined in these games to carry forward goods between periods
to use as working stocks, and thus they have no money expenses.14 Their
profits equal their proceeds from sale. The amount of profit made by a firm
of type i in period t is denoted

πi,t∆t = pi,tqi,t∆t =
(

bi,t + b̃ı̃,t

)

∆t, (10)

in which πi,t is the corresponding profit rate.
Each firm of type i distributes its profits uniformly among consumer/owners

of type i as a source of income for those owners. Since both firms and own-
ers are indexed on the same continuous interval [0, 1], the rate πi,t at which
profit is delivered by a firm of type i is the same as the rate of income to the
consumer of type i.

The firm’s total discounted profit, which it seeks to maximize, is the sum

Πi =
T
∑

t=0

βt/∆t
π [πi,t∆t− ηi,t (si,t+∆t − si,t −∆tfi(si,t) + qi,t∆t)] . (11)

The Lagrange multipliers ηi,t enforce the inequality (3), and the profit dis-
count factor βπ is given in terms of the profit rate of discount ρπ by

βπ ≡ 1

1 + ρπ∆t
. (12)

This is the same ρπ used to set a scale in the production rate functions (1),
for reasons explained where these were introduced.

Bank profits, when they are defined, will be particular to models, so at
present we simply introduce a notation π

(B)
i,t for the rate of income delivered

from bank profits to owners of type i. In models without banking or without
bank profits, this term is zero. (Recall that commercial banks, when intro-
duced, will be indexed on a continuous interval [0, 1], but they will distribute
profits to two types of consumers, each type also indexed on an interval
[0, 1]. Therefore we will need to be careful with factors of 2 in relating banks’
income to profits delivered to owners.)

14This construction avoids most of the concerns with corporate financing.
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From the foregoing definitions and the clearing rules (8,9), the update
equation for a consumer of type i’s money-in-hand between the beginnings
of two successive rounds is

mi,t+∆t = mi,t − di,t∆t−
(

bi,t + b̃i,t

)

∆t+
(

πi,t + π
(B)
i,t

)

∆t. (13)

5.4.7 The consumer’s utility maximization problem

Trading posts and banks both transact in explicitly represented money (whether
gold, fiat, or bank notes). Therefore bids on consumables, and bank deposits,
are limited by a budget constraint, which takes the form for a consumer of
type i in period t

di,t∆t +
(

bi,t + b̃i,t

)

∆t ≤ mi,t. (14)

The consumer maximizes a discounted utility across all periods’ consumption
against the sequence of constraints (14) at each period t.

To define terminal conditions for the multi-period game, and to produce a
salvage value for money, we introduce a “day of reckoning” at period t = T +
∆t, in which any negative bank balance is penalized with a linear deduction
Πmin (ai,T+∆t, 0) from the total utility. The linear default penalty is enforced
by means of a Kuhn-Tucker multiplier on a finite interval Λi ∈ [0,Π], as
in [7]. We return in Sec. 5.4.9 to discuss information conditions, including
when agents know the value of T .

The Lagrangian for the optimization problem of a consumer of type i con-
tains a discounted sum of utilities from the rates defined in Eq. (6), constraint
terms for the budget constraints, and constraint terms for final conditions.
An appropriate form to produce a regular continuous-time limit is given by

Ui ≡
T
∑

t=0

βt/∆t
{

ui(ci,t, c̃1,t)∆t + λi,t

[

mi,t − di,t∆t−
(

bi,t + b̃i,t

)

∆t
]}

+ β(T+∆t)/∆tΛiai,T+∆t. (15)

In models where banking does not exist, the terms di,t and aT+∆t are omitted.
Note that the factor Λiai,T+∆t is discounted by β(T+∆t)/∆t.

We also have not incorporated any terms constraining ai,t at intermediate
times, such as might arise from limits on reserve requirements.
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The per-period discount factor β in the utility function (15) is related to
the period length ∆t and the natural rate of discount ρ by

β ≡ 1

1 + ρ∆t
. (16)

This convention leads to regular limits for the utility in continuous time. The
increment ∆t becomes a measure dt, and the sum over index t becomes an
integral

∫

dt. The integrand will be a function only of rate-valued quantities,
which in the continuous-time limit take piecewise-smooth trajectories. The
ratio mi,t/∆t must likewise scale as a rate-valued quantity, which has the
interpretation of the contribution from an agent of type i to the velocity of
money, as the money supply scales linearly toward zero with ∆t.

5.4.8 The consumer’s bank-balance dynamics

The first two banking models demonstrated here permit unlimited revolving
loans. Technically this means two things. The first is that the bank keeps
an account, the balance of which is updated at a pre-specified interest rate
within each period. The second is that the amount consumers deposit or
withdraw is an unconstrained variable, apart from the penalty on unrepaid
bank debts in the terminal conditions.

The bank’s carry-forward equation for accounts it thus

ai,t+∆t = (ai,t + di,t∆t) (1 + ρB,it∆t) . (17)

Deposits or withdrawals are made at the beginning of the period, and interest
accrues at a rate ρB,it.

15

The bank may lend or accept deposits at different rates, in which case
the interest rate for either type i is a function of time, evaluated to equal a
lending or borrowing rate according to the rule

ρB,it =

{

ρB,L if ai,t < 0

ρB,D if ai,t > 0.
(18)

15Many alternative rules are well-defined: interest on deposits could accrue one period
later than interest charged on loans, etc. Nothing depends on the intra-temporal order of
interest charges and payments, in the continuous-time limit.
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To regularize the discontinuity at at = 0, we may adopt some convention such
as ρB,t = (ρB,L + ρB,D) /2.

16 For a central bank acting as a public service,
there is no need for interest rate spreads, but for a commercial bank a spread
ρB,L − ρB,G > 0 will generally be required.

Using the money carry-forward relation (13) to express di,t in terms of
the bids, profits, and changes in agents’ money-holdings, the account-balance
carry-forward relation (17) may be written

ai,t+∆t

(1 + ρB,it∆t)
= ai,t − (mi,t+∆t −mi,t)−

(

bi,t + b̃i,t

)

∆t +
(

πi,t + π
(B)
i,t

)

∆t.

(19)
Using Eq. (10) for firms’ profits, dividing Eq. (19) by ∆t, and then taking
∆t → 0 produces the continuous-time expression for the bank balance in
relation to the money-in-hand mi of

17

(

d

dt
− ρB,i

)

ai →
(

b̃ı̃ − b̃i

)

− dmi

dt
+ π

(B)
i +O(∆t) . (20)

5.4.9 Terminal conditions

The handling of terminal conditions in a class of extended-time games of
this form, with lending at interest, a small number of events that can occur,
and no stochasticity, is generally a somewhat artificial exercise as a model of
decision making in real economies. On one hand, the attempt by consumers
and firms to converge to a steady state that permits long-term regular be-
havior, and the degree to which monetary flexibility permits or impedes that
attempt, is the aspect of decision making that the model probably captures
robustly. On the other hand, the specification of terminal conditions is a
requirement from the standpoint of experimental gaming, and this generally
rules out a steady state. The artificial feature of a model that requires can-
cellation of all debts at a finite horizon, in an economy that has structurally

16Under conditions when the bank is actively used, at = 0 occurs only on time intervals
of measure zero, so the results are not sensitive to the way the interest rate is regularized.
Because, in this model, we assume initial conditions prior to the accumulation of bank
balances, it is convenient to choose a regularization condition that will be consistent with
the other simplifying assumptions made in the model.

17The residual terms at O(∆t), which we denote explicitly despite the fact that they
approach zero as ∆t → 0, come from time lags between the making of bids and the delivery
of profits. As long as the rates are continuous (differentiable at order one) functions, these
effects contribute terms ∼ (dbi/dt)∆t in Eq. (20).
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changed in the interim in such a way that revolving debt permits it to ac-
commodate the change, is that exponential growth of account balances can
lead to sensitive and arbitrary coupling of terminal conditions to otherwise-
negligible differences in interior solutions. A continuum of solutions to the
first-order conditions exist with utilities and profits that differ by exponen-
tially small factors in ρπT , but which involve very different response of the
production decisions at the terminal conditions.

We resolve these ambiguities by making use of the following observation
to single out the class of non-cooperative equilibria that robustly separate
the responses to initial and terminal conditions in a non-arbitrary manner.
These games possess non-cooperative equilibria that could be called “turn-
pike solutions”. Consumers and firms, after a transient that occupies an
interval in ρπt much smaller than 1, can converge exponentially (in ρπt) to-
ward stable production, trade, and consumption values that can be preserved
indefinitely. In general, these solutions require non-zero bank balances, as
some agents lend to others, with interest flows supporting asymmetries in
their consumption that reflect the real structural changes in the production
sector. These steady-state values are the turnpike values. The games also
possess a class of unstable solutions, in which firms exponentially diverge
from the turnpike values, depleting or hoarding stocks in response to expo-
nentially diverging price levels created by consumer bidding, as consumers
re-direct their money to return their bank balances to zero. The diverging
solutions cannot be extended indefinitely because they become singular, so
they never occur at intermediate times. They can be chosen, however, to ac-
commodate a terminal condition that eliminates all debts to the banks. The
turnpike solutions require a specific coordinated price-setting behavior by the
two types of consumers, and of production decisions by the two types fo firms
(all of which can be computed non-cooperatively by each group of agents),
in order that neither aggregate nor internal debt exist at the terminal time.

In addition to the turnpike solutions, a continuum of other solutions ex-
ist, in which very small uncanceled aggregate debts can grow exponentially,
and require different behavior by the two types of consumers and the two
types of firms, relative to turnpike solution, to cancel aggregate as well as
internal debt. The final behavior of the agents in these solutions is sensi-
tive to uncanceled aggregate debts that may be of order e−ρπT at the end of
transient response to the initial conditions, and which constitute arbitrarily
small deviations from the pure turpike solution.

To isolate the turnpike solutions, the agents are not told the time T of the
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terminal round at the beginning of the game. Instead, they are told that, in
each period ∆t, a binary variable will be sampled. The first time t at which
the variable equals 1, the terminal round will be announced to occur at a
specified later time, such as T = t+5/ρπ (so five times the discount horizon,
out from the present). The probability to draw value 1 is made sufficiently
small that the values of T will be Poisson distributed with a mean much
longer than the discount horizon 1/ρπ. This look-ahead declaration provides
sufficient time to implement the terminal behaviors starting from time t, with
utility consequences of differing from the turnpike solution that are bounded
above by O

(

e−(T−t)ρπ
)

≈ O(e−5). (We choose the look-ahead horizon t+5/ρπ
for convenience in examples below; this number may be chosen as large as
desired to decouple the initial terminal intervals to any desired degree.) As
long as the error e−(T−t)ρπ is made ≪ ∆tρπ, it is a smaller correction than
finite-period discretization effects that we are ignoring. Players who solve the
initial transient to converge to the turnpike produce a solution that is within
O
(

e−(T−t)ρπ
)

of any non-cooperative equilibrium solution for any large T .
Any non-cooperative equilibrium not converging to the turnpike could be one
of a range of exact solutions for a particular T , but which solution this would
be would depend on aggregate debt levels of O

(

e−(T−t)ρπ
)

, and the initial
part of this trajectory would differ from any non-cooperative equilibrium,
for any terminal time different from T by more than O(1/ρπ), at more than
O
(

e(T−t)ρπ
)

.
We will not develop the full machinery of expected-utility maximization

in this note, but will simply compute properties of the turnpike equilib-
ria, with the understanding that all deviations from these by more than
O
(

−e(T−t)ρπ
)

are incompatible with existence of any non-cooperative equi-
librium over ranges of T where the terminal-condition sampling has large
probability, and so will be ruled out by any generic expected-utility maxi-
mization.

We believe that this minimal use of a stochastic variable yields the kinds
of solutions that would arise in an actual economy where money and banking
are available to facilitate regular events of structural change in the production
sector, and in which agents carry persistent debt and respond to new events
of innovation by changing their debt structure as these arise, in ongoing
sequences. The addition of specific finite-horizon debt could, of course, be
introduced as a qualitative modification to these games, but it should then
be justified by other criteria (lenders’ limitations, etc.) besides the question
whether a flexible money supply can alleviate constriants on the circular flow
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of funds, which is the topic addressed by the current class of games.

5.4.10 The leading contributions in (ρB∆t) to the time-course of
monetized private credit and the net account balance of
agents at the bank

Now for the first time we may use small but nonzero ∆t to distinguish the
behavior of two components of the credit supply. One component comes
from lending effectively by one type of consumers to the other, mediated by
the bank. Promises to pay by consumers (enforced by the default penalty
at the day of reckoning) are privately issued credit. Banks’ promises to pay
(whatever interest plus principle accrues) are met with bank credit. The part
of loans and deposits that cancel among the consumers are effectively private
credit from one group to another, monetized by the bank when it accepts
private promises to pay and issues bankers’ promises to pay. The part of
loans or deposits that does not cancel when consumers are aggregated is the
net injection or extraction of money in circulation. Injected money is also in
the form of bank credit, while extraction may be whatever form of money
was given to the consumers in the initial conditions. The two coordinates we
use to represent intra-economy lending, and aggregate-economy lending, are
respectively (a1,t − a2,t) and (a1,t + a2,t).

In a continuous-time model with regular prices, the supply of money
in circulation scales as O(∆t). If banking is to leave prices regular, the
change in money supply, driven by the sum of balances (a1,t + a2,t), must
also scale linearly in O(∆t). In contrast, as we show now, the monetized
private credit will normally scale as O(1) in economies operating at or near
monetary efficiency. Thus some agents have outstanding, at any time, debts
that are larger by O(1/∆t) than all money in circulation.

Personal credit monetized by bank accounting: From Eq. (20), the
equation for (a1,t − a2,t) is

[

d

dt
− (ρB,1 + ρB,2)

2

]

(a1 − a2) → 2
(

b̃2 − b̃1

)

+
(ρB,1 − ρB,2)

2
(a1 + a2)−

d (m1 −m2)

dt
+O(∆t) .

(21)
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As long as both both (a1 + a2) and d (m1 −m2) /dt are O(∆t) like the terms
that have been dropped – a requirement if prices are not to diverge in the
continuous-time limit – any O(1) contribution to (a1 − a2) can only come

from the term in
(

b̃ı̃ − b̃i

)

.

Reducing Eq. (21) to quadrature gives the expression for the credit mon-
etized by the banks within the economy,

a1,t − a2,t
2

=

∫ t

0

dt′ e
∫ t

t′
dt′′(ρB,1t′′+ρB,2t′′)/2

(

b̃2,t′ − b̃1,t′
)

+O(∆t) . (22)

To determine the conditions under which these bank balances can ap-
proach a steady state turnpike solution that can extend indefinitely, we in-
tegrate Eq. (22) by parts to obtain the equivalent expression

a1,t − a2,t
2

= e
∫ t

0
dt′(ρB,1t′+ρB,2t′)/2







(

b̃2,0 − b̃1,0

)

(ρB,10 + ρB,20) /2

+

∫ t

0

dt′ e−
∫ t′

0
dt′′(ρB,1t′′+ρB,2t′′)/2 d

dt′

(

b̃2,t′ − b̃1,t′
)

(ρB,1t′ + ρB,2t′) /2







−

(

b̃2,t − b̃1,t

)

(ρB,1t + ρB,2t) /2
.

(23)

App. A.1 shows that the intermediate-time bids
(

b̃2,t′ − b̃1,t′
)

converge on

steady values as long as the money supply is asymptotically constant, which
is the condition for a non-inflationary solution.18 Hence the time derivative
in the integral in Eq. (23) approaches zero for t′ sufficiently large. We return
in Sec. 6.2.3 to the way this solution connects to a terminal transient that
returns both of (a1,t ± a2,t) to zero as t → T .

The relation (23), which at large t is exponentially well-approximated
by the vanishing of the term in curly braces, determines ǫ̂ from Eq. (31)
and Eq. (30).19 Because this equation is homogeneous of order one in the
numéraire, it is not necessary to know the overall magnitude of the money
supply to determine ǫ̂.

18Without uncertainty it calls for the rate ρ defining the utilitarian rate of discount in
Eq. (16) to equal the average of the two interest rates faced by the agents, as shown in
Eq. (42) below. (In the worked example of the following sections, this will be the average
of the borrowing and the lending rates.) With uncertainty there is a delicate correction
depending on the variance.

19 When the term in curly braces is exactly zero, the late-time steady-state relation
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Aggregate debt and change in the money supply The mechanism by
which banks may change the money in circulation is lending to or accepting
deposits from consumers at interest. For example, consumers may borrow
an initial stock of money following the event in which innovation occurs,
and over the course of restoring the principle to zero so that the money-in-
circulation converges to a steady value, they pay some quantity of aggregate
interest.

Summing Eq. (20) over both agent types gives the equation for (a1,t + a2,t):
[

d

dt
− (ρB,1 + ρB,2)

2

]

(a1 + a2) → − d

dt
(m1 +m2)

+
(

π
(B)
1 + π

(B)
2

)

+
(ρB,1 − ρB,2)

2
(a1 − a2) .

(24)

In models with interest rate spreads, we face the possibility that the term
in (ρB,1 − ρB,2) in the second line of Eq. (24) could destroy the stability
of prices by coupling the quantity (a1 − a2) which is O(1) to the change
in the money supply which must scale as O(∆t) for prices to be stable.
In appropriately defined models this potential instability will be avoided,

because the total profits from commercial banks
(

π
(B)
1 + π

(B)
2

)

will be a

revenue − (ρB,1a1 + ρB,2a2), minus a stream paid to the central bank. As
long as the stream to the central bank remains at O(∆t), the remaining
revenue stream recirculates, canceling the term (ρB,1 − ρB,2) (a1 − a2) /2 to
within O(∆t). Any component of − (ρB,1a1 + ρB,2a2) that is O(1) is also
assured to be positive, because it can only come from a difference (a1 − a2)
that is O(1), and the lending rate (on the negative account balance) will be
higher than the rate on deposits (the positive balance).

The simplest case will be 100% reserve banking, in which any aggre-
gate loans a commercial bank makes to consumers cannot exceed supplies
of “heavy money” the commercial bank borrows from the central bank and

becomes
(ρB,1t + ρB,2t)

2

(a1,t − a2,t)

2
=

(

b̃2,t − b̃1,t

)

.

This expression is simply the interest paid to agents of type-1, plus their share of bank
profits when profits are defined, which balances the deficit in the profits of type-1 firms
relative to the bids made by type-1 agents (who will consume more). Thus a consis-
tent circular flow is restored in the asymptotic steady state, in a context of asymmetric
production, profits, depositing/borrowing, and consumption.
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holds as reserves. In that case the total profit stream of the commercial bank
takes the form

π
(B)
1,t + π

(B)
2,t = ρC,t (a1,t + a2,t)− (ρB,1ta1,t + ρB,2ta2,t) , (25)

where ρC is the interest rate charged by the central bank.
Substituting this into Eq. (24) gives

(

d

dt
− ρC

)

(a1 + a2) → − d

dt
(m1 +m2) . (26)

Note that, if there is no commercial bank, and the consumers borrow from or
deposit into the central bank directly, Eq. (26) results directly from Eq. (24).

In the simplifying case where ρC is constant, Eq. (26) is integrated to give
the result

(a1,t + a2,t) = eρC t

{

(a1,0 + a2,0 +m1,0 +m2,0)−
∫ t

0

dt′ ρCe
−ρC t′ (m1,t′ +m2,t′)

}

− (m1,t +m2,t) . (27)

Both in the model with only a central bank, and the model with a com-
mercial bank using 100% reserves, we will set ai,0 = 0 as initial condition,
and (m1,0 +m2,0) ≡ 2m0 to define the initial money supply. Agents may
borrow an amount of money that scales as ∼ m0 from the bank in the period
t = 0 when the innovation event occurs, changing both the initial money
supply and the initial debt abruptly. Under any such borrowing, however,
(a1,t + a2,t +m1,t +m2,t)t→0+ = (a1,0 + a2,0 +m1,0 +m2,0). Therefore both
the initial value and the integral in Eq. (27) involve no singular terms even
in the continuous-time limit.

The vanishing of the steady-state principle − (a1,t + a2,t) owed by the
agents to the banks in Eq. (27) determines the initial borrowed amounts
(m1,t +m2,t)t→0+ − 2m0 = − (d1,0 + d2,0)∆t, because these set the scale for
the quantity (m1,t′ +m2,t′) in the integral and the final term (m1,t +m2,t)
relative to the initial term (a1,0 + a2,0 +m1,0 +m2,0) = 2m0, which is fixed.
The vanishing of the term in curly braces in Eq. (27), taken as t → ∞, given
a value of ǫ̂ fixed by vanishing of the similar term in curly braces in Eq. (23),
defines the turnpike response to the initial shock created by the innovation
opportunity and the need to borrow.
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5.5 First-order conditions

5.5.1 The consumer’s goods-consumption problem

The first-order condition for consumption results from variation of bi,t and
b̃i,t in Eq. (15), and takes the form

1

pi,t

∂ui

∂ci,t
=

1

pı̃,t

∂ui

∂c̃i,t
=

T
∑

t′=t

β(t′−t)/∆tλi,t′. (28)

Irrespective of how the Kuhn-Tucker multipliers for these constraints are
set,20 the ratios of first-order conditions (28) imply relations of relative con-
sumption between the two types of agents, who purchase against a shared
price system. In the remainder of this sub-section, we suppress the explicit
time index, because the relations hold period-by-period at each t.

The two ratios of marginal utilities of consumption are both given in
terms of prices by

∂u1/∂c1
∂u1/∂c̃1

=
p1
p2

=
∂u2/∂c̃2
∂u2/∂c2

. (29)

To solve for the consequences of this relation, we introduce a pair of coordi-
nates to relate the consumption of the two types of agents to the offer levels
qi,t. Define

c1 ≡
q1
2
+ ǫ1 c̃2 ≡

q1
2
− ǫ1

c̃1 ≡
q2
2
+ ǫ2 c2 ≡

q2
2
− ǫ2. (30)

The model choice of a separable exponential utility (5) leads to the re-
sult that the offsets ǫ1,2 from even division for the two goods are in a fixed
proportion determined by the relative elasticities,

ǫ1
γ1

=
ǫ2
γ2

≡ ǫ̂. (31)

The output rate qi will always appear scaled by the factor γi in the utility,
so we introduce a shorthand

q̂i ≡
qi
γi
. (32)

20These multipliers are always nonzero, as the budget constraint is always tight.
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Because prices are ratios of total bids to total outputs, Eq. (29) together
with the condition (31) implies that

B1

B2

=
q̂1e

−q̂1/2

q̂2e−q̂2/2
. (33)

The relation of the bid level for either good to the total money supply is then

Bi

B1 +B2
=

q̂ie
−q̂i/2

q̂1e−q̂1/2 + q̂2e−q̂2/2
. (34)

Therefore prices are given in relation to the total money rate of circulation
B1 +B2 by

pi =
1

γi

e−q̂1/2

q̂1e−q̂1/2 + q̂2e−q̂2/2
(B1 +B2) . (35)

5.5.2 Consumer’s banking problem (when applicable)

If the economy is one in which borrowing and lending are possible, a second
condition for deposits or withdrawals results from variation of di,t. It there
is no limit on consumers’ account balances, the only two classes of Kuhn-
Tucker multipliers come from the per-period budget constraint (λi,t) and the
terminal conditions (Λi).

21 The first-order condition for deposits is then

T
∑

t′=t

β(t′−t)/∆tλi,t′ = Λi

T
∏

t′=t

[β (1 + ρB,it′∆t)] . (36)

Combining Eq. (28) with Eq. (36), and taking ∆t → 0, we arrive at the
continuous-time relation relation among prices, output, interest rates, and a
single Kuhn-Tucker multiplier for the terminal constraint:

1

pi,t

∂ui

∂ci,t
=

1

pı̃,t

∂ui

∂c̃i,t
→ e

∫ T

t
dt′(ρB,it′−ρ)Λi. (37)

Using the relations (29,30), which hold at each time, we can evaluate the
consumption first-order conditions (37) for the two types explicitly, to give

1

p1,tγ1
e−q̂1,t/2 =

1

p2,tγ2
e−q̂2,t/2 → eǫ̂t+

∫ T

t
dt′(ρB,1t′−ρ)Λ1

ρ
,

1

p1,tγ1
e−q̂1,t/2 =

1

p2,tγ2
e−q̂2,t/2 → e−ǫ̂t+

∫ T

t
dt′(ρB,2t′−ρ)Λ2

ρ
. (38)

21If bounds were placed on the account balances, additional multipliers could arise within
each period as shadow prices associated with these constraints.
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The consumption asymmetry ǫ̂ must then satisfy

ǫ̂t = ǫ̂T − 1

2

∫ T

t

dt′ (ρB,1t′ − ρB,2t′) . (39)

The Kuhn-Tucker multipliers for the two types of agents are related to the
final-time value ǫ̂T as

eǫ̂TΛ1 = e−ǫ̂TΛ2 ≡ Λ. (40)

A note on the setting of the default penalty: We will show that,
in general, ǫ̂T cannot equal zero, because consumers of different types have
different incomes and consume at different levels. Therefore the shadow
prices Λ1 and Λ2 cannot both be equal; hence, even in a game with artificially
fine-tuned parameters, they could not both be set equal to the limiting value
Π of the default penalty. Interior solutions can therefore only be obtained
when at least one of Λ1 < Π or Λ2 < Π holds, and when both a1,T = 0 and
a2,T = 0. This permits us to set Π “sufficiently large” that both Λ1 < Π
and Λ2 < Π, and to consider interior solutions without default and also
with no savings at the day of reckoning. These two requirements define the
terminal conditions for interior solutions with banking. We will illustrate
their consequences for prices and production in Sec. 6.2.3.

The pair of first-order conditions (38) evaluate to a relation between the
two prices and output levels to a single multiplier Λ (jointly determined by
the agents’ non-cooperative equilibria) and the (possibly time-dependent)
interest rates of the two types:

1

p1,tγ1
e−q̂1,t/2 =

1

p2,tγ2
e−q̂2,t/2 → e

∫ T

t
dt′[ 12(ρB,1t′+ρB,2t′)−ρ]Λ

ρ
. (41)

It was necessary that the relation between the output level of either good
and its price in Eq. (41) be the same for the two goods, because by Eq. (35)
either of these equals a relation between both output levels and the total
money supply. Combining the two equations gives

q̂1e
−q̂1/2 + q̂2e

−q̂2/2

B1 +B2

→ e
∫ T

t
dt′[ 12(ρB,1t′+ρB,2t′)−ρ]Λ

ρ
. (42)

Taking logarithms, and then differentiating with respect to t, then gives the
relation between outputs, money supply, and interest rates

d

dt
log

(

q̂1e
−q̂1/2 + q̂2e

−q̂2/2

B1 +B2

)

=

(

ρ− ρB,1 + ρB,2

2

)

. (43)
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5.5.3 The firms’ output levels in response to prices

Firms attempt to maximize profits (11) in which the price sequences pi,t
appear as parameters from Eq. (10).

Firms may respond to prices in either of two ways. Either

pi,t ≤ ηi,t, (44)

and they set qi,t → 0, or else qi,t > 0, and

ηi,t−∆t = ηi,tβπ (1 + f ′
i(si,t)) (45)

The former case can be realized by successfully-innovating firms in the
early periods following innovation, in which they are better off to sit out
of markets and rebuild their working stocks, while the type-1 firms that at-
tempted to innovate and failed, provide the total supply in markets. Firms
that failed in innovating can maintain market prices lower than the reserva-
tion prices of the successful firms, because their steady-state allocations at
late times are not as high (we demonstrate this below), so that using their
entire output to rebuild stocks is not as valuable to them as it is to the
successful firms.

In the latter case, faced by all firms at sufficiently late times, by the type-
1 firms that try and fail to innovate, and by all type-2 firms all the time,
these firms optimize their output against the particular sequence of prices.

The recursive relation (45) among K-T multipliers becomes, in the continuous-
time limit,

ηi,t = ηi,T e
∫ T

t
dt′[f ′

i(si,t′)−ρπ]. (46)

When pi,t = ηi,t, Eq. (46) dictates an intertemporal relation between prices
and output which is the consequence of the profit-maximization criterion.

Setting pi,t = ηi,t in Eq. (46), combining this with the consumers’ price/output/interest
relations (41), taking logarithms, and differentiating with respect to t, pro-
duces a three-way relation among output levels, the stocks of all firms that
are active offering in markets, the interest rates faced by consumers of both
types, and the total money supply, in the form

d

dt
log

(

q̂1e
−q̂1/2 + q̂2e

−q̂2/2

B1 +B2

)

= −1

2

d

dt
q̂i + [f ′

i (si)− ρπ]

=

(

ρ− ρB,1 + ρB,2

2

)

. (47)
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The equality in the second line applies only in the case that consumers set
prices by varying the money in circulation through borrowing and lending.

5.5.4 Equation (47) is the main relation

Eq. (47) is the main relation that links output decisions by firms to the dy-
namics of the money supply. The right-hand side of the first equality is a
second-order differential response function of the working stocks and aggre-
gate output of firms of a given type, to a source term (the left-hand side of the
first equality) which involves the output levels of both goods, and the total
money supply (B1,t +B2,t). The q̂i on the right-hand side represents a total
output variable,22, and originates in the separable exponential utility of con-
sumption (5). In this respect the separability between the left and right-hand
sides in an exact relation depends on the specific assumption of exponential
utility, which we introduced in order to make the production/consumption
model a sharp test case for monetary efficiency. If the second equality in
Eq. (47) applies, it determines both the dynamics of the total money supply,
and the source term for output decisions, in terms of the interest rates faced
by the two kinds of consumers in relation to the natural rate of discount.

Working stock and output decisions for both firms are coupled to the same
source term which is an aggregate property of the whole economy. Moreover,
the production decisions in the two sectors are independent of one another
except for this shared source term, and except for any initial and terminal
conditions created, respectively, by the innovation-induced shock to the sup-
plies of working stocks, and the requirement to nullify bank debts on the day
of reckoning. The form imposed on these equations by a particular monetary
system therefore determines whether that system can insulate production
decisions in the two sectors from one another, and if it cannot, the manner
and strength with which they are coupled.

5.5.5 The criterion of monetary efficiency

We may thus sharply define the criterion for efficiency of the monetary sys-
tem. If the banking system makes the supply of money in circula-
tion sufficiently flexible that the money supply (B1,t +B2,t) can exactly

22This term must be corrected with a measure term to relate it to individual firms’
output levels if not all firms are active in markets, as we show below
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track the numerator term
(

q̂1e
−q̂1/2 + q̂2e

−q̂2/2
)

, then the production deci-
sions in the sectors for good-1 and good-2 are completely decoupled. Supply
shocks in one sector do not affect production in the other. Scale in the
overall economy has been separated from the structure of produc-
tion and consumption, with the result that intertemporal coordination of
production may be optimized for each good through a price system, deliver-
ing the same production profiles as if the two goods occupied two separate
economies. Note that, in economies with banking, this is possible only if
ρ− (ρB,1t + ρB,2t) /2 is constant.

Although production decisions are decoupled in an efficient economy, the
relative consumption levels of both types of agents, for both goods, may
become responsive to the innovation shock because their relative incomes
differ due to the dependence of profit rates πi,t on supply rates qi,t, even in
cases where the two price systems are decoupled.

The feature that production rates are coupled only through the total
money supply and not through its instantaneous distribution depends on the
exponential utility (5), through the cancellation (31) of (ǫ1/γ1 − ǫ2/γ2). This
kind of modeling choice is similar in spirit to the choice of strictly symmetric
production technologies in the one-period models of [6]. It is a minimal

form that permits the many functions of the price system as a separating
hyperplane to be performed independently. The overall production sector is
separated from the dynamics of consumption due to wealth effects by one
variable (the total money supply), whether or not the production decisions
by firms of different types are also separated from each other.

5.5.6 Expansions in small deviations about the fixed-point pro-
duction rate:

In order to produce simple approximate demonstrations of the behavior of
models in this class, we consider innovation shocks that are small compared
with background stock and production levels, and evaluate responses to lead-
ing order in small perturations.

The steady-state condition for production stocks, with production func-
tion fi and embedded in an economy with steady prices, is given by Eq. (46)
as

f ′
i(s̄i) ≡ ρπ. (48)

Whenever all firms of type i are offering in markets, the offer rate equals the
total output rate for good i, so we can abuse notation and use qi,t for both
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quantities. If only a measure (1− ξ) of firms are offering in markets, then the
output level per firm equals (1− ξ) times the offer rate of the active firms.

The offer rate is approximated at leading linear order in small departures
si − s̄i by

qi ≈ fi(s̄i) +

(

f ′
i(s̄i)−

d

dt

)

(si − s̄i) = f̄i +

(

ρπ −
d

dt

)

(si − s̄i) . (49)

The first-order expansion for the marginal productivity appearing in Eq. (46)
is

f ′
i(si)− ρπ ≈ f ′′

i (s̄i) (si − s̄i) ≡ f̄ ′′
i (si − s̄i) . (50)

Using Eq. (49) to approximate qi, and Eq. (50) to approximate the
marginal productivity, in the first line of Eq. (47) gives

d

dt
log

(

q̂1e
−q̂1/2 + q̂2e

−q̂2/2

B1 +B2

)

≈ µi

2γi

d

dt

(

d

dt
− ρπ

)

(si − s̄i) + f̄ ′′
i (si − s̄i)

(51)
Here we have introduced a measure term µi, which equals unity when all
firms of type i are active in markets, and equals (1− ξ) in the case when a
measure ξ of type-1 firms that have successfully innovated are sitting out of
markets.

The right-hand side of Eq. (51) is a linear second-order differential re-
sponse function, which means that the responses to different source terms or
within different time intervals can be constructed independently and added
to produce the full solution for (si − s̄i). Complex matching conditions only
arise at points where the solution for the non-cooperative equilibrium changes
strucure in some way, as when a subset of firms first enters markets, or when
a type of consumers switch from being borrowers to being lenders. These
are economically meaningful changes that only occur at a few points in a
continuous time interval corresponding formally to an infinite number of pe-
riods (each of infinitesimal duration), in contrast with period boundaries in
discrete-period models, which create complex matching conditions in every
period. This feature explains our statement that the continuous-time limit
may be seen as one in which the model period length does not reflect an eco-
nomically significant timescale, and therefore should not affect the structure
of solutions.
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6 Example solutions

6.1 Exchange with gold money only

In a gold economy without banking or any other reserve supply of gold, the
circulation rate (B1,t +B2,t) is constant in every period. Consumers spend all
money in their possession. Therefore the time derivative on the left-hand side
of Eq. (47) cannot be zero if q1,t experiences the shock of the investment in
innovation. The production decisions of the two goods that can appear on the
right-hand side of Eq. (47) must be coupled. The failure of decoupling – which
defines our criterion of optimal monetary performance – is the main result
which shows that gold or any money with fixed supply provides poor support
to an exchange economy in which the production functions and consumption
utilities could otherwise be optimized separately. It is another realization of
Schumpeter’s general observation about difficulties in breaking the circular
flow of funds.

6.2 Innovation and recovery in Utopia

Having established in Sec. 6.1 that a fixed money supply couples the shock
in good-1 to production decisions in good-2, we now consider the opposite
case of banking that creates any required level of bank money and monetized
private credit, to show that such a system can realize the ideal efficiency
of decoupling the two production sectors by making the left-hand side of
Eq. (51) equal zero. We call this economy “Utopia” because the constraint-
functions of money and default penalties serve to coordinate the efficient
allocation of goods, but money has no other explicit utility. Banking is
likewise a public service, with the policy objective of maximizing monetary
efficiency, no requirement for strategic action, and thus no need to produce
profits.

6.2.1 Consumer lending and borrowing with a central bank that
is a strategic dummy

A minimal bank for the Utopia model is an atomic central bank, which is a
strategic dummy. It produces any desired quantity of central-bank credit (or
effectively distributes government fiat), which is accepted in trading posts
on par with gold, and it provides accounting services for both its own debt
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and private debt without cost. Its behavior is defined by two parameters,
the central-bank interest rate ρC and the default penalty Π, which we take
to be sufficiently severe to support whatever shadow price on consumption
is required for solutions without strategic default.

The following two subsections show numerical solutions for 1) the initial
transient that converges to the turnpike steady state with fixed bank balances
and part of the circular flow conducted through interest payments, and 2)
the terminal divergence from the turnpike that cancels bank balances.

The Utopia solution fully decouples the two production sectors only dur-
ing the initial transient from the innovation shock to the long-term turnpike
solution. The terminal transient, combined with a requirement (forced by
our probabilistic announcement of the terminal time T ) for agents to con-
verge to the turnpike, breaks the decoupling of the two sectors. In order to
cancel the intra-economy debts by one type of consumers to the others, with-
out incurring a net debt of the consumers to the central bank, both types
of consumers must bid in a way that induces both types of firms to alter
their output levels, rather than just type-1 firms that experienced the inno-
vation opportunity.23 This is an economically appropriate solution property:
the conditions of production are permanently changed in this economy; if the
terminal conditions require the termination of bank loans under such changed
production conditions, they cannot avoid distorting production because they
create a condition of inflexible money supply and distribution. However,
this distortion is limited to a finite horizon before the day of reckoning, and
decouples from the main solution property of buffering the circular flow of
funds.

23A continuum of solutions to the first-order conditions exists, in which the type-1 and
type-2 firms deplete or hoard stocks in differing degrees so as to cancel the intra-economy
debt (a1,T − a2,T ). This continuum includes a solution in which the type-2 firms continue
to produce at the pre-innovation level, so they are buffered at all times. That solution,
however, does not lead to a net aggregate balance (a1,T + a2,T ) = 0, if (a1,t + a2,t) starts
from a zero aggregate balance at t ≪ T . Therefore the solution with s2,t = s̄2, ∀t
can only be reached by leaving a finely tuned non-zero aggregate balance (a1,t + a2,t) of
O
(

e−(T−t)ρπ

)

at early times t following the transient. Such an initial condition would lead
to a different terminal solution than (s2,t = s̄2, ∀t) at any slightly different value for T ,
and would be incompatible with any non-cooperative equilibrium solution at a value of T
differing by more than O(1/ρπ) from the value for T which (a1,t + a2,t) was tuned.

42



6.2.2 Initial transient: from the innovation shock to the turnpike

The first-order conditions in Utopia begin with the general solutions derived
in Sec. 5.5.

In order to permit a non-inflationary/non-deflationary price system, the
central bank interest rate must be tuned relative to the utilitarian discount
factor β = 1/ (1 + ρ∆t) so that

β (1 + ρC∆t) → 1, (52)

or ρC = ρ. Since the central bank is a public good, and the rate of discount
is known, this is consistent with other assumptions of fine-tuning that define
Utopia.

The parameter ǫ̂ determining the asymmetry in consumption by Equa-
tions (30,31) is constant in this model, and determined by the turnpike con-
dition, which is vanishing of the two terms in curly braces in Eq. (23) and
Eq. (27) for t → ∞.

The shadow price on money from consumer purchases of goods is deter-
mined from Eq. (42), in the case where borrowing and lending rates are equal
and both equal ρC = ρ. Since (B1,t +B2,t) = (m1,t +m2,t) in steady-state
where outputs take their stationary production values (set by f ′

i(si) = ρπ),
the shadow price is then given by

q̂1e
−q̂1/2 + q̂2e

−q̂2/2

B1 +B2

=
Λ

ρ
. (53)

The constancy of this ratio (equal to a constant shadow price), in Eq. (47),
together with the initial condition s2,t=0 = s̄2 then gives s2,t = s̄2, ∀t as the
unique turnpike solution, completing the proof that banking in Utopia buffers
production of good-2 from the innovation shock in good-1.

A similar evaluation, starting from Eq. (41), produces the relation be-
tween prices and output levels in Utopia of

1

p1,tγ1
e−q̂1,t/2 =

1

p2,tγ2
e−q̂2,t/2 → Λ

ρ
. (54)

A numerical example The following example evaluates the integrals (22,
27) and non-cooperative equilibrium conditions from in the preceding sec-
tions, to show how the characteristic recovery structure following innovation
is realized and determines the monetary properties of the economy.
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Input parameters are: asymptotic production rate f1,∞/ρπ = 2; γ1/ρπ =
1/2; the probability of success for firms that try to innovate is ξ = 1/5; the
innovation cost j = 0.1, and the innovation output multiplier θ = 1/5. For
convenience, to avoid introducing new parameters, we set f2,∞ = f1,∞ and
γ2 = γ1. The pre-innovation steady-state of supply is therefore q̂1 = q̂2 =
(f1,∞ − ρπ/2) /γ1 = 3. App. A.2 computes details of the time constants and
structure of the recovery trajectories.

The natural timescale in the model is set by the profit rate ρπ, which
determines the dynamics of production stocks and output levels by Eq. (47).
Since revolving loans are permitted in any amount that agents demand, the
bank interest rate ρC does not determine a dynamical timescale, though it
does affect the quantities of borrowed money. For simplicity in the numerical
example we also set ρC = ρπ.

The asymmetry of consumption (30,31) generated by the non-cooperative
equilibria of this game as a consequence of innovation evaluates numerically
to ǫ̂ ≈ 0.0075751. Relative to the similarly scaled pre-innovation rates of
production q̂1 = q̂2 = 3, ǫ̂ provides a measure of the utilitarian asymmetry
introduced by innovation in one good.

Properties of the solution are shown in the following series of figures.

The two-stage recovery involving stocks of successful and failed
innovators: Fig. 1 and Fig. 2 show that the type-1 firms undergo a two-
stage recovery following the innovation event. Before period t = 0, all type-1
firms are equivalent, so when the average outcome of innovation leads to
higher output, all firms attempt to innovate. The fraction (1− ξ) that fail
continue to offer goods at market in all periods t > 0, and in an initial interval
their offer rates exceed their production rates, so they deplete their working
stocks s

(−)
1 . The profit incentive for this strategy comes from maintaining a

price below the shadow price of the successfully-innovating firms, which will
ultimately converge to a higher output level. The successful firms sit outside
markets and accumulate stocks s

(+)
1 , until their shadow prices fall to intersect

the (rising) market prices maintained by the failed-innovation firms. After
the two prices intersect, all firms offer in the markets, and the successful
and failed type-1 firms both restore stocks to their (respective) steady-state
production levels.

In the production functions (1), the steady-state stock is the same for
both type-1 and type-2 firms, so the asymptotic level s̄1 to which failed-
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Figure 1: The two-stage recovery associated with the cost and risk of failure
in innovation. Firms of type-1 that try to innovate and fail follow recovery
trajectories s

(−)
1 (blue) that initially deplete stocks while offering at an un-

sustainable rate in order to capture market share, by keeping prices below a
level at which successful firms are willing to enter. When the stocks s

(+)
1 of

successful firms (green) have grown and their shadow prices have decreased
to equal market prices, both firms switch to offering at sustainable rates and
converge with a fixed offset toward their late-time steady states (respectively
red and cyan). Because of the choice (1) of functional form for fi, the red
curve is also the stock level s̄2, which is unaffected by innovation. Left-hand
panel shows recovery over a long interval; right-hand panel gives a close-up
of the interval following the innovation event.

innovation type-1 firms recover is also the stock s̄2 maintained by type-2
firms throughout.

Rates at which goods are delivered to market for consumption:
Fig. 3 shows the offer rates of the two groups of firms. Type-2 offer rates are
constant. Type-1 offer rates are aggregated from the successful and failed-
innovation firms. In the early interval, only a measure (1− ξ) of firms offer
in markets, whereas in the later interval all firms offer. The discontinuous
derivative in the stock s

(−)
1 visible in Fig. 1 exactly compensates for this

jump in measure so that all of s
(−)
1 , s

(+)
1 , and q1 are continuous through the

transition.
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Figure 2: Same timeseries as Fig. 1 with time ρπt shown on log scale to make
the initial phase more visible and to compress the subsequent recovery phase.

Bid levels and money supply in the post-innovation interval: Fig. 4
shows the bid levels on both types of goods by both groups of consumer/owners
following the innovation shock. Total money supply in circulation (B1,t +B2,t)∆t
is also shown (black curve) in the right-hand panel of the figure.

The amount of money in circulation per period is initially greater than
2m0 because agents of both types take out loans from the central bank.
They borrow the maximum that they will be able to repay under the non-
cooperative equilibrium trajectory. The money in circulation crosses (down-
ward) through the pre-equilibrium value of 2m0 at ρBt ≈ 0.70050 and con-
tinues to descend, as agents gradually pay down the principle.

Monetized credit from a persistent internal loan: Fig. 5 shows the
solution to Eq. (21) for (a1,t − a2,t) /2 in relation to the excess of payment

rates made by type-1 agents over payment rates by type-2 agents
(

b̃1,t − b̃2,t

)

.

The scale for the numéraire in this model is set by m0, a quantity that scales
∼ ∆t, whereas the bid rates and inter-agent bank interest payment rates are
regular quantities in the continuous-time limit. In order to normalize them
to the numéraire, we compare the interest payments-per-period, which are
ρB (a1,t − a2,t)∆t/2, to m0, and we likewise compare the excess bid amounts-

per-period by type-1 over type-2 agents, which are
(

b̃1,t − b̃2,t

)

∆t, to m0.
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Figure 3: Timeseries of the total rates q1,t/γ1 and q2,t/γ2 delivered to markets
for consumption. q2,t (green) is constant at the pre-innovation solution over
all time. q1,t (blue) begins in deficit relative to the pre-innovation solution,
and ends in surplus relative to that solution.

These normalized curves are independent of ∆t as ∆t → 0. The convergence
of the two curves in Fig. 5 at late time verifies that the consumers converge
to steady account balances at which interest payments via the bank provide
part of the circular flow allowing type-1 agents to purchase and consume
both goods at a constant excess rate ǫ over the rate of consumption by type-
2 agents.

Aggregate loan and change in the money supply: Fig. 6 shows the
economy’s aggregate balance with the banks (a1 + a2) relative to the initial
money supply of either agent type m0. It also shows the excess money-in-
circulation over the amount possible with the initial money supply, (B1 +B2)∆t−
2m0, which is made possible by aggregate loans. Initially the two values are
equal, but as the economy pays off the borrowed principle and also loses net
money-in-circulation to the payment of compounded interest, the money in
circulation drops below 2m0. At late times, the principle is exactly repaid,
and a new circular flow is established with asymptotically steady money
supply (B1,t +B2,t)∆t for ρπt ≫ 1.
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Figure 4: Bid levels normalized by the pre-innovation money supply,
bi∆t/m0, b̃i∆t/m0, aggregated in several ways. Left panel: by agents. Blue
and green are bids on good-1 by consumers of types 1 and 2, respectively.
Red and cyan are bids on good-2 by consumers of types 1 and 2 respectively.
Type-1 consumers consume more of both goods, but in each period they pay
out more than they receive in profits, a deficit that must be compensated
by interest on bank savings. Right panel: by consumer-type or goods-type.
Here blue and green are total expenditures by type-1 and type-2 consumers,
respectively. Red and cyan are total bids offered on type-1 and type-2 goods,
respectively. The black curve is (B1 +B2)∆t/2m0, which is the total money
in circulation normalized by the pre-innovation value.

6.2.3 Terminal conditions: exiting the turnpike to cancel bank
balances

A corresponding set of solutions for a terminal transient, which begins in
the turnpike solutions for stocks, output, and prices, and terminates at a
time T with zero bank balances, is shown in the next four figures. The
overall behavior of the terminal transient is that type-1 consumers deplete
their savings by increasing bids on goods, while type-2 consumers reduce
their bids on goods to repay their outstanding account balances. These bids
continue to respect all the non-cooperative quilibrium conditions, though now
on an unstable diverging trajectory. In response to these changes in bidding
behavior, the two types of firms either deplete or accumulate working stocks,
altering their outputs to continue to maximize profits.
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Figure 5: Bank balance (a1,t − a2,t) /2 reflecting monetized private credit,
normalized as ρB (a1,t − a2,t)∆t/2m0 (blue), which is the interest paid from
type-2 agents to type-1 agents per period relative to the pre-innovation cash-
per-agent, and excess bids per period of type-1 agents over type-2 agents

similarly normalized,
(

b̃1,t − b̃2,t

)

∆t/m0 (green), following the innovation

event. The two converge to the same non-zero late-time steady state, as
payment flows in the markets compensate interest flows through the bank.

Note that the level of loans scales as (a1,t − a2,t) /2 ∼
(

b̃1,t − b̃2,t

)

/ρB, a

quantity independent of ∆t, which may be made arbitrarily larger than the
money-in-circulation on the approach to the continuous-time limit.

Working stocks of the firms: Fig. 7 for the terminal transient may be
compared with Fig. 1 for the behavior of stocks from the initial transient.
Type-2 firms and failed-innovation type-1 firms both start with the same
stocks s̄2 = s̄1, while successful innovation firms begin with stocks s̃1. Be-
cause all type-1 firms optimize output against the same price system, both
successful- and failed-innovation firms deplete stocks by the same amount,
increasing output levels and lowering prices. Type-2 firms do the opposite,
accumulating stocks and reducing outputs, and boosting prices.

Output rates: Fig. 8 shows the output rates produced by the stock tra-
jectories from Fig. 7. Type-1 firms increase output rates, while type-2 firms
reduce them. Recall that prices are given by Eq. (54).
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Figure 6: Aggregate account balance the consumers hold at the bank,
normalized as (a1 + a2) /m0 (blue), and compared to total rate of money
circulation in markets in excess of the circulation that would be possible
with the initial gold-in-hand 2m0. The excess is normalized and plotted as
[2m0 − (B1 +B2)∆t] /m0 (green). The amount borrowed in the period t = 0
when the innovation-cost is paid equals the excess of bids on goods over 2m0

(green and blue curves are equal at t → 0 up to numerical imprecision). This
loan amount is set using Eq. (27) so that the agents pay the principle to zero
by time T . Note that (B1,T +B2,T )∆t < 2m0, so gold has left the private
economy and is being held by the bank. Note also that the net loan (a1 + a2)
is a few percent of m0 ∼ ∆t, whereas the difference of balances (a1 − a2) in
Fig. 5, which is credit from one agent type to the other monetized by the
bank, is several percent of m0/ (ρB∆t).

Elimination of intra-economy lending: Fig. 9 shows the intra-economy
debt, due to type-2 consumer borrowing from the central bank and type-1
consumer lending to the bank. The quantity (a1,t − a2,t) is plotted. Recall
that this quantity is O(1) and thus generally much larger than the money in
circulation. Hence, within O(∆t), (a1,t − a2,t) /2 ≈ a1,t ≈ −a2,t.

In the initial steady state, the interest stream to/from the bank, ρB (a1,t − a2,t)∆t/2,
equals the excess bids by type-1 agents per period relative to bids from type-2

agents,
(

b̃1,t − b̃2,t

)

∆t. The interest stream from bank accounts exactly pro-

vides the excess bids by type-1 agents to support their higher consumption
levels. As the terminal transient develops, the bid excess by type-1 agents
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Figure 7: Working stocks of the three types of firms in the terminal transient.
Time is plotted as ρπ (t− T ), which terminates at value 0. Trajectory s

(−)
1

(blue) and s2 (red) begin at the same values but diverge in opposite direc-

tions. Trajectory s
(+)
1 of successful type-1 firms (green) moves in parallel to

s
(−)
1 for unsuccessful type-1 firms. The initial working stocks of the terminal
transient are the turnpike values to which the solutions in Fig. 1 converge at
late times.

increases to deplete the principle in their account, at the same time as type-2
agents repay principle. These differences continue to respect the consump-
tion relations (30) at fixed ǫ̂, because changes in the output levels by firms
have adjusted the price levels consistently with the changes in bids.

Non-accrual of aggregate debt by either the economy or the bank:
Finally, Fig. 10 shows the aggregate account balance (a1,t + a2,t) through
the terminal transient. Because innovation has made the collection of type-1
firms distinct from the type-2 firms, it is not possible for them to maintain an
exactly fixed money supply through the entire terminal transient. Therefore,
the bids by the two types of agents, and the output levels by the two types
of firms, must be adjusted so that any non-zero aggregate balance acquired
early in the transient is repaid by time T , leading in general to a change
in the money-in-circulation from the turnpike value. Because the innovation
shock we have assumed in this example is small, the two types of firms remain
broadly similar. In order for their net contribution to debt to cancel, their
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Figure 8: Output rates q1,t/γ1 (blue) and q2,t/γ2 (green) delivered to markets
for consumption in the terminal transient. The initial output levels for the
terminal transient are the turnpike values to which the solutions in Fig. 3
converge, shown as dashed lines.

output levels must be roughly mirror images, and this is the reason for the
opposite behavior of the stock transients in Fig. 7 and the output transients
in Fig. 8. The changes in money supply throughout the transient therefore
remain small relative to money-in-circulation.

Further properties of the economy in the terminal transient can be com-
puted, along the same lines as those presented for the initial transient.

6.2.4 Summary of banking in Utopia

The preceding model has used a context in which a rigid money supply
leads to a failure of output efficiency, to illustrate how a simple banking
scheme can restore this efficiency. The main features of the Utopia model
are that a single bank can change the money-in-circulation both transiently
and persistently when this is required to stabilize the price system against
which producers optimize, and can also monetize personal credit within the
society to support emergent differences in purchasing power. The outcome
of a many-period game is economically realistic: the owners of a technology
that undergoes an innovative improvement in output capacity can become
net holders of the debt of other members of the society, and the interest
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Figure 9: Difference of bank balances scaled as ρB (a1,t − a2,t)∆t/2m0 (blue),
and excess bids per period of type-1 agents over type-2 agents similarly nor-

malized,
(

b̃1,t − b̃2,t

)

∆t/m0 (green). The turnpike value of steady intra-

economy loans (a1,t − a2,t) to which the solutions in Fig. 5 converge is re-
turned to zero in the terminal transient.

on this debt can support an indefinite increase in their relative purchasing
power. It is an important feature of the banking model that members of the
society can arrive at non-cooperative equilibria in which new steady states
of money supply and the circular flow of funds are established, in which the
bank withdraws from participation in the economy except as a keeper of its
internal accounts.

6.3 Commercial banking, profit, and the consequences
of interest rate spreads

In economies with distributed banking sectors, a criterion governing strategic
action by the banks is profit maximization. Profits may come either from
interest rate spreads or from permitting the banks to issue credit that receives
the protection of law but is backed by only a fraction of its value in reserves
of some form of “heavy money”, which could be gold, government fiat, or
central-bank credit. We consider first the introduction of interest rate spreads
as a sole modification to the Utopia model, the resulting problems in the
definition of profits, and the consequences of spreads for efficiency, which
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Figure 10: Aggregate account balance the consumers hold at the bank, nor-
malized as (a1 + a2) /m0 (blue), and compared to total rate of money cir-
culation in markets, now in excess of the turnpike money supply from the
late-time asymptote in Fig. 6, which we denote (B1 +B2)TP∆t. The money
supply is plotted as [(B1 +B2)− (B1 +B2)TP] ∆t/m0 (green). The total
balance (a1,T + a2,T ) = 0 as a property of the non-cooperative equilibrium
solution.

may be expressed in terms of the spread values independently of how (or
whether) they are used strategically by the banks.

A non-zero spread exists whenever ρB,L > ρB,D in Eq. (18), for the banks
that serve consumers. In this section we consider the spread a fixed parameter
and do not yet consider strategic action by banks.

The main features of (both transient and persistent) change in the money
supply and monetization of private credit can be retained by profitable banks
(if they are owned by the consumers and distribute their profits to con-
sumers), but the efficiency of Utopia is lost in proportion to sizes of the
spreads. We will show that the introduction of interest rate spreads in-
herently couples the innovation shock in good-1 to production and output
decisions in good-2, with a strength proportional to the spread. Profit in-
creases with increasing spreads, but so does cross-coupling among sectors and
the consequent inefficiency. Therefore any regulatory system that requires
spreads as a control mechanism carries an inherent efficiency cost.
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6.3.1 The continued need for a central bank even at 100% reserves

Even in the absence of fractional-reserve lending, purely mechanistic prob-
lems of defining profits from interest, using bank credit to vary the money
supply, while also permitting asymptotically steady states in the absence of
innovation, will require that we regard the banks with which consumers in-
teract directly as commercial banks, and that we retain a central bank as a
distinct entity.

In Utopia, it was important that the central bank not be merely a publicly-
owned pass-through entity. One of its main functions was the injection or
withdrawal of net quantities of money from the supply-in-circulation. This
was achieved by accumulation of interest payments on (fully-repaid) net ini-
tial deposits or loans by the consumers. A feature of the Utopia model that
makes a non-pass-through bank into a problem, however, when interest rate
spreads are introduced, is that consumers in a two-good economy asymptoti-
cally make revolving loans from one type to the other, mediated by the bank,
as shown in Fig. 5. If the bank collects a steady stream of payments propor-
tional to (ρB,L − ρB,D) from these loans, and those are not passed back into
the economy, no steady-state money supply and price system are possible.
Yet the game must not pass all interest payments back to consumers, or else
the banks lose the capability to vary the money supply.

To preserve both essential functions of the Utopian central bank when
interest rate spreads are introduced, we must define one component of the
net interest stream paid by consumers to the commercial bank as profit which
is returned to the consumers, and a remainder that is not profit (because it
is passed through to the central bank), with this remainder used to vary
the money supply in circulation. The net interest paid by consumers to
commercial banks will be − (ρB,1ta1,t + ρB,2ta2,t). The net interest paid by
the commercial banks to the central bank, on money it must borrow to change
the total money-in-circulation, is −ρC,t (a1,t + a2,t). The profit rate, which

is a sum of two equal streams π
(B)
1,t + π

(B)
2,t paid to the two types of agents,

is then given in Eq. (25). As long as ρB,L ≥ ρC ≥ ρB,D, profits are never
negative. In this section, we take the central bank rate ρC to be constant, as
in Utopia.

For convenience of exposition here, since ρB,L and ρB,D are parameters, we
take their average to equal the central bank rate, (ρB,L + ρB,D) /2 = ρC . The
central bank continues to be a public service, so we will set ρC = ρ (the utili-
tarian rate of discount) to enable non-inflationary/non-deflationary turnpike
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solutions. More general solutions with steady-state production rates, but
inflating or deflating prices, are also well-defined through Eq. (47), but are
more complicated. The single new parameter for the commercial banks is
then (ρB,L − ρB,D) /2.

6.3.2 Interest rate spreads and efficiency

For the single, simple event of innovation used in this class of games, the
interest rates make a single transition at a time we may denote tsplit. In
terms of this transition time, instead of setting the left-hand side of Eq. (51)
equal to zero as it is in Utopia, the equation satisfied by s2,t becomes

[

d

dt

(

d

dt
− ρπ

)

+ 2γ2f̄
′′
2

]

(s2 − s̄2) = ±Θ(tsplit − t) γ2 (ρB,L − ρB,D) . (55)

(Θ denotes the Heaviside function, which takes value one for t < tsplit and
zero otherwise.) The boundary conditions for this second-order equation are
that s2 = s̄2 at t = 0 and again at t → ∞. For the production function
f2 from Eq. (1), f̄ ′′

2 = −2ρπ.
24 The value of tsplit must be determined self-

consistently with the signs of the bank balances in the solution that it yields.
For small spreads, it is well approximated from the Utopia solutions shown
in Fig. 5 and Fig. 6. We return to the determination of tsplit in Sec. 6.3.3.

The solution to Eq. (55) is a sum of growing and decaying exponentials
on the interval 0 ≤ t ≤ tsplit, and a decaying exponential for t > tsplit. The
magnitude of the excursion can be determined by the condition that both the
stocks and offer level be continuous through the transition. The matching

24 Firms of type-1, in the period when both are offering in the markets, have equations
identical in form to Eq. (55), for the deviations of their stocks from the Utopia solutions.

For the firms that attempt to innovate and fail, we denote these deviations δ
(

s
(−)
1 − s̄1

)

,

and for the firms that attempt to innovate and succeed, the corresponding quantity is

δ
(

s
(+)
1 − s̃1

)

. In the initial period, when firms that successfully innovated are sitting

outside the markets, their inventory growth is governed only by internal production and
they do not optimize against prices. The type-1 firms that failed to innovate satisfy a
slightly modified equation given by

[

(1− ξ)
d

dt

(

d

dt
− ρπ

)

+ 2γ1f̄
′′
1

]

(s1 − s̄1) = ±Θ(tsplit − t) γ1 (ρB,L − ρB,D) ,

because their measure is (1− ξ) and the level of output than can contribute scales by the
same factor.
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conditions can always be met because the growing solution has a shorter time
constant than the decaying solution.

Fig. 11 shows the excursion in stock levels and offer rates by the type-2
firms in response to such a shock, at a sequence of increasing values of tsplit.
The quantities plotted in the figure are ∓ (s2 − s̄2) × (2ρπ) / (ρB,L − ρB,D),
and ∓ (q2 − q̄2)× 2/ (ρB,L − ρB,D). The ∓ sign corresponds to the ± sign in
Eq. (55), and thus determines the direction of the excursion in stocks and
offers.
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Figure 11: Response of stocks and offers of good-2 to a discontinuity in
interest rate by an amount ±Θ(tsplit − t) (ρB,L − ρB,D) /2. Left panel: the
response descaled by the strength of the spread, given by ∓ (s2 − s̄2) ×
(2ρπ) / (ρB,L − ρB,D), with a range of times ρπtsplit (markers) from 0.1 to
3.1 in increments of 0.5. Right panel: the response of offers descaled by the
spread, given by ∓ (q2 − q̄2)× 2/ (ρB,L − ρB,D), for the same cases.

The sign of the excursion: If, in the immediate aftermath of the inno-
vation, both types borrow from the bank, then ρB,1 = ρB,2 = ρB,L, and the
sign in Eq. (55) is negative. The effect is that good-2 firms try to optimize
production against a larger discount rate than ρπ, which means increasing
the target s2. This is done transiently by reducing offers and accumulating.
Later, when the bank rates split, and one group lends while the other bor-
rows, the target stock level returns to s̄2, and offer rates are increased to
return toward it.
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6.3.3 Approximating the effect on output using a small-parameter
expansion

We will not pursue a full self-consistent solution to the production/trade
model with interest rate spreads. The major qualitative features that result
from the introduction of spreads may be illustrated with an approximate
solution. The approximation is valid if the spread (ρB,L − ρB,R) /ρ ≪ 1. In
this limit, output, prices, and consumption allocation are dominated by the
properties of the Utopia solution. If we choose a small but nonzero period
length ρπ∆t ≪ 1, then the money in circulation (B1,t +B2,t)∆t (along with
all changes in that money supply) scale as ∼ ρπ∆t relative to the long-term
indebtedness within the economy (a1,t − a2,t), for ρπt ≫ 1.

Solution part I: relating money supply to outstanding private debt
and determining tsplit: In this solution, ρπ∆t is used to relate the quan-
tity ρπ∆t (a1,t − a2,t) /2m0 from Fig. 5, to (a1,t + a2,t) /m0 from Fig. 6. From
these two, values a1/m0 and a2/m0 are obtained. The leading order approxi-
mation for the crossing time tsplit is then its value in the Utopia solution. This
approximation is then used in Eq. (55) and its counterparts for successful and
failed innovating firms of type-1, to obtain the linear-order corrections to the
production stocks and output rates. In an iterative solution, these profiles
could then be fed back into equations for prices and allocations to update
tsplit, and the process could be repeated, but for this example we will stop
with the leading-order approximation.

A numerical example: To provide a numerical example, we take a very
coarse discretization ρπ∆t = 0.1 to scale the money supply relative to the
acquired internal debt. This number is of course much too large to be well-
approximated with the continuous-time recovery trajectory in the Utopia
example, and we use it only to produce effects in the plots that are large
enough to see. The same methods we illustrate here continue to apply as
ρπ∆t is made arbitrarily smaller, and the response sizes scale in proportion.

With this large value of ρπ∆t, the crossing time when a1 passes through
zero (consumers of type-1 change from being net borrowers to net lenders)
is given by ρπtsplit ≈ 0.099. The corresponding values of a1/m0 and a2/m0,
and the perturbations in the goods-stocks, are shown in Fig. 12.

The solution combines three distinct output programs. Type-2 firms and
type-1 firms that try to innovate and fail follow nearly the same trajectories of
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Figure 12: Bank balances a1/m0 (blue) and a2/m0 (green) from Fig. 5 and
Fig. 6 taking ρ∆t = 0.1. Magenta curve shows the change in response
δ (s− s̄) due to the interest rate discontinuity, which applies both to s2 and

to s
(−)
1 , since both types of firms optimize output against the price system at

all times. Cyan curve shows the response δ
(

s
(+)
1 − s̃

)

, which is zero in the in-

terval when the successfully innovating firms are not optimizing their output
against the price system, and nonzero when these firms enter the market.
The two curves are shown to scale, and normalized so that the maximum
of δ (s2 − s̄) is set to 0.1 for viewing purposes. The time when a1 crosses
through zero, and the interest rate ρB,1 changes from ρB,L to ρB,D is the time
used for the matching conditions of both stock si and output qi, marked with
a black cross. Left panel is an extended recovery interval; right panel is a
close-up of the initial interval following the innovation shock, during which
balances are accumulated.

accumulation of goods (s2 − s̄2) and δ
(

s
(−)
1 − s̄1

)

(see fn. 24). Type-1 firms

that successfully innovate do not optimize against the price system initially,
so their accumulation of stocks is unaffected. After they enter markets, they

follow a similar but less-extensive period of accumulation for δ
(

s
(+)
1 − s̃1

)

,

shown in the figure in cyan.

Correcting stocks and outputs, and checking for consistency: The
modified stock trajectories for the three types of firms are shown in Fig. 13.
For simplicity we take f2,∞ = f1,∞ in Eq. (1), so that the two goods are com-
pletely equivalent in their production characteristics before the innovation
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event. The production-stock trajectories are obtained by adding the cor-
rections from Eq. (55) (and its counterparts for type-1 firms) to the Utopia
solution.
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Figure 13: Time-course of goods-stocks for the three kinds of firms. The
Utopia solution of Fig. 1 is the leading order approximation for s

(−)
1 (blue),

s
(+)
1 (green), and (in the simple case where f1,∞ = f2,∞) s2 (red). The per-
turbed stock levels taking (ρB,L − ρB,D) /2ρ = 0.25 are shown in cyan for

both of s
(±)
1 , and in magenta for s2. Profile s

(+)
1 shows no change while

successfully-innovating firms sit out of the market, and then undergoes a
smooth deviation in output between the time it enters and the time the in-
terest rates shift to their asymptotic late-time values. (Although the interest
rate spread is set very large in order to produce a visible effect on output,
the corrections to s2 remain small, justifying the small-parameter approxi-
mations used.)

In the figure, we have again chosen a very coarse perturbation, (ρB,L − ρB,D) /2ρ =
0.25, so the interest rate spread is fully one half of the average rate charged
by the central bank. Again we do this to obtain results that are large enough
to see easily in plots; for more realistic spreads the corrections scale propor-
tionally. Even so, the figure shows that the perturbations to the histories of
maintained stocks are small. A plot of the same recovery solutions with time
on a logarithmic scale is shown in Fig. 14.

The offer levels, which depend on the time derivatives of the stocks, show
coarser perturbations, in keeping with this large interest rate spread, as
shown in Fig. 15. The most important feature is the initial drop in out-
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Figure 14: Same recovery trajectories as in Fig. 13, with ρπt plotted on
logarithmic scale as in Fig. 2.

put (and therefore consumption) of good-2 (shown in magenta), which in
the Utopia solution was unaffected by the innovation event in good-1. The
output of good-1 also falls (shown in cyan in the figure) relative to its Utopia
trajectory. Here we see the first feature of the small-parameter approxi-
mation indicating its incompleteness as a solution. In an initial post-shock
interval, only failed-innovation type-1 firms offer, and they have measure
(1− ξ). When prices have risen suitably, the successfully-innovating type-1
firms enter (as in Utopia and in the previous chapters), so that all type-1
firms are offering. Simply adding these two corrections to the Utopia solution
produces a discontinuity that is an approximation error. In a full solution,
adjustment of the matching conditions would absorb this correction (which
is only ≈ 0.3% even for a wide spread) and restore continuity to the offer
rates.25

25In a true small-parameter expansion with both ρπ∆t ≪ 1 and (ρB,L − ρB,D) /2ρ ≪ 1,

the value tsplit would be shorter than the natural recovery time for stocks s
(±)
1 , so that the

output of the successfully-innovating firms would never even respond to the interest-rate
spread. The resulting solution would be simpler in structure than the one presented here,
as well as smaller in magnitude.
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Figure 15: Offer levels for the two goods in the Utopia solution and with
nonzero interest rate spread under the parameters of Fig. 13. Utopia offer
rates from Fig. 3 are q̂1 (blue) and q̂2 (green). Perturbed output due to the
interest-rate discontinuity for q̂1 is cyan and for q̂2 is magenta. Left panel
is the full relaxation trajectory (post-innovation asymptote for q̂1 shown in
red); right panel expands the interval following the innovation shock. Unlike
the stocks from Fig. 13, which show only a small perturbation, the consump-
tion rates q̂ show the larger effect that might have been expected for the
large interest rate spread (ρB,L − ρB,D) /2ρ = 0.25 chosen to make the effects
visible. The small discontinuity in q̂1 visible in the right-hand panel comes
from the fact that the perturbations in output levels were not fed back – in
this leading-order approximation – to the leading-order optimization prob-
lem; doing so would have lead to a correction in the matching conditions for
the offer levels of the type-1 firms by a small fraction of its Utopia solution
value, to absorb this discontinuity.

6.3.4 Further properties

Solutions for bank balances, bid levels, and other properties, can be carried
through, and are qualitatively like those in the Utopia model. The equations
for both intra-economy and aggregate account balances have already been
presented in Sec. 5.4.10 in a form compatible with this model. The change in
total money supply is responsive only to the central bank rate ρC , and initial
loans can be fully repaid to converge to a turnpike solution, as in Utopia. The
structure of intra-economy lending differs from that in the Utopia solution
because borrowers and lenders pay at different rates, while bank profits are
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distributed to both types of consumers in equal measure. These differences
change the quantitative properties of account dynamics and their steady
state values, but not their qualitative character. The terminal transient
differs minimally from the Utopia solution, because the account balances do
not change sign, so one type of consumers remains a lender with a fixed rate
throughout the transient, while the other remains a borrow also with a fixed
rate throughout the transient.

6.3.5 Concluding comments regarding interest rate spreads

At small spreads, the introduction of bank profits creates small quantitative
change but no qualitative change to the Utopia solution. This result demon-
strates that the independent scaling between money supply and private debt
(with respect to powers of ρB∆t) is not a fragile or fine-tuned property of
Utopia, and can be retained in more institutionally complex models. The
functions of varying the money supply and monetizing private debt are like-
wise robust. However, any active response by banks to consumer demand,
which either limits the money supply or makes consumers’ discounting of
money time-dependent, in the sense of Eq. (47), propagates shocks from
innovation across sectors and impairs optimal planning of production sched-
ules.

6.3.6 A note on fractional-reserve lending

Although we do not present a formal model of banking with fractional re-
serves we conjecture that many of the basic qualitative aspects the models
deliver the same message. In particular an official currency, a central bank
and commercial banks are all artifacts to deal with evaluation, perception
and substitutes for trust needed to promote and protect trade. The lack of
natural physical laws for creating and destroying money call for the appara-
tus of sociopolitical laws to replace the laws for the creation and consumption
of physical goods. The specifics of reserve ratio banking, reserves and excess
reserves are discussed elsewhere [9].

Although we have presented an analysis on varying the money supply
when there is, in essence no basic uncertainty in our models beyond one
innovation decision, this is only the tip of an iceberg. We did not deal with
the presence of a stream of random events that more closely characterizes
ongoing innovation. The modeling considerations indicate that there is a
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welter of worthwhile case distinctions that depend on factors other than the
mechanism of varying the money supply. In particular it is our belief that a
key factor in the existence of a two tiered machanism involving both a central
bank and commercial banks is (as Bagehot observed) the importance of the
banking system as a distributed perception device. Our efforts were devoted
to variation of the money supply. In doing so we were able to illustrate how
the failure to so adequately can cause considerable fluctuation that might be
otherwise avoided.
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A Appendix: Supporting algebra for non-cooperative

equilibria of game models

A.1 Steady post-innovation output and stable money

supply lead to stable bid levels

This section shows from the first-order conditions for consumption that, if
output levels converge to steady late-time values, and if the money supply
converges to a steady value, then bid levels by both type-1 and type-2 agents
also converge to steady values. This condition is not an accounting identity,
but part of the optimization problem that agents must solve. It requires only
one strategic degree of freedom to be met, which is the overall consumption
asymmetry ǫ̂ that governs agents’ bid levels throughout the post-innovation
consumption schedule.

From the notation of Eq. (30) in the main text, for the consumption asym-
metries ǫ1 and ǫ2, and the fact that consumption rates ci and c̃ı̃ are related
to bid rates bi and b̃ı̃ through the same prices pi, the ratios of consumption
levels of the same good by the two types of agents may be written in terms
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of the q̂i and ǫ̂ as

c1
c̃2

=
b1

b̃2
=

1 + 2ǫ̂/q̂1
1− 2ǫ̂/q̂1

c̃1
c2

=
b̃1
b2

=
1 + 2ǫ̂/q̂2
1− 2ǫ̂/q̂2

. (56)

Introducing two further notational abbreviations

x1 ≡
2ǫ̂

q̂1
x2 ≡

2ǫ̂

q̂2
, (57)

the bid rates by either agent type are written in terms of the total bid rates
B1 and B2 as

b1 =
1 + x1

2
B1 b̃2 =

1− x1

2
B1

b̃1 =
1 + x2

2
B2 b2 =

1− x2

2
B2 (58)

The bid rates B1 and B2 are then related to the total money supply by
Eq. (34) in the main text.

As long as the values of the late-time interest rates are well-defined, ǫ̂t at
late t has a fixed value, by Eq. (40). Then, as long as production levels qi
converge to steady values, the ratios of both Bi to the total money supply
converge to steady values by Eq. (34). Finally, under these two conditions,
the relations of all bi and b̃i to the total money supply also converge, by
Eq. (58).

This completes the result, and shows that steady credit and debt balances
for the two agents a1,T and a2,T can be attained with a suitably chosen ǫ̂ by
Eq. (23).

A.2 Solutions for the Utopia economy

This section provides solutions for the non-cooperative equilibria of the Utopia
model of Sec. 6.2. We begin with the output equations for good-2, which does
not undergo an innovation shock.
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A.2.1 The unshocked good remains at steady state unperturbed

The main equation (51) for the response of output decisions to prices, under
the condition (40) on shadow prices, becomes

[

d

dt

(

d

dt
− ρπ

)

+ 2γ2f̄
′′
2

]

(s2 − s̄2) = 0. (59)

Since the initial condition from the pre-shock equilibrium was s2,0 = s̄2, the
unique bounded solution is s2,t = s̄2 for all t.

A.2.2 Recovery of the shocked good

s
(−)
1,t denotes the stock of the type-1 firms that tried to innovate and failed,

and s
(+)
1,t denotes the stock of the type-1 firms that succeeded. The initial

conditions for both stocks in the periods immediately following the innovation
are s

(±)
1,0+ → s̄1 − j. The steady-state stock for failed-innovation firms is

s̄1 ≡ (1/2) log 2, and the steady-state stock for successfully-innovating firms
is s̃1 = s̄1 + (1/2) log (1 + θ).

In an initial interval following the shock, only a measure (1− ξ) of firms
offer in markets. The recovery equation (51) for these firms becomes

(1− ξ)

2γ1

d

dt

(

d

dt
− ρπ

)

(

s
(−)
1 − s̄1

)

≈ −f̄ ′′
1

(

s
(−)
1 − s̄1

)

. (60)

This solution will govern offers q1,t until the shadow prices of successfully-
innovating firms fall to intersect market prices. Thereafter the successfully-
innovating firms also begin to offer.

Once both firms have entered, both relax to the new steady states with
the converging solution to the equation

1

2γ1

d

dt

(

d

dt
− ρπ

)

(

s
(−)
1 − s̄1

)

≈ −f̄ ′′
1

(

s
(−)
1 − s̄1

)

. (61)

These are both second-order linear equations, which possess growing and
decaying solutions. We first introduce notations for characteristic rates in
the two regimes:

ω2
+ ≡ −2γ1f̄

′′
1 evaluates on Eq. (1) to 4γ1ρπ

ω2
− ≡ − 2γ1

(1− ξ)
f̄ ′′
1 =

ρ2+
(1− ξ)

(62)
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In terms of these, the solutions for the relaxation time constants are

1

τ
= ±

√

ω2
− +

ρ2π
4

− ρπ
2

t ≤ t1

1

τ
= ±

√

ω2
+ +

ρ2π
4

− ρπ
2

t > t1. (63)

Both the positive and negative roots are needed in the initial transient for
t ≤ t1. Only the positive root is required for relaxation toward the turnpike
solution in the initial transient for t > t1. The negative root in the second line
of Eq. (63) will become important again, however, for the growing solution
in the terminal transient.

Equivalent expressions exist for production by type-2 firms. In the nu-
merical example, where the production and consumption parameters are set
to equal values for the two types, the type-2 dynamics will depend on the
same time constants as the dynamics for type-1 firms in the interval t > t1.

Relaxation and matching conditions: The timescale for relaxation shared
among models is the discount rate in the profit criterion ρπ. Therefore intro-
duce a dimensionless coordinate

z ≡ ρπt. (64)

Two scale factors that define local timescales relative to z are given shorthand
notations

√
±, which denote

√
+ ≡

√

1 +
4ρ2+
ρ2π

=

√

1 +
8γ1f̄ ′′

1

ρ2π
=

√

1 +
16γ1
ρπ

√
- ≡

√

1 +
4ρ2−
ρ2π

=

√

1 +
16γ1

(1− ξ) ρπ
. (65)

The two trajectories in the initial interval after the innovation event are

s
(+)
1,z − s̃1 = −j − 1

2
log (1 + θ) +

f1,∞ (1 + θ)

ρπ
(ez − 1)

s
(−)
1,z − s̄1 = ez/2

[

−jch
(z

2

√
-
)

+ σsh
(z

2

√
-
)]

. (66)
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The trajectory for s
(+)
1,z is fully determined by the production function be-

cause these firms are not responsive to markets. The trajectory for s
(−)
1,z is

determined by its initial conditions up to a single parameter σ which will
be determined by matching conditions when successful innovators enter the
markets.

The market prices and the shadow prices of successful type-1 firms become
equal at some time z1, which we will identify numerically. (The existence of
a unique intersection is assured because the shadow prices of successful firms
are falling while the market prices that can be maintained by the unsuccessful
firms are rising, during the initial post-innovation interval.)

When the successful type-1 firms have entered the markets, their stocks
relax with a fixed offset equal to the difference of late-time steady-state
stocks, according to the functions

s
(+)
1,z − s̃1 = s

(−)
1,z − s̄1 =

(

s
(−)
1,z1 − s̄1

)

e(z−z1)(
√
+−1)/2 (67)

The undetermined parameter σ in Eq. (66) is set by the requirement that
the total offering q1,t be continuous through the transition at z = z1, because
continuity of q1 is required for continuity of the price against which firms
perform their discounting.

In the numerical solutions of Sec. 6.2.2, the radicals determining the re-
laxation time constants (65) evaluate to

√
+ = 3 and

√
- =

√
11 ≈ 3.3166.

The resulting time constants (63) are given by 1/ρπτ =
(

±
√
11− 1

)

/2 for
t ≤ t1; 1/ρπτ = 1 for t > t1. The matching parameter that makes both prices
and quantities continuous is σ ≈ −0.14536. The remaining features of these
solutions are presented as plots in the main text.

A.2.3 Terminal transient

A terminal transient is solved in terms of the divergences of the three working
stocks from their steady-state turnpike values. The functional forms (using
properties of non-cooperative equilibria previously derived for stocks when
all firms optimize against a shared price system) are given by

s
(+)
1,t − s̃1 = s

(−)
1,t − s̄1 =

(

s
(−)
1,T − s̄1

)

e(t−T )/τ

s2,t − s̄2 = (s2,T − s̄2) e
(t−T )/τ . (68)
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When (as is the case in the numerical example) γ1 = γ2 = ρπ/2, the time
constant in both divergences is given by the negative root in the second line
of Eq. (63), which evaluates to

1

τ
= −

(√
++ 1

)

2
ρπ = −2ρπ. (69)

The two parameters in the solution (68), s
(−)
1,T and s2,T , are determined

by the requirements that (a1,T − a2,T ) = 0 and (a1,T + a2,T ) = 0. Initial
conditions are (a1,t + a2,t) = 0 as t → −∞, and ρC (a1,t − a2,t) = b̃1 − b̃2 of
the turnpike solution for t → −∞. Results of numerical solution are shown
in the figures of Sec. 6.2.3.
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