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Abstract: Regulation of gene activities is studied by means of a new
computer assisted mathematical analysis of ordinary differential equations
(ODEs) derived from binding equilibria and chemical reaction kinetics.
Here we present results on cross-regulation of two genes through activa-
tor and/or repressor binding. Arbitrary (differentiable) binding function
can be used but systematic investigations are presented for gene-regulator
complexes with integer valued Hill coefficients up to n = 4. The dynamics
of gene regulation is derived from bifurcation patterns of the underlying
systems of kinetic ODEs. In particular, we present analytical expressions
for the parameter values at which one-dimensional (transcritical, saddle-
node or pitchfork) and/or two-dimensional (Hopf) bifurcations occur. A
classification of regulatory states is introduced, which makes use of he sign
of a ’regulatory determinant’ D (being the determinant of the block in
the Jacobian matrix that contains the derivatives of the regulator binding
functions): (i) Systems with D < 0, observed, for example, if both pro-
teins are activators or repressors, give rise to one-dimensional bifurcations
only and lead to bistability for n ≥ 2, and (ii) systems with D > 0, found
for combinations of activation and repression, sustain a Hopf bifurcation
and undamped oscillations for n > 2. The influence of basal transcription
activity on the bifurcation patterns is described. Binding of multiple sub-
units can lead to richer dynamics than pure activation or repression states
if intermediates between the unbound state and the fully saturated DNA
initiate transcription. Then, the regulatory determinant D can adopt both
signs, plus and minus.

Key words: Basal transcription – bifurcation analysis – cooperative bind-
ing – gene regulation – Hill coefficient – Hopf bifurcation.
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Notation

metabolites A,B,C, . . . ,

concentrationsa of metabolites [A] = a, [B] = b, [C] = c . . . ,

genes G1,G2,

concentrationsa of genes [G1] = g1, [G2] = g2,

transcribed (m)RNAs Q1,Q2,

concentrations of RNAs [Q1] = q1, [Q2] = q2,

translated proteins P1,P2,

concentrationsa of proteins [P1] = p1, [P2] = p2,

gene-protein complexes G1 · P2 = H1, G2 · P1 = H2,

concentrationsa of complexes [G1 · P2] = [H1] = h1,

[G2 · P1] = [H2] = h2,

dissociation constants K1 = [G2]·[P1]
[H2]

= g2·p1

h2

,

K2 = [G1]·[P2]
[H1]

= g1·p2

h1

,

transcription rate constants kQ

1 , kQ

2 ,

translation rate constants kP

1 , k
P

2 ,

RNA degradation rate constants dQ

1 , dQ

2 ,

protein degradation rate constants d P

1 , d P

2 ,

binding functions F1(p2) , F2(p1) ,

ratios of rate constants ϑ1 =
kQ
1
·kP

1

d Q
1
·d P

1

, ϑ2 =
kQ
2
·kP

2

d Q
2
·d P

2

,

φ1 =
d P
1

kP
1

, φ2 =
d P
2

kP
2

,

regulatory determinant D(p1, p2) =

= − kQ

1 kQ

2 kP
1kP

2

∣∣∣∣∣∣
0

(
∂F1

∂p2

)

(
∂F2

∂p1

)
0

∣∣∣∣∣∣
.

aDepending on conditions the symbols express concentrations or activities.
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1 Introduction

Theoretical work on gene regulation goes back to the nineteen sixties [1]
soon after the first repressor protein had been discovered [2]. A little later
the first paper on oscillatory states in gene regulation was published [3]. The
interest in gene regulation and its mathematical analysis never ceased [4–6]
and saw a great variety of different attempts to design models of genetic
regulatory networks that can be used in systems biology for computer simu-
lation of gen(etic and met)abolic networks.1 Most models in the literature
aims at a minimalist dynamic description which, nevertheless, tries to ac-
count for the basic regulatory functions of large networks in the cell in order
to provide a better understanding of cellular dynamics. A classic in gen-
eral regulatory dynamics is the monograph by Thomas and D’Ari [7]. The
currently used mathematical methods comprise application of Boolean logic
[8–10] stochastic processes [11] and deterministic dynamic models (examples
are [12–14]. In vivo constructs and selection experiments [15–19] provide
insight into regulatory dynamics and better understanding of genabolic net-
works. Apart from diverse minimalist models [20], relatively few articles are
concerned with the mechanistic prerequisites for the occurrence of certain
dynamic features based on positive and negative feedback loops [21, 22] like
stability, bistability, periodicity or homeostasis. Only few essentially new
results are presented in this contribution. Instead we carry out the analyt-
ical approach further than in other papers and present a new approach to
bifurcation analysis that allows for classification of the dynamical systems
for gene regulation.

The basic gene regulation scenario that underlies the calculations pre-
sented here is sketched in figure 1 and has been adopted from the booklet
by Ptashne & Gann [23]. Two classes of molecular effectors, activators and
repressors, decide on the transcriptional activity of a gene, whose activity is
classified according to three states: (i) ‘Naked’ DNA is commonly assumed
to have a low or basal transcription activity (basal state), (ii) transcription
rises to the normal level when (only) the activator is bound to the regula-
tory region of the gene (active state), and (iii) complexes with repressor are
inactive no matter whether the activator is present or not (inactive state).
The basal state is sometimes also characterized as ’leaky transcription’. We
shall use this notion here for a general term in the kinetic equations that de-
scribes unregulated transcription. Effectors often become active as oligomers,
commonly dimers or tetramers, and therefore we shall refer also cases where
more than one molecule have to bind before regulation becomes effective (For
an overview of mathematical approaches to various binding equilibrium that
are of relevance in gene regulation see [24]). The genetic regulatory system
is completed by translation of the transcribed mRNAs into protein regula-
tors. Both classes of molecules, mRNAs and proteins, undergo degradation
through a first order reaction. DNA, in the form of the genes is assumed to be
present at constant concentration. Transcription, translation, and degrada-

1Discussion and analysis of combined genetic and metabolic networks has be-
come so frequent and intense that we suggest to use a separate term, genabolic

networks for this class of complex dynamical systems.
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Figure 1: Basic principle of gene regulation. The figure sketches the reg-

ulated recruitment mechanism of gene activity control in prokaryote cells as dis-
covered with the lac genes in Escherichia coli [23]. The gene has three states of
activity, which are regulated by the presence or absence of glucose and lactose in
the medium: State I, basal state called ’leaky transcription’ occurs when both
nutrients are present and it is characterized by low level transcription; neither the
activator, the cap protein, nor the lac-repressor protein are bound to their sites
on DNA. State II, activated state is induced by the absence of glucose and the
presence of lactose and then cap is bound to DNA, but lac-repressor protein is
absent. Finally, when lactose is absent the gene is in the inactive state no mat-
ter whether glucose is available or not. Then, the lac-repressor protein is bound
to DNA and transcription is blocked. The promotor region of the DNA carries
specific recognition sites for the RNA polymerase in addition to the binding sites
for the regulatory proteins.
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tion are multi-step processes and follow rather involved reaction mechanisms.
A carefully studied example of such a multi-step process is template-induced
RNA synthesis commonly called plus-minus RNA replication [25, 26]. In case
monomers and enzyme, the bacteriophage Qβ replicase, are present in excess,
the over-all kinetics, however, follows simple first-order rate laws. We shall
adopt simple kinetic first order expressions for transcription and translation
here.

Following our approach gene regulatory systems can be grouped into two
classes: (i) Simple systems for which a complete (computer assisted) quali-
tative analysis can be carried out analytically,2 and (ii) complex systems for
which qualitative analysis is pending because of hard computational problems
or principal difficulties. In both classes the binding function may be arbitrar-
ily complicated provided it is differentiable. The distinction between the two
classes is made in section 3.2 by means of the Jacobian matrix of the dynam-
ical systems. In particular, all cross-regulatory two gene systems are of class
(i) no matter how sophisticated the binding functions are. In a forthcoming
study [27] we shall present analogous results for cases in which the analysis
in more involved. These systems include two gene systems where the genes
have double functions, for example self-repression and cross-activation, and
regulatory systems with more than two genes apart from those with cyclic
regulation (1 → 2, 2 → 3, . . . , n → 1) which fall also into class (i). Here we
present the analysis of the ODEs derived from chemical reaction kinetics of
gene regulation under the assumption of fast binding equilibria. The (com-
puter assisted) qualitative analysis of the dynamical systems is followed by
a discussion of results obtained for some special cases with Hill coefficients
n = 1, 2, 3, and 4.

2 Kinetic equations

2.1 Binding equilibria

The DNA is assumed to carry two genes, G1 and G2, which have binding
sites for effectors, activators and/or repressors in the promoter region. Bind-
ing of the proteins is assumed to occur fast compared to transcription and
translation, and accordingly the equilibrium assumption is valid. The binary
interaction is restricted to cross-regulation of the two genes: The translation
product of gene G1 controls the activity of gene G2 and vice versa. In other
words, the activity of gene G1 is a function of the equilibrium concentration
of protein P2, p̄2, and gene G2 is likewise controlled by P1:

G1 + n2 P2

g0 F1(p̄2;n2,...)
−−−−−−−−−⇀↽−−−−−−−−− G1 · P2 and (1)

G2 + n1 P1

g0 F2(p̄1;n1,...)
−−−−−−−−−⇀↽−−−−−−−−− G2 · P2 . (2)

Since the number of DNA molecules is constant, both genes are present in
the same total concentrations: (g1)0 = (g2)0 = g0. In the simplest case,

2Computer assistance in simple problems may involve computation of solutions
for equations but does not require full simulations of regulatory dynamics.
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binding equilibria of monomers, n1 = n2 = 1, and mass action we obtain:3

G1 + P2

K−1

2


 G1 · P2 and (3)

G2 + P1

K−1

1


 G2 · P1 . (4)

The concentration of the gene protein complex is expressed by

[G1 · P2] = c̄1 = g0 ·
p̄2

K2 + p̄2

≈ g0 ·
(p̄2)0

K2 + (p̄2)0

[G2 · P1] = c̄2 = g0 ·
p̄1

K1 + p̄1

≈ g0 ·
(p̄1)0

K1 + (p̄1)0

,

where we approximate the equilibrium protein concentrations by the total
concentrations, p̄1 ≈ (p1)0 and p̄2 ≈ (p2)0, assuming that the numbers of
genes are smaller than the numbers of effector molecules. In order to formu-
late cross-regulation of two genes in versatile form we generalize the dimen-
sionless regulatory functions, Fj, j = 1, 2, to cooperative interactions with
arbitrary exponents n (see section 4.2):

Gene “1”

{
F

(act)
1 (p2; K2, n) =

pn

2

K2 + pn

2

activation,

F
(rep)
1 (p2; K2, n) = K2

K2 + pn

2

repression,

Gene “2”

{
F

(act)
2 (p1; K1, n) =

pn

1

K1 + pn

1

activation,

F
(rep)
2 (p1; K1, n) = K1

K1 + pn

1

repression .

(5)

Here ‘rep’ and ‘act’ stand for repression and activation, respectively, where
either the free gene, Gj, or the complex, Gj ·Pi, are transcribed. The exponent
n, in particular when determined experimentally, is called the Hill coefficient
(See [28] and [29], p. 864 ff.). The Hill coefficient n is related to the molecular
binding mechanism. In simple cases n is the number of protein monomers
required in binding to the DNA in order to achieve effector activity.

More than one parameter will be required for binding equilibria that
involve more than one protein subunit. To give an example, consecutive
binding of four ligands P2 to gene G1,

G1 + 4P2

K−1

21


 H
(1)
1 + 3P2

K−1

22


 H
(2)
1 + 2P2

K−1

23


 H
(3)
1 + P2

K−1

24


 H
(4)
1 ,

where H
(k)
1 = G1 · (P2)k, the complex formed by the gene with k protein

monomers. If the only complex that is active in transcription were H
(4)
1 the

binding function would adopt the form4

F
(act)
1 (p2; K21, . . . , K24) =

=
p4

2

K21K22K23K24 + K22K23K24 p2 + K23K24 p2
2 + K24 p3

2 + p4
2

.

3It will turn out that the usage of dissociation rather than binding constants is
of advantage and therefore we define K = [G] · [P]/[G · P].

4The equilibrium constants applied are macroscopic dissociation constants. For
equivalent microscopic constants the individual terms in the denominator receive
the binomial coefficients, (1, 4, 6, 4, 1), as factors.
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Examples of different binding functions will be discussed together with the
results derived for the individual systems.

2.2 Reaction kinetics

The transcription reactions come in two variants, an activating mode (cor-
responding to state II of figure 1) and a repressing mode (corresponding to
state III of figure 1). The basal state (state I) can be included in the ac-
tivating or the repressing mode as we shall see later. The kinetic reaction
mechanism for transcription then has the following form:





G1 · P2

k̃Q
1−−−→ G1 + Q1 activation,

G1

k̃Q
1−−−→ G1 + Q1 repression,

(6)





G2 · P2

k̃Q
2−−−→ G2 + Q2 activation,

G2

k̃Q
2−−−→ G2 + Q2 repression.

(7)

In case of activation, the regulator-gene complexes are transcribed, whereas
the complexes are inactive in repression and transcription is mediated by the
free genes.

In contrast to DNA, the transcription products, the mRNAs Q1 and Q2,
as well as the regulators, the proteins P1 and P2, have only finite lifetime
because of decay reactions. For translation of mRNAs and for degradation
of mRNAs as well as proteins we find:

Qi

kP
i−−−→ Qi + Pi , i = 1, 2 : translation , (8)

Qi

d Q
i−−−→ 0 , i = 1, 2 : degradation , and (9)

Pi

d P
i−−−→ 0 , i = 1, 2 : degradation . (10)

Translation and degradation reactions are modelled as simple single step pro-
cesses. The approximation for translation is well justified in case of excess
monomers, ribosomes and other translation factors (as mentioned in the in-
troduction). Simple degradation reactions are always of first order. Since
the total concentration of the genes is constant and since we shall apply
only binding functions that are proportional to g0, we can absorb the DNA

concentration in the rate constant for transcription: kQ

i = k̃Q

i · g0. As a con-
sequence the rate parameters have different dimensions, [kQ

i ] = [m× t−1] and
[kP

i ] = [dQ

i ] = [d P

i ] = [t−1] where m stands for ’molar’ and t stands for ’time’.
These substitutions are advantageous in a second aspect, too: The regu-
latory functions are dimensionless, no matter whether we are using simple
hyperbolic or higher order binding equilibria.

Now, we are in a position to write down the kinetic differential equations
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for all four molecular species, Q1, Q2, P1, and P2, derived from two genes:

dqi

dt
= q̇i = kQ

i Fi(pj) − dQ

i qi , i = 1, 2 , j = 2, 1 , and (11)

dpi

dt
= ṗi = kP

i qi − d P

i pi , i = 1, 2 . (12)

Accordingly, the dynamical system contains eight kinetic parameters and
two binding functions. Except for the binding functions Fi(pj) the system
is linear. This property will be important for analyzing the Jacobian matrix
and determining the stability of stationary points.

3 Qualitative analysis

3.1 Determination of stationary points

In order to derive equations for the stationary or fixed points of the dynamical
system (11,12) we introduce four ratios of reaction rate parameters,

ϑi =
kQ

i kP

i

dQ

i d P

i

and φi =
d P

i

kP

i

, i = 1, 2 , (13)

that simplify the expressions obtained from q̇i = ṗi = 0 , i = 1, 2:

p̄i − ϑi Fi(p̄j) = 0 , i = 1, 2 , j = 2, 1 . (14)

The binding functions are normalized 0 ≤ Fi ≤ 1 and hence the equilibrium
concentrations of proteins are confined to values in the range 0 ≤ p̄i ≤
ϑi with i = 1, 2. Commonly, the binding functions Fi are ratios of two
polynomials and then, equation (14) can always be transformed into two
coupled polynomials. Examples will be given in the forthcoming sections.
Provided the stationary values of the protein concentrations are known we
find for the mRNAs

q̄i = φi p̄i , i = 1, 2 . (15)

Again we point at a difference in dimensions: [ϑi] = [m], whereas the φi’s are
dimensionless. Stationary concentrations are completely defined by the two
ratios of kinetic constants, ϑ1 and ϑ2 (and, of course, by the parameters in
the functions F1 and F2). According to equation (15) the stationary mRNA
concentrations q̄i are related to the corresponding protein concentrations p̄i

through multiplication by a positive factor and hence q̄i is zero if and only if
p̄i = 0.

Apart from an initial phase determined largely by the choice of the
initial values qi(0), pi(0) (i = 1, 2) the projection of the trajectories(
q1(t), q2(t), p1(t), p2(t)

)
onto the (q1, q2)-subspace shows close similarity to

that onto the (p1, p2)-plane. For stability analysis it is sufficient therefore to
consider the fixed points and their properties on either of the two subspaces.
We choose the ’protein’-subspace, P = {pi; pi ≥ 0∀ i = 1, 2} since protein
concentrations are calculated more directly. It is worth noticing that the
positions of the stationary points, P̄ = (p̄1, p̄2) ∈ P, depend only on ϑ1 and
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Table 1: Protein concentrations in the strong and weak binding limits.

The limits were calculated from equations (17-19) by taking the limits limK1 → 0
and/or limK2 → 0 or limK1 → ∞ and/or limK2 → ∞, respectively.

Strong binding: Weak binding:

System lim Kj → 0 lim Kj → ∞
j p̄1 p̄2 j p̄1 p̄2

act-acta 1 0 0 1 0 0

ϑ1
ϑn

K2+ϑn

2

ϑ2

2 0 0 2 0 0

ϑ1 ϑ2
ϑn

K1+ϑn

1

1,2 0 0 1,2 0 0

ϑ1 ϑ2

act-rep 1 0 0 1 ϑ1
ϑn

2

K2+ϑn

2

ϑ2

2 ϑ1 ϑ2
K1

K1+ϑn

1

2 0 ϑ2

1,2 0 0 1,2 0 ϑ2

rep-rep 1 ϑ1 0 1 ϑ1
K2

K2+ϑn

2

ϑ2

2 0 ϑ2 2 ϑ1 ϑ2
K1

K1+ϑn

1

1,2 ϑ1 0 1,2 ϑ1 ϑ2

0 0

0 ϑ2

a The solution (p̄1 = 0, p̄2 = 0) is a double root in the strong binding limit.

ϑ2 and not on all eight kinetic parameters. Substitution of p̄2 = ϑ2F2(p̄1)
yields the solution:

p̄1 − ϑ1 F1

(
ϑ2 F2(p̄1)

)
= 0 . (16)

Equation (16) leads to high order polynomials for nonlinear binding functions
which, nevertheless, are computed straightforwardly for general n for the
simple binding functions (5). For activation-activation, activation-repression,
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and repression-repression, we obtain

p̄1 ·
(

p̄n·n
1 ϑn

2 − p̄n·n−1
1 ϑ1ϑ

n
2 + K2 ·

n∑

k=0

p̄
n·(n−k)
1

(
n

k

)
Kk

1

)
= 0 , (17)

K2 ·
(

n∑

k=0

p̄
n·(n−k)+1
1

(
n

k

)
Kk

1

)
+ (p̄1 − ϑ1) · (ϑ2K1)

n = 0 , and (18)

(p̄1 − ϑ1) · K2 ·
(

n∑

k=0

p̄
n·(n−k)
1

(
n

k

)
Kk

1

)
+ p̄1 · (ϑ2K1)

n = 0 , (19)

respectively. The equilibrium concentration p̄2 is readily obtained from

p̄2 =
ϑ2 · p̄n

1

K1 + p̄n
1

for (17) and p̄2 =
ϑ2 · K1

K1 + p̄n
1

for (18) and (19).

From equation (17) follows that the origin is always a fixed point for
activation-activation systems, P̄1 = (0, 0), corresponding to both genes si-
lenced. The degree of the polynomials in p̄1, πn = n2 + 1, increases with the
square of the Hill coefficient and thus reaches already 17 for n = 4. Neverthe-
less, we obtained never more than three or four real roots through numerical
solution (for n ≤ 4). Obviously, we have an even number of real roots for n
odd (1 and 3), and an odd number of real roots for n even (2 and 4).

The high degree of the polynomials is prohibitive for direct calculations
based on the equations (17-19) but the expressions are suitable to compute,
for example, the limits of the equilibrium concentrations for strong and weak
binding, lim K1,2 → 0 and lim K1,2 → ∞, respectively. The results are show
in table 1 and they correspond completely to the expectations. In case the
limits are taken for both constants simultaneously the limiting concentra-
tions are independent of the Hill coefficient n – not unexpectedly since all
functions Fi(p̄j; Kj, n) approach either zero or one in these limits. Examples
of individual dynamical systems will be discussed in section 4 and therefore
we mention only one general feature here: In the strong binding limit the
combination activation-activation leads to two active genes or two silencing
of both genes, whereas we have alternate activities – ‘1’ active and ‘2’ silent
or ‘1’ silent and ‘2’ active – in the repression-repression system. Weak bind-
ing, on the other hand, silences the genes in the act-act case and leads to
full activities in rep-rep systems.

In the next subsection 3.2 we shall make use again of equations (17-19)
and derive limits of functions for the strong binding case, which are applied
to the analysis of the regulatory dynamics in parameter space.

3.2 Jacobian matrix

The dynamical properties of the ODEs (11,12) are analyzed by means of the
Jacobian matrix and its eigenvalues. For the combined vector of all variables,
x = (x1, . . . , x4) = (q1, q2, p1, p2), the Jacobian matrix A has a useful block

11



Figure 2: Eigenvalues of the Jacobian matrix (20). The four eigenvalues of
a two-gene system, ε1, ε2, ε3, and ε4, are plotted as functions of D around the
point D = 0 as reference. The dimension of the ordinate axis is reciprocal time,
[t−1]. At D = 0 and different values of dQ

1 , dQ

2 , d P

1 and d P

2 we observe four negative
real eigenvalues of the Jacobian, which are turning into complex conjugate pairs
at the values D = D1, D = D2, and D = D3. At DoneD and at DHopf the fixed
point changes stability. The one dimensional bifurcation lies at negative values of
D since DoneD < 0, whereas DHopf > 0, and thus the Hopf bifurcation appears
always at positive D-values. Color code: Real eigenvalues are drawn in black and
the real parts of complex conjugate pairs of eigenvalues are shown as red lines.

structure:

A =

{
aij =

∂ẋi

∂xj

}
=


Qd

... Qk
. . . . . . . . . .
Pk

... Pd


 =

=




−dQ

1 0
... kQ

1
∂F1

∂p1

kQ

1
∂F1

∂p2...
0 −dQ

2

... kQ

2
∂F2

∂p1

kQ

2
∂F2

∂p2...
. . . . . . . . . . . . . . . . . . . . . . . . . . . ....
kP

1 0
... −d P

1 0...
0 kP

2

... 0 −d P

2




. (20)

This block-structure of matrix A largely facilitates the computation of the 2n
eigenvalues [30, 31]. Since the matrices Qd and Pk commute, Qd·Pk = Pk·Qd,
the relation

∣∣∣∣
Qd Qk

Pk Pd

∣∣∣∣ = |Qd · Pd − Qk · Pk |

holds. In certain cases, among them all forms of cross-regulation of two
genes and all forms of cyclic pairwise regulation of more than two genes,
Gn ⇒ G1 ⇒ G2 ⇒ · · · ⇒ Gn for arbitrary n [27], the secular equation is of
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the form:5

(ε + dQ

1 )(ε + dQ

2 )(ε + d P

1 )(ε + d P

2 ) + D = 0 with

D = − kQ

1 kQ

2 kP

1k
P

2 Γ(p1, p2) .
(21)

Since D and Γ(p1, p2) are obtained from the binding functions by calculating
the derivatives with respect to the protein concentrations,

Γ(p1, p2) = −
∣∣∣∣∣

0 ∂F1

∂p2

∂F2

∂p1

0

∣∣∣∣∣ =
∂F1

∂p2

· ∂F2

∂p1

, (22)

we call D the regulatory determinant of the dynamical system. Knowl-
edge of D is sufficient to analyze the stability of fixed points and to cal-
culate the parameter values at the bifurcation points. At D = 0 the eigen-
values of the Jacobian are the set of all 4 negative degradation rate con-
stants, −dQ

i and −d P

i (i = 1, 2), which we assume to be ordered by value:
ε1 = −min{dQ

1 , dQ

2 , d P

1 , d P

2 } is the largest and ε4 = −max{dQ

1 , dQ

2 , d P

1 , d P

2 }
is the smallest eigenvalue of A. In the non-degenerate case, i.e. when all
degradation rate parameters are different, the eigenvalues correspond to four
points on the negative (reciprocal time) axis represented by the ordinate axis
in figure 2. For a fixed point P̄ ∈ P with D = 0 this implies asymptotic
stability. Non-generic cases with double or multiple real roots at D = 0 im-
ply also asymptotic stability, only the analytical continuation yielded one or
more complex conjugate pairs of eigenvalues with negative real parts.

Figure 2 shows a plot of the individual eigenvalues as functions of D. All
curves together form a quartic equation rotated by π/2, and the shape of
the forth-order polynomial determines the bifurcation pattern. At increasing
negative values D < 0, i.e. in the negative D-direction in figure 2, the two
eigenvalues ε2 and ε3 approach each other and, at some point, D = D1

this pair of real eigenvalues merges and becomes a complex conjugate pair of
eigenvalues. The largest and the smallest eigenvalue, ε1 and ε4, remain single-
valued. Because of the shape of a quartic equation, the largest eigenvalue ε1

increases and the lowest eigenvalue ε4 decreases in the negative D-direction.
The condition ε1 = 0 occurs at the position D = DoneD, which is defined by

DoneD = − dQ

1 · dQ

2 · d P

1 · d P

2 . (23)

Here, the fixed point P̄
(
p̄1(D), p̄2(D)

)
changes stability and becomes unstable

for D < DoneD. Since only one eigenvalue is involved, the corresponding
bifurcation is one-dimensional, for example a transcritical, a saddle-node or
a pitchfork bifurcation (For examples see section 4). From equation (23)
follows the condition for the stability of fixed points with negative D:

P̄ with Γ(p̄1, p̄2) > 0 is stable iff ϑ1 · ϑ2 · Γ(p̄1, p̄2) < 1 . (24)

The stability of fixed points P̄ with negative values of D, like their positions
(p̄1, p̄2), is determined by the two parameter combinations ϑ1, ϑ2, and the

5Generalization to n genes is straightforward: We have 2n variables and 2n
factors rather than four, and the function Γ depends on n protein concentrations.
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derivatives of the binding functions (22). For D < DoneD the fixed point is
unstable, and the largest eigenvalue ε1 is real and positive.

In the direction of positive values, D > 0, the eigenvalues approach each
other in pairs: (ε1, ε2) and (ε3, ε4). If the two eigenvalues in such a pair
become equal at some value D > 0, at the values D2 and D3 in figure 2, the
two negative real eigenvalues merge and give birth to a complex conjugate
pair with negative real part. The real parts of the two complex conjugate
pairs behave like the upper part of a quadratic equation rotated by π/2
and hence the real part of the pair formed by the two larger eigenvalues,
λ1 = <(ε1, ε2), increases with increasing D. As indicated in figure 2 it may
cross zero at some point D = DHopf . There the fixed point looses stability
there through a Hopf bifurcation. The value of D can be computed (see the
Appendix) and one obtains:

DHopf =
(dQ

1 + dQ

2 )(dQ

1 + d P

1 )(dQ

1 + d P

2 )(dQ

2 + d P

1 )(dQ

2 + d P

2 )(d P

1 + d P

2 )

(dQ

1 + dQ

2 + d P

1 + d P

2 )2
. (25)

If 0 ≤ D < DHopf is fulfilled for some fixed point P̄ ∈ P with positive D, the
fixed point is stable:

P̄ with Γ(p̄1, p̄2) < 0 is stable iff − kQ

1 · kQ

2 · kP

1 · kP

2 · Γ(p̄1, p̄2) < DHopf . (26)

P̄ is unstable for D > DHopf , and at D = DHopf we expect a marginally stable
point with concentric orbits in a (small) neighborhood of P̄ . In summary, all
fixed points P̄ ∈ P are asymptotically stable in the range DoneD < D < DHopf

(see the Appendix), all four eigenvalues are real between D1 < D < D2.
Equation (21) can be solved easily if all degradation rate parameters are

equal, dQ

1 = dQ

n = d P

1 = d P

2 = d:

(ε + d)4 + D = 0 =⇒ εi = − d + 4
√
−D , i = 1, . . . , 4 .

Similarly, the eigenvalues are readily calculated if all RNA and all protein
degradation rates are the same: dQ

1 = dQ

2 = dQ and d P

1 = d P

2 = d P yields

(ε + dQ)(ε + d P) = ±
√
−D ,

where the computation boils down to solving two quadratic equations.
For a given fixed point the function Γ(p̄1, p̄2) determines the bifurcation

behavior of the system. In all examples with simple binding functions of
type (5), Γ(p̄1, p̄2) is either positive or negative for all (non-negative) values
of the concentrations p1 and p2. Indeed we find Γ(p̄1, p̄2) ≥ 0 for activation
of both genes (act-act) and repression of both genes (rep-rep), whereas com-
binations of activation and repression, (act-rep) and (rep-act), yields always
non-positive values, Γ(p̄1, p̄2) ≤ 0. According to (21) D has opposite sign to
Γ. Calculation of the regulatory determinant for arbitrary n is straightfor-
ward and yields:

D = ∓ kQ

1 kQ

2 kP

1k
P

2

n2K1K2 p̄n−1
1 p̄n−1

2

(K1 + p̄n
1 )2(K2 + p̄n

2 )2
. (27)

Here, the minus sign holds for act-act and rep-rep whereas the plus sign is
true for act-rep and rep-act. In case of act-act insertion of the coordinates of
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the fixed point at the origin, P̄1 = (0, 0), yields the very general result that
P̄1 is always stable for n ≥ 2, because we obtain D = 0 in this case.

Equations (17-19) are useful in searching parameter space for bifurca-
tions. Auxiliary variables can be used to define manifolds on which the
search is carried out. As an illustrative example we consider the search for a
Hopf bifurcation along the one-dimensional manifold defined by (kQ

1 = χ1 · s,
kQ

2 = χ2 · s,K1 = λ1/s,K2 = λ2/s) in the act-rep system (18). From these
relations follows ϑi = δi ·s with δ1 =

(
kP

1/(d
Q

1 d P

1 )
)
χ1 and δ2 =

(
kP

2/(d
Q

2 d P

2 )
)
χ2,

respectively. The computation of the equilibrium concentrations for large s
is straightforward and yields for n > 1:

p̄1 = α1 · s2/(n2+1) with α1 =

(
δ1(δ2λ1)

n

λ2

)1/(n2+1)

and

p̄2 = α2 · s−2n/(n2+1) with α2 =

(
λ1

(δ1(δ2λ1)n3/(n2+1)

)n/(n2+1)

.

Insertion into the expression for the regulatory determinant leads to exact
cancellation of the powers of s and we find in the

limit of large s : Dlim ≈ kQ

1 kQ

2 kP

1k
P

2

n2

ϑ1ϑ2

= dQ

1 dQ

2 d P

1 d P

2 n2 . (28)

This value has to be compared with the condition for the occurrence of a Hopf
bifurcation (25). As an example of an application we analyze the function

H(dQ

1 , dQ

2 , d P

1 , d P

2 , n) = Dlim

/
DHopf =

= n2 dQ

1 dQ

2 d P

1 d P

2 (dQ

1 + dQ

2 + d P

1 + d P

2 )2

(dQ

1 + dQ

2 )(dQ

1 + d P

1 )(dQ

1 + d P

2 )(dQ

2 + d P

1 )(dQ

2 + d P

2 )(d P

1 + d P

2 )
, (29)

to show whether or not act-rep systems with Hill coefficient n > 1 can un-
dergo a Hopf bifurcation at certain parameter values and sustain undamped
oscillations. A value H > 1 indicates that a limit cycle exists for sufficiently
large values of s. The maximum of H is computed by partial differentiation
with respect to the degradation rate constants6

(
∂H

∂dQ

1

)
= 0 =⇒ (dQ

1 )3(dQ

2 + d P

1 + d P

2 ) + (dQ

1 )2
(
(dQ

2 )2 + (d P

1 )2 + (d P

2 )2
)
−

− 3dQ

1 (dQ

2 d P

1 d P

2 ) − dQ

2 d P

1 d P

2 (dQ

2 + d P

1 + d P

2 ) = 0 .

This cubic equation is hard to analyze but the question raised here can be
answered without explicit solution. We assume dQ

2 = d P

1 = d P

2 = d and obtain

(dQ

1 − d)(dQ

1 + d)2 = 0 =⇒ dQ

1 = d and H(d, d, d, d, n) =
n2

4
.

By numerical inspection we showed that any deviation from uniform degra-
dation rate parameters leads to a smaller value for the maximum of H. In

6Since the function (29) is symmetric with respect to all four rate parameters
all four partial derivatives have identical analytical expressions.
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the strong binding limit the act-rep system with n = 2 is confined to values
H ≤ 1 and indeed no limit cycle has been observed. Systems with n ≥ 3,
however, show values of Hmax = n2/4 > 1 in certain regions of parameter
space, and they do indeed sustain undamped oscillations. For the fixed point
in the positive quadrant the D-value increases from weak to strong binding
(See section 4.2) and this completes the arguments for the nonexistence of
undamped oscillation for n = 2.

3.3 Basal transcription

The basal state shown in figure 1 is often characterized as ‘leaky transcrip-
tion’ since it leads to low levels of mRNA. In order to take basal activity
formally into account we add (small) constant terms, γ1 and γ2, to the bind-
ing functions (5) and find for activation and repression

F
(act)
1 (p2) = γ1 +

pn
2

K2 + pn
2

=
γ1K2 + (1 + γ1)p

n
2

K2 + pn
2

F
(rep)
1 (p2) = γ1 +

K2

K2 + pn
2

=
(1 + γ1)K2 + γ1p

n
2

K2 + pn
2

F
(act)
2 (p1) = γ2 +

pn
1

K1 + pn
1

=
γ2K1 + (1 + γ2)p

n
1

K1 + pn
1

F
(rep)
2 (p1) = γ2 +

K1

K1 + pn
1

=
(1 + γ2)K1 + γ2p

n
1

K1 + pn
2

.

(30)

Basal transcription activity is readily incorporated into the analytic pro-
cedure described here. The computation of fixed points is straightforward
although it involves more terms. Since the constant terms vanish through
differentiation, the regulatory determinant and the whole Jacobian matrix
depend on basal transition only via the changes in the positions of the fixed
points, P̄ = (p̄1, p̄2).

For gene regulation leaky transcription is most important in cases where
both genes are activated. Activation without basal transcription allows for
irreversible silencing of both genes since they can be turned off completely
and after degradation of the activator proteins the system cannot recover
its activity. In mathematical terms the origin, P̄ (0, 0), is an asymptotically
stable fixed point. Basal transcription changes this situation because some
low-level protein synthesis is always going on and the origin is a fixed point
no longer. In the forthcoming section we shall consider several examples
where leaky transcription has been included.
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4 Selected examples

Examples for activation and repression were considered for non-cooperative
binding (n = 1) as well as for cooperative binding (n ≥ 2) up to n = 4. In
addition, examples were included where intermediate complexes are active in
transcription. Our calculations have shown that at low ratios ϑ/K all sys-
tems sustain asymptotically stable stationary states in the positive quadrant
including the origin, all except very few (see table 4) undergo a bifurcation at
some larger value of ϑ/K and reach, thereafter, the relevant or regulated state.
The changes in the dynamical patterns in parameter space are investigated
by means of an auxiliary variable s that defines a path in parameter space
(See section 3.2). The range in parameter space with low values ϑ/K is char-
acterized by low ratios of reaction rate parameters and/or high dissociation
parameters of the regulatory complexes, which is tantamount to low binding
constants or low affinities. It will be denoted here as the unregulated regime,
because the dynamics in this range is not suitable for regulatory functions.
In contrast, the parameter range with high ratios ϑ/K above the bifurcation
value will be called the regulated regime since bistabilities or oscillations (or
sometimes both) occur in this region. In the cases discussed here we shall
investigate paths through parameter space that lead from the unregulated to
the regulated regime which can be achieved, for example, by assuming ϑ ∝ s
and K ∝ s−1.7 For all pure activation-activation and repression-repression
systems the function D is non-positive and hence Hopf bifurcations, and limit
cycles derived from them, can be excluded. Instead one dimensional bifur-
cations, transcritical, saddle-node, and pitchfork bifurcations, are observed,
the latter two resulting in bistability of the system. Activation-repression
yields non-negative values of D and hence the systems may reach oscillatory
states via the Hopf bifurcation mechanism. Examples, where intermediate
complexes are active in transcription, were included because they may give
rise to regulatory determinants D that can adopt positive as well as nega-
tive values and therefore may sustain oscillations and bistability at different
parameter values.

4.1 The non-cooperative binding case

In the non-cooperative case binding of effectors to the regulatory regions of
DNA is described by the equilibria (3) and (4). As said we have two classes
of binding functions (5) and this leads to three different cases: (i) activation-
activation, (ii) activation-repression, and (iii) repression-repression, which
will be handled separately.

Activation-activation. The binding functions for this case are

F1(p2) =
p2

K2 + p2

and F2(p1) =
p1

K1 + p1

. (31)

7Considering the limits, lims→0 P̄k(s) and lims→∞ P̄k(s) with k = 1, 2, . . . , is
important for all fixed points, for example, in order to recognize equivalent and
non-equivalent paths through parameter space.
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Figure 3: Position and stability of the two fixed points in the two-gene

non-cooperative activation-activation system according to equation (32).
The upper part of the figure shows the regulatory determinant D as a function of
the auxiliary variable s for both fixed points P̄1 and P̄2. According to equation (23)
we observe a transcritical bifurcation at the value s = soneD = 0.559. Both D-
functions adopt the value DoneD = −1 and exchange stability at this point. The
origin, P̄1, is asymptotically stable for s < soneD whereas P̄2 shows stability above
this value. The lower plot shows the position of the two fixed points as a function
of s. Parameter values: kQ

1 = kQ

2 = 1, K1 = 0.5/s, K2 = 2.5/s, kP

1 = kP

2 = 2, and
dQ

1 = dQ

2 = d P

1 = d P

2 = 1. Color code see ‘Notation’.

The search for stationary points leads to two solutions:

P̄1 = (0, 0) and P̄2 =

(
ϑ1ϑ2 − K1K2

ϑ2 + K2

,
ϑ1ϑ2 − K1K2

ϑ1 + K1

)
. (32)

For ϑ1ϑ2 > K1K2 the fixed point P̄2 is inside the positive quadrant of protein
space and it is stable as can be readily verified by means of equation (24).
At the critical value ϑ1ϑ2 = K1K2 the two fixed points exchange stability as
required for a transcritical bifurcation. A special example is shown in figure 3:
The path through parameter space is defined by K1 = 0.5/s and K2 = 2.5/s
(The other parameters are summarized in the caption of figure 3). The limits
for the position of the two fixed points are: (i) P̄1 stays at the origin for all s,
and (ii) for P̄2 we compute lims→0 P̄2 = (−∞,−∞) and lims→∞ P̄2 = (2, 2).
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Figure 4: Position and stability of the two fixed points in the two-gene

non-cooperative activation-repression system. The upper part of the figure
shows the regulatory determinant D as a function of the auxiliary variable s for
both fixed points P̄1 and P̄2. The lower plot shows the position of the two fixed
points as a function of s. The ’non-biological’ fixed point P̄1 lies in the negative
quadrant, the regulatory determinant D(P̄1) adopts the value D = 4 at s = 2 and
the system undergoes a Hopf bifurcation there (figure 5). The relevant fixed point
P̄2 is asymptotically stable for all values of s. Parameter values: kQ

1 = kQ

2 = 1,
K1 = K2 = 1/s, kP

1 = kP

2 = 2, and dQ

1 = dQ

2 = d P

1 = d P

2 = 1. Color code see
‘Notation’.

It is worth considering the physical meaning of the stability condition for
P̄2: Since the parameters ϑ are the squares of the geometric means of the
formation rate constants divided by the degradation rate constants and the
K’s are the reciprocal binding constant, both genes are active for sufficiently
large formation rate parameters and high binding affinities. The combination
activation-activation with non-cooperative binding shows modest regulatory
properties. It sustains two states: (i) A regulated state where both genes are
transcribed and (ii) a state of ’extinction’ with both genes silenced.
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Figure 5: A Hopf bifurcation at P̄2 in the two-gene non-cooperative

activation-repression system. From the dependence of the regulatory deter-
minant D at P̄1 on the auxiliary variable s shown in the upper plot of figure 4
a bifurcation with D = 4 is expected to occur at the value s = 2. We show tra-
jectories for s = 1 (upper plot; all parameter values identical with the choice in
figure 4) and s = 4 (lower plot) and observe spiralling out and spiralling in, respec-
tively. Color code: The projection of the trajectory onto the mRNA concentration
subspace,

(
q1(t), q2(t)

)
, is shown in red and the projection onto protein subspace,(

p1(t), p2(t)
)

is plotted in blue.

Activation-repression For activation of gene one and repression of gene
two the binding functions are of form:

F1(p2) =
p2

K2 + p2

and F2(p1) =
K1

K1 + p1

. (33)

Here the stationary conditions sustain two fixed points that are obtained as
solutions of the quadratic equation

K2 p̄2
1 + (ϑ2 + K2) K1 p̄1 − ϑ1 ϑ2 K1 = 0 .

This equation has one positive and one negative solution for p̄1. For known
p̄1 the second protein concentration is calculated from

p̄2 =
ϑ2 K1

K1 + p̄1

.
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Combining this equation with p̄1 = ϑ1p̄2/(K2 + p̄2) allows to prove that
both variables, p̄1 and p̄2, have the same sign and accordingly, one fixed
point, P̄1 lies inside the negative quadrant of the (p1, p2)-space and plays no
role in biology. The second stationary point is characterized by two positive
concentration values, lies inside the positive quadrant, and is stable (figure 4).

The properties of the fixed point P̄1 are, nevertheless, useful for the analy-
sis of the dynamical system in the sense of continuation into the neighboring
quadrants. In particular,it allows for an inspection of the condition (26).
Differentiation shows that the function D(p1, p2) of equation (21) is always
positive and then the observation of a Hopf bifurcation cannot be excluded.
In the example shown in figure 4 D(P̄1) adopts indeed the value D = 4 at
P̄1 (for the auxiliary parameter s = 2). As shown in figure 5 the trajectories
change from spiralling in at s = 4 to spiralling out at s = 1. For careful
parameter choices a small limit cycle is observed further apart from the (un-
stable) fixed point the trajectories of the dynamical system diverges when
they come close to the lines p1 = −K1 and p2 = −K2.

In summary we obtain only the scenario of the unregulated regime and
no bifurcation to a state that is interesting from the point of regulation.
The system is characterized by a single state, which is stable for all physical
parameter values, and shows no potential regulatory properties.

Repression-repression. Both genes code for repressors in the third sce-
nario. The binding functions are of the form

F1(p2) =
K2

K2 + p2

and F2(p1) =
K1

K1 + p1

, (34)

and the two stationary solutions are again obtained as solutions of a quadratic
equation,

K2 p̄2
1 + (ϑ2K1 − ϑ1K2 + K1K2) p̄1 − ϑ1 K1 K2 = 0 ,

and the same relation as in the previous section

p̄2 =
ϑ2 K1

K1 + p̄1

.

Similar as in the previous example it can be shown that p̄1 and p̄2 have always
the same sign. One of the two solutions is unstable and lies in the negative
quadrant whereas the other one, the physically meaningful solution, is situ-
ated in the positive quadrant and it is asymptotically stable (figure 6). The
observed stabilities are readily predicted from inspection of equation (21):
Since D is non-positive we have either four real negative eigenvalues or two
real eigenvalues and a complex conjugate pair with a real part lying between
the other two (figure 2). The stable fixed point is identified by 0 ≥ D ≥ −1,
the unstable one by D < −1.

In the non-cooperative binding case the combination repression-repression
gives rise to a single state only, it represents the unregulated scenario, and
it is not suitable for regulation.
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Figure 6: Position and stability of the two fixed points in the two-

gene non-cooperative repression-repression system. As in the activation-
activation case the regulatory determinant is non-positive, D ≤ 0. The topmost
plot shows D(p̄1, p̄2) as a function of the auxiliary variable s for both fixed points.
The fixed point P̄1 lies in the negative quadrant and is unstable, D < −1. The fixed
point P̄2 is always situated in the physical protein space, the positive quadrant,
and it is asymptotically stable since 0 ≥ D ≥ −1 is fulfilled. Choice of parameters:
kQ

1 = kQ

2 = 2 · s, K1 = K2 = 1, and kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1. Color code
see ‘Notation’.

Activation with leaky transcription. The effect of leaky transcription
is illustrated in figures 7 and 8. For γi > 0 (i = 1, 2) the fixed point at the
origin is shifted either into the negative or into the positive quadrant such
that exactly one fixed point is in each quadrant. The fixed point in physical
protein space is always asymptotically stable, the one outside physical space
is unstable. The scenario shown in figure 7 starts out from the position of the
transcritical bifurcation in the limit γ → 0. Accordingly, two states fulfilling
the criteria mentioned above emerge at γ > 0, and the unstable state appears
in the negative quadrant, P̄1 = (p̄

(1)
1 < 0, p̄

(1)
2 < 0) and the stable fixed point

is always inside the positive quadrant, P̄2 = (p̄
(2)
1 > 0, p̄

(2)
2 > 0).

The plots in figure 8 illustrate the influence of weak basal transcription
on the activation-activation regulatory system around the transcritical bifur-
cation point of the unperturbed system. An auxiliary variable is defined by
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Figure 7: Position and stability of the two fixed points in the two-gene

non-cooperative activation-activation system with leaky transcription:

γ-dependence. Leaky transcription is introduced into the system exactly at the
transcritical bifurcation point. The upper plot shows D(p̄1, p̄2) for both fixed
points as a function of an auxiliary variable s, which measures the extent of basal
transcription, γ1 = γ2 = 0.001 · s. The lower plot presents the positions of the
two fixed points. For s > 0 the fixed point P̄1 lies in the negative quadrant and is
unstable, D < −1. The fixed point P̄2 is always situated in the physical protein
space, the positive quadrant, and it is asymptotically stable since 0 ≥ D ≥ −1
is fulfilled. Choice of parameters: kQ

1 = kQ

2 = 1, K1 = 0.892857, K2 = 4.464286,
kP

1 = kP

2 = 1, dQ

1 = dQ

2 = 2, and d P

1 = d P

2 = 1. Color code see ‘Notation’.

K1 = 0.5/s and K2 = 2.5/s (The other parameter values are given in the
caption of figure 8) and transcritical bifurcation is observe the at s = 0.56
(γ1 = γ2 = 0). Small gamma values gives rise to avoided crossing : At some
distance from the virtual crossing point the two states are very close to those
of the pure activation system and the continuation of these states at the
other side of the virtual bifurcation point is readily recognized. The splitting
for increasing γ ≥ 0 at exactly this point was shown in the previous figure 7.

4.2 The cooperative binding case

For integer Hill coefficients n ≥ 2 the binding curves have sigmoidal shape,
the dynamics of the systems becomes richer and multiple steady states or
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Figure 8: Position and stability of the two fixed points in the two-gene

non-cooperative activation-activation system with leaky transcription:

K-dependence. In contrast to figure 7 basal transcription occurs at a constant
rate γ1 = γ2 = 0.001 as a function of the equilibrium parameters, K1 = 0.5/s and
K2 = 2.5/s. The upper plot shows D(p̄1, p̄2) for both fixed points as a function
of an auxiliary variable s in the neighborhood of the transcritical bifurcation at
s = 0.56 for γ1 = γ2 = 0. The lower plot presents the positions of both points in
the range of s. For s > 0 the fixed point P̄1 lies in the negative quadrant and is
unstable, D < −1. The fixed point P̄2 is always situated in the physical protein
space, the positive quadrant, and it is asymptotically stable since 0 ≥ D ≥ −1 is
fulfilled. Choice of other parameters: kQ

1 = kQ

2 = 1, kP

1 = kP

2 = 1, dQ

1 = dQ

2 = 2,
and d P

1 = d P

2 = 1. Color code see ‘Notation’.

oscillatory behavior emerge. As mentioned already in section 3.1 the poly-
nomials for the computation of the positions of fixed points have an odd or
even number of real solution for even or odd Hill coefficients n. Accordingly
we find two or four solutions for n = 1 and n = 3, and one or three solu-
tions for n = 2 and n = 4, respectively. Despite the high degrees of the
polynomials in p̄1 or p̄2 (n2 + 1) we did not detect more stationary states up
to n = 4. Although our searches of the high-dimensional parameter spaces
were not exhaustive, it is unlikely that fixed points remained unnoticed. The
rather small number of distinct states causes the dynamic patterns of the
cooperative systems with different n ≥ 2 to be qualitatively similar, with the
only exception being activation-repression with n = 2, and therefore we shall
group them only according to activation, repression, and basal transcription.
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Figure 9: Position and stability of the fixed points in the two-gene

cooperative activation-activation system with Hill coefficient n = 2. The
properties of the system are studied as a function of the auxiliary variable s,
which defines the binding constants: K1 = k2 = 0.5/s. The systems shows a
saddle-node bifurcation at s = 0.5. Choice of the other parameters: kQ

1 = kQ

2 = 2,
kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1. Color code see ‘Notation’.

Activation-activation. For n = 2 the expansion of equation (16) yields a
polynomial of degree five. Numerical solution yields one or three solutions in
the positive quadrant including the origin which correspond to one or three
steady states. The origin represents one fixed point, P̄1 = (0, 0) that, in
contrast to the non-cooperative system is always stable.8 Searching parameter
space in the direction of increasing transcription rate parameters, (kQ

1 =
χ1 · s, kQ

2 = χ2 · s), and/or decreasing dissociation constants of regulatory
complexes, (K1 = λ1/s,K2 = λ2/s), yields a saddle-node bifurcation when
the condition D = DoneD of equation (23) is fulfilled (figure 9). At this
point, separating the unregulated regime with the origin being the only stable
state from the regulated regime, two new fixed points appear and branch off,
thereby fulfilling the conditions D < DoneD and D > DoneD, respectively. The
former fixed point is unstable – at least for some range in parameter space –
whereas the latter fixed point is asymptotically stable since D can only adopt
negative signs (For examples with no sign restriction on D see below in the

8This result follows straightforwardly from a computation of the derivatives in
the Jacobian, which yields D = 0 at the origin for all Hill coefficients n > 1.
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Table 2: Dependence of the bifurcation point on the Hill coefficient n.

The value of the auxiliary variable s at the bifurcation point that separates the
unregulated regime and the regulated regime is compared for different cooperative
regulation modes and Hill coefficients n = 2, 3, 4. In order to allow for compari-
son equivalent paths through parameter space were chosen for all three classes of
systems.

System Bifurcation Parameter Variable s at bifurcation

type variation n = 2 n = 3 n = 4

act-act a saddle-node K1 = K2 = 0.5/s b 0.5 0.422 0.296

act-rep Hopf K1 = K2 = 0.5/s b – 2.772 0.5

rep-rep pitchfork c K1 = K2 = 0.5/s b 0.5 0.106 0.033

a In case of act-act other paths through parameter space lead to small or almost vanishing
dependencies of the bifurcation value of s on the Hill coefficient n, for example we found
s = 0.79, 0.81, 0.78 for n = 2, 3, 4, kQ

1 = kQ

2 = 2 · s, K1 = K2 = 0.5/s and s = 1, 0.96, 0.90
for kQ

1 = kQ

2 = 2 · s, K1 = K2 = 1/s, respectively (All other parameters being one).

b The other parameter values were: kQ

1 = kQ

2 = 2 and kP
1 = kP

2 = dQ

1 = dQ

2 = d P
1 = d P

2 = 1.

c The pitchfork bifurcation becomes a saddle-node bifurcation, when the symmetry con-
sisting of identical parameters for gene 1 and gene 2 is broken (See figure 13).

paragraph dealing with intermediate cases). Raising the Hill coefficient from
n = 2 to n = 3 and to n = 4 has rather little effect on the position of the
bifurcation point. As shown in table 2 we find somewhat smaller values of s
at the bifurcation point for the higher Hill coefficients, but the changes are
much smaller than for the activation-repression and the repression-repression
system. In addition this weak dependence is replaced by even weaker or no
dependence on n when the implementation of the auxiliary variable s is
changed.

Activation-repression. The activation-repression with n = 2 is charac-
terized by a nonnegative regulatory determinant (D ≥ 0), but as discussed in
section 3.2 the maximal value of D is insufficient for a Hopf bifurcation. The
system exhibits only one stable fixed point and no undamped oscillations can
occur. In other words, the act-rep systems with n = 1 and n = 2 show only
an ’unregulated regime’.

For n ≥ 3, however, a Hopf bifurcation is predicted and a limit cycle can
be observed for sufficiently strong binding (figures 10 and 11). Systems of this
class exhibit periodically changing gene activities. Oscillation in regulatory
systems can be used as a pacemaker inducing periodicity into metabolism
as it occurs, for example, in circadian and other rhythms. The qualitative
picture of the bifurcation diagram is essentially the same for Hill coefficients
n = 4 and larger. Along equivalent trajectories leading from the unregulated
to the regulated regime the Hopf bifurcation occurs at substantially smaller
s-values than for n = 3. In other words, the regulated domain in parameter
space – here the domain that contains an unstable fixed point and a limit
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Figure 10: Position and stability of the fixed points in the two-gene

cooperative activation-repression system with Hill coefficient n = 3. The
regulatory determinant is non-negative, D ≥ 0. The properties of the dynamical
system, shown here as functions of the auxiliary variable s, kQ

1 = kQ

2 = 2s and K1 =
K2 = 0.5/s, change at the Hopf bifurcation observed at s = 1.2903 (vertical line
in the plots): The central fixed point becomes unstable and a limit cycle appears
(See figure 11). Choice of other parameters: kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1.
Color code see ‘Notation’.

cycle – becomes larger with increasing cooperativity as expressed by higher
Hill coefficients.

Repression-repression. The cooperative repression-repression system is
the prototype of a genetic switch. At low affinities the system sustains one
asymptotically stable stationary state. In the regulated regime it shows bista-
bility consisting of two asymptotically stable states that can be characterized
as G1 active and G2 silenced and vice versa, G2 active and G1 unregulated.
The two states are separated by a saddle point (figures 12 and 13). For
symmetric choices of parameters, implying that all parameters for G1 have
values identical to those of the corresponding parameters for G2, a pitchfork
bifurcation separates the unregulated regime from the regulated regime. In-
troducing asymmetry through different values for kQ

1 and kQ

2 and/or K1 and
K2, respectively, removes the degeneracy leading to the pitchfork and a sad-
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Figure 11: Stable fixed point and limit cycle in the two-gene cooper-

ative activation-repression system with Hill coefficient n = 3. The two
plots show trajectories of the system before and after the Hopf bifurcation that
occurs at D(s) = 4 with sHopf = 2.17 in the system with kQ

1 = kQ

2 = 1 · s and
K1 = K2 = 0.5/s and kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1. The upper plot shows a
trajectory for s = 2 (D(2) = 3.6804) with a stable fixed point and the trajectories
spiralling inwards, the lower plot was recorded for s = 2.5 (D(2.5) = 4.5265) where
the fixed point is unstable and a stable limit cycle is observed. The trajectories
spiral form outside towards the limit cycle. For initial conditions near the unstable
fixed point the limit cycle is approached through spiralling outwards (not shown).
Color code: The projection of the trajectory onto the mRNA concentration sub-
space,

(
q1(t), q2(t)

)
, is shown in red and the alternative projection onto the protein

subspace,
(
p1(t), p2(t)

)
is plotted in blue.

dle node bifurcation remains. As illustrated nicely by the parametric plot
in the middle of figure 13 the stable fixed point of the unregulated regime
is attracted towards the (no more existing) point of the pitchfork. Such a
phenomenon is often called the influence of a ‘ghost’ on bifurcation lines or
trajectories. Considering identical paths through parameter space the po-
sition of the pitchfork bifurcation is shifted towards smaller values of the
auxiliary parameter s in the series n = 2, 3, 4 (table 2).
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Figure 12: Position and stability of the two fixed points in the two-

gene cooperative repression-repression system with n = 2 and symmetric

choice of parameters. In the symmetric case the one dimensional bifurcation
is a pitchfork at the value s = 0.7937 for the following choice of parameters:
kQ

1 = kQ

2 = 2 · s, K1 = K2 = 0.5/s, and kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1.
The topmost plot shows the dependence of the regulatory determinants on s (By
symmetry reasons the violet and the turquoise curve are on top of each other and
only the latter can be seen). in the middle we present a parametric plot of the
positions of all fixed points,

(
p̄1(s), p̄2(s)

)
, and the picture at the bottom shows

these positions as function of s. Color code see ‘Notation’.
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Figure 13: Position and stability of the two fixed points in the two-

gene cooperative repression-repression system with n = 2 and asym-

metric choice of parameters. In the asymmetric case the pitchfork bifurcation
is replaced by a saddle node bifurcation that occurs here at s = 1.1515 for the
parameter choice: kQ

1 = 1.9 · s, kQ

2 = 2 · s, K1 = 0.55/s, K2 = 0.45/s, and
kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1. The topmost plot shows the dependence of
the regulatory determinants on s, in the middle we present a parametric plot of the
positions of all fixed points,

(
p̄1(s), p̄2(s)

)
, and the picture at the bottom shows

the coordinates of the fixed points as functions of s. Color code see ‘Notation’.
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Figure 14: Position of fixed points in the two-gene cooperative

repression-repression system. The parametric plot shows a superposition of
the pitchfork diagrams for the Hill coefficients n = 2, 3, and 4 with the varied pa-
rameters kQ

1 = kQ

2 = 2·s and K1 = K2 = 0.5/s defining the path through parameter
space. Choice of the other parameters: kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1. Color
code see ‘Notation’.

Genetic switches with different Hill coefficients. The regulatory
properties of repression-repression systems are of primary interest in compu-
tations of genabolic networks. As said above, the value of s at the pitchfork
or saddle-node bifurcation decreases substantially for increasing Hill coeffi-
cients (table 2). Two more properties are highly relevant in the context of
regulation: (i) The ‘pitchforks’ in parametric plots for different Hill coef-
ficients are surprising similar (figure 14) and (ii) the regulatory selectivity
increases strongly in the sequence n = 2, 3, and 4 (table 3).

The superposition of the three pitchfork diagrams in figure 14 reveals
astonishing agreements of the plots for three different Hill coefficients (n =
2, 3, 4). This general behavior is changed slightly only when different paths
through parameter space are chosen as long as kQ

1 = χ1 · s and kQ

2 = χ2 · s
is applied for the kinetic parameters. Constant values of K1 and K2, for
example, have little influence on the diagram. If the dissociation constants,
however, are varied, for example K1 = λ1/s and K2 = λ2/s, and two kinetic
parameters are chosen to be constant, the bifurcation diagram changes shape
substantially. The differences in the plots are explained readily by inspection
of the limits derived for the paths through parameter space. As an example
we present the limits of the fixed points for the two cases mentioned above
(See also table 1):

ϑ1 = δ1 · s, ϑ2 = δ2 · s,K1, K2 : lim
s→0

P̄1 = (0, 0) , lim
s→∞

P̄1 = (∞,∞)

lim
s→∞

P̄2 = (∞, 0) , lim
s→∞

P̄3 = (0,∞)

ϑ1, ϑ2, K1 = λ1/s,K2 = λ2/s : lim
s→0

P̄1 = (ϑ1, ϑ2) , lim
s→∞

P̄1 = (0, 0)

lim
s→∞

P̄2 = (ϑ1, 0) , lim
s→∞

P̄3 = (0, ϑ2) .

Simultaneous variation of the ϑ-parameters and the equilibrium constants
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Table 3: Position of the bifurcation point in repression-repression sys-

tems and switching efficiency for different Hill coefficients n = 2, 3, 4.
The values in the table are sampled on equivalent paths through parameter space
with the following parameter values: kQ

1 = kQ

2 = 2, K1 = K2 = 1/s and
kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1. Because of symmetry the bifurcation is
of pitchfork type.

Variable s at Position Silencing efficiency a

n bifurcation p̄1 = p̄2 s = 1.5 s = 2.5 s = 4.0

2 1 1 (1.577,0.423) (1.775,0.225) (1.866,0.134)

3 0.2109 1.333 (1.989,0.156) (1.996,0.096) (1.998,0.061)

4 0.0685 1.500 (2.000,0.080) (2.000,0.049) (2.000,0.031)

a The values in parentheses represent the stationary concentrations of regulators proteins,
(p̄1, p̄2), at the fixed point P̄1 for the given value of the auxiliary variable s.

K results in the same behavior as variation of the former parameters alone.
Clearly, only patterns with the same limits are comparable and in the current
example we chose the former case, variation of kinetic parameters with or
without variation of dissociation constants.

In table 3 the efficiency of genetic switches is compared for different Hill
coefficients. The numbers illustrate the effect of higher order cooperativity:
The higher the value of n, the larger is the selective power of the switch.
At s = 4, for example, we find the mole fractions9 x̄2 = 0.067, 0.030, and
0.015 for the protein of the silenced gene for the Hill coefficients n = 2, 3,
and 4, respectively. Since the pitchfork diagrams are not very different for
the three cases the efficiency in silencing is caused by the different values of
s at comparable points. An illustration for this argument is given by the
bifurcation point itself which occurs at s = 1, 0.211, and 0.069 for n = 2, 3,
and 4, respectively.

Summarizing cooperative repression-repression systems we recognize their
importance as genetic switches. Hill coefficients higher than n = 2 have two
properties that are relevant for regulation: (i) The regulated regime comprises
a larger domain in parameter space, and (ii) the selectivity of the regulatory
function increases with increasing n.

Activation with basal transcription. The cooperative case of activation
(n=2) with leaky transcription provides an illustrative example of a system
with two saddle-node bifurcations, (soneD)1 and (soneD)2, which gives rise to
hysteresis. Figure 15 presents the fixed points as functions of spontaneous
transcription rate parameter γ. In this figure the parameters were chosen
such that the system has only one fixed point at lim γ → 0, the stable
origin. With increasing values of γ the system undergoes a saddle-node
bifurcation that leads to the regulated regime with two asymptotically stable
fixed points, one at high and one at low stationary protein concentrations,

9The mole fraction is defined by x̄i = p̄i/(p̄1 + p̄2) for i = 1, 2.
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Figure 15: Position and stability of the two fixed points in the two-

gene cooperative activation-activation system with leaky transcription.

The influence of basal transcription activity on the bifurcation behavior of the
act-act system with n = 2 is illustrated by variation of γ as in figure 7 according
to γ1 = γ2 = 0.001 · s. The system passes through two saddle node bifurcations
at s = 23.81 and s = 74.92, and it shows hysteresis. Choice of parameters:
kQ

1 = kQ

2 = 2, K1 = K2 = 1.1, and kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1. Color code
see ‘Notation’.

separated by a saddle. Further increase in γ, however, leads to a second
saddle-node bifurcation that annihilates the stable state originating from the
origin together with the unstable saddle. The state that eventually remains
is the high activity state (both genes active) which originates in the first
saddle-node bifurcation.

As shown in figure 15 the sequence of bifurcations gives rise to hysteresis
in the range between the two bifurcation points, (soneD)1 < s < (soneD)2.
Coming from high values of γ the system stays in the high protein concen-
tration branch (as long as it is not shifted to the low concentration state by
fluctuations), the low protein concentration branch, on the other hand, is
reached from s values below (soneD)1.

The existence of a single stable state at high values of s and with high
protein concentrations is easy to predict from the reaction kinetics: With
increasing γ-values spontaneous transcription will, at some point, dominate
and then only the non-regulated stationary state exists. This situation, how-
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ever, is unlikely to occur in realistic biological systems, because unregulated
transcription is common at very low levels only. The second saddle-node
bifurcation – although not natural – could well be of interest for the design
of artificial regulatory systems since it allows for up and down regulation of
gene activity in an intermediate range.

Influence of basal transcription on bifurcation patterns. The influ-
ence of basal transcription on all three classes of regulatory systems (act-act,
act-rep, and rep-rep) is compared in figure 16. For simplicity the diagrams
show only the symmetric cases, γ1 = γ2 = γ and ϑ1 = ϑ2 = ϑ, and the sys-
tems with the lowest values of the Hill coefficient at which the characteristic
bifurcation pattern appears (n = 2 for act-act and rep-rep, and n = 3 for
act-rep). All three systems have in common that the bifurcations vanish at
sufficiently large values of γ > γcrit and then the systems sustain only one
stable state. Below γcrit we find the specific bifurcation pattern for the sys-
tems in a certain range ϑ

(1)
crit < ϑ < ϑ

(2)
crit: The bifurcation at low values of ϑ is

compensated by an inverse bifurcation of the same class at higher ϑ-values.
For all systems the inverse bifurcation point approaches infinity for vanishing
basal transcription: limγ→0 ϑ

(2)
crit = +∞. There is, however, one characteristic

difference between the three bifurcation diagrams: The lower bifurcation line
has a negative slope in the act-act system but a positive slope in the two
other classes, act-rep and rep-rep. This implies that for increasing basal
transcription, γ < γcrit the saddle-node bifurcation occurs at lower values
of ϑ, whereas increasing basal activity drives the first bifurcation to higher
ϑ-values in the other two classes of systems.

Two examples of intermediate regulation. In order to illustrate the bi-
furcation pattern with respect to regulatory determinants D that can change
sign we consider two examples of regulation by intermediate complexes:
(i) a combination of activation and intermediate regulation and (ii) a com-
bination of repression and intermediate regulation. Both cases have a Hill
coefficient n = 4. The four complexes formed by successive binding are show
together with the various forms of potential transcriptional regulation in fig-
ure 17. The four dissociation constants are multiplied to yield the following
combinations:

κ11 = K
(1)
1 · K(1)

2 · K(1)
3 · K(1)

4 , κ12 = K
(1)
2 · K(1)

3 · K(1)
4 , κ13 = K

(1)
3 · K(1)

4 , κ14 = K
(1)
4

κ21 = K
(2)
1 · K(2)

2 · K(2)
3 · K(2)

4 , κ22 = K
(2)
2 · K(2)

3 · K(2)
4 , κ23 = K

(2)
3 · K(2)

4 , κ24 = K
(2)
4 .

As mentioned in section 2.1 the equilibrium parameters used here are macro-
scopic dissociation constants.

In the first system the saturated complex H
(4)
2

(
F1(p̄2)

)
and the ‘inter-

mediate 2’ H
(2)
2

(
F2(p̄1)

)
initiate transcription and the binding functions are

of the form

F1(p̄2) =
p̄4

2

κ21 + κ22p̄2 + κ23p̄2
2 + κ24p̄3

2 + p̄4
2

and

F2(p̄1) =
κ13 p̄2

1

κ11 + κ12p̄2 + κ13p̄2
1 + κ14p̄3

1 + p̄4
1

.
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Figure 16: The influence of basal transcription on the bifurcation pat-

terns of gene regulation. The topmost plot presents the positions of the saddle-
node bifurcations of the act-act system with Hill coefficient n = 2 in the (ϑ, γ)-
plane. In the area to the right of the first and below the second curve we observe
three stationary states, elsewhere one stable stationary state. The plot in the
middle refers to the act-rep system with Hill coefficient n = 3: Oscillations oc-
cur below the bifurcation curve. The plot at the bottom shows the analogous
curve of the rep-rep system with Hill coefficient n = 2. Three steady states
are observed between two (opposite) pitchfork bifurcations, i.e. in the area be-
low the curve. Other parameters: K1 = K2 = 0.5, and kQ

1 = ϑ1 = kQ

2 = ϑ2,
kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1 for the middle plot.
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Figure 17: Intermediate complexes as active forms in transcription.

A four step binding equilibrium of four monomers to a binding site in the gene
regulatory region is shown as an example for the dynamics of regulation by means

of active intermediate complexes. Three intermediate complexes, H
(1)
i , H

(2)
i , and

H
(3)
i are potential candidates for transcription.

Computation of the regulatory determinant D is straightforward and yields

D(p̄1, p̄2) = −kQ

1 kQ

2 kP
1kP

2 ·

· κ13p̄1p̄
3
2(2κ11 + κ12p̄1 − κ14p̄

3
1 − 2p̄4

1) (4κ21 + 3κ22p̄2 + 2κ23p̄
2
2 + κ24p̄

3
2)

(κ11 + κ12p̄2 + κ13p̄2
1 + κ14p̄3

1 + p̄4
1)

2(κ21 + κ22p̄2 + κ23p̄2
2 + κ24p̄3

2 + p̄4
2)

2
.

In principle, D can adopt plus and minus signs and a Hopf bifurcation may
occur in addition to the one dimensional bifurcation of act-act systems.
The system sustains one or three stationary states. The state at the origin
is always stable. Then it passes through two bifurcations as a function of
the auxiliary variable s. The first of them is a saddle-node bifurcation at
s = soneD, which is found in all cooperative activation-activation systems and
where two more states are formed. The new stable state moves outwards in
the positive quadrant, i.e. to larger values of p̄1 and p̄2, and the unstable
state moves inwards. As shown in figure 18 the system passes indeed a Hopf
bifurcation at s = sHopf and a stable limit cycle is formed.

The second example of intermediate regulation combines repression(
F1(p̄2)

)
and an active intermediate complex

(
F2(p̄1)

)
. Here G1 and the

‘intermediate 2’ H
(2)
2 are the active transcription forms. The two regulatory

functions are given by

F1(p̄2) =
κ21

κ21 + κ22p̄2 + κ23p̄2
2 + κ24p̄3

2 + p̄4
2

and

F2(p̄1) =
κ13 p̄2

1

κ11 + κ12p̄2 + κ13p̄2
1 + κ14p̄3

1 + p̄4
1

.
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Figure 18: Position and stability of the fixed points in the two-gene

cooperative system with intermediate activation and a Hill coefficient

of n = 4. The active entities are H
(4)
1 and H

(2)
2 . A saddle-node bifurcation

s = 2.023 and a Hopf bifurcation s = 3.671 are observed. Choice of parameters:
kQ

1 = kQ

2 = 2 · s, κ11 = κ12 = . . . = κ24 = 0.5/s, and kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 =
d P

2 = 1. Color code see ‘Notation’.
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Figure 19: Position and stability of the two fixed points in the two-gene

cooperative system with intermediate repression and Hill coefficient

n = 4. The active entities are G1 and H
(2)
2 . A pitchfork bifurcation bifurcation at

s = 3.834 and a Hopf bifurcation at s = 17.96 are observed. Choice of parameters:
kQ

1 = kQ

2 = 1·s, κ11 = κ12 = . . . = κ24 = 1, and kP

1 = kP

2 = dQ

1 = dQ

2 = d P

1 = d P

2 = 1.
Color code see ‘Notation’.

Computation of the regulatory determinant D yields now

D(p̄1, p̄2) = kQ

1 kQ

2 kP
1kP

2 ·

· κ13κ21p̄1 (2κ11 + κ12p̄1 − κ14p̄
3
1 − 2p̄4

1) (κ22 + 2κ23p̄2 + 3κ24p̄
2
2 + 4p̄3

2)

(κ11 + κ12p̄2 + κ13p̄2
1 + κ14p̄3

1 + p̄4
1)

2(κ21 + κ22p̄2 + κ23p̄2
2 + κ24p̄3

2 + p̄4
2)

2
.

Again, plus and minus signs are possible and as documented in figure 19
two bifurcations, the pitchfork bifurcation which is typical for cooperative
rep-rep systems and a Hopf bifurcation are indeed observed.

Without showing details we mention that the Hopf bifurcation was not
observed for all systems with regulatory determinants D that can have plus
or minus sign. For example, no oscillations are observed in the systems
transcribing H

(4)
1 and ‘intermediate 1’ H

(1)
2 or G1 and ‘intermediate 1’ H

(1)
2 ,

respectively. More examples are listed in table 5. The situation in these cases
is analogous to the activation-repression system with Hill coefficient n = 2:
The regulatory determinant D adopts positive values but does not exceed
D = DHopf for all tested values and approached limits.
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5 Numerical sampling of parameter space

The results derived from selected examples are summarized and augmented
by numerical explorations of parameter space in this section. Numerical sam-
pling was performed in explorative manner in order to learn whether or not
more complicated cases exist where the computer assisted analytic approach
applied here is doomed to fail. For the sampling approach we assumed a
constant total gene concentration of g0 = 1 in problem adapted arbitrary
units (See section 6). All rate and equilibrium parameters, πk, k = 1, 2, . . . ,
were allowed to adopt values in the range −9.25 ≤ log πk ≤ 9.25 correspond-
ing to approximately 10−4 ≤ πk ≤ 104. Individual values were sampled by
means of a random number generator assuming uniform distribution on the
logarithmic scale. A typical sample consisted of some ten thousand points
and the distribution of different dynamical behaviors was evaluated by simple
frequency counting. The results are summarized in tables 4 and 5. Despite
relatively small samples all qualitative forms of dynamic behavior were de-
tected by the numerical sampling procedure.

Table 4 presents also an overview over all activation and repression cases
with simple Hill-type functions (5) for n = 1, 2, 3, and 4. Basal activation or
leaky transcription were also included. Almost all systems under considera-
tion show an unregulated and a regulated regime separated by a bifurcation.
The only exceptions are non-cooperative systems and the act-rep system
with Hill coefficient n = 2.

Not all intermediate cases were investigated but the examples shown in
table 5 are representative. They show transitions from one combination of
basic regulatory scenario to another, for example from act-rep to act-act in
the table. The pure combinations have their defined scenario, Hopf bifur-
cation and undamped oscillations for act-rep and one dimensional bifurca-
tion and bistability for act-act and rep-rep. The intermediate cases form a
smooth transition in the sense that they combine both scenarios, first one
dimensional bifurcation and second Hopf bifurcation (One example combin-
ing both scenarios is shown in figure 18). The best studied and documented
example is the case for Hill coefficient n = 4 in the table. All five objects
from the naked gene to the complex with four monomers bound to DNA
that can possibly initiate transcription are considered in the table. The pure
systems show oscillations or bistability (with one state being the origin) and
the intermediate complexes combine both behaviors – ‘intermediate 1’ and
‘intermediate 2’ – or they behave like the act-act system – ‘intermediate 3’.

A very similar situation is encountered for the repression-intermediate
system. We cannot give the details here, but figure 19 shows a parametric plot
for one intermediate case, G1 and H

(2)
2 that exhibits both, a one dimensional

bifurcation leading to bistability with one state having one gene active and
the other one silenced and the second state vice versa. Later, with increasing
ϑ/K ratios one state becomes unstable and gives birth to a stable limit cycle
via a Hopf bifurcation.
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Table 4: Results of bifurcation analysis of systems with simple binding functions (5) for activation and repression. Equilibrium
points were computed by means of equations (14) and the regulatory determinant D (21) was used for stability analysis.

Regulation G1 Regulation G2 Dynamical Number of non- Bifurcation

Type F1(p2) n1 Type F2(p1) n2 pattern a negative roots b type

activation p2

K2+p2
1 activation p1

K1+p1
1 E |S 1 | 2 (2) transcritical

activation p2

K2+p2
1 repression K2

K1+p1
1 S 1 (2)

repression K2

K2+p2
1 repression K2

K1+p1
1 S 1 (2)

activation
p2

2

K2+p2

2

2 activation
p2

1

K1+p2

1

2 E |B(E,S) 1 | 3 (5) saddle-node

activation
p2

2

K2+p2

2

2 repression K1

K1+p2

1

2 S 1 (5)

repression K2

K2+p2

2

2 repression K1

K1+p2

1

2 S |B(S1,S2) 1 | 3 ( 5) pitchfork or saddle-node

activation
p3

2

K2+p3

2

3 activation
p3

1

K1+p3

1

3 E |B(E,S) 1 | 3 (9) saddle-node

activation
p3

2

K2+p3

2

3 repression K1

K1+p3

1

3 S |O 1 | 1 (9) Hopf

repression K2

K2+p3

2

3 repression K1

K1+p3

1

3 S |B(S1,S2) 1 | 3 (9) pitchfork or saddle-node

activation
p4

2

K2+p4

2

4 activation
p4

1

K1+p4

1

4 E |B(E,S) 1 | 3 (17) saddle-node

activation
p4

2

K2+p4

2

4 repression K1

K1+p4

1

4 S |O 1 | 1 (17) Hopf

repression K2

K2+p4

2

4 repression K1

K1+p4

1

4 S |B(S1,S2) 1 | 3 (17) pitchfork or saddle-node

basal+activation γ1 + p2

K2+p2
1 basal+activation γ2 + p1

K1+p1
1 S 1 (2)

basal+activation γ1 +
p2

2

K2+p2

2

2 basal+activation γ2 +
p2

1

K1+p2

1

2 S |B(S1,S2) |S 1 | 3 | 1 (5) saddle-node | saddle-node

a The sequence of states is obtained by increasing (kQ

1 , kQ

2 ) at constant values of the other parameters, states are separated by |, and the dynamical patterns are
characterized by the following symbols: E≡ stable fixed point at the origin P̄ (0, 0) corresponding to both genes silenced, S≡ stable fixed point in the positive
quadrant, p̄1 > 0, p̄2 > 0, B(P̄i, P̄j)≡ two stable fixed points separated by a saddle, and O≡ limit cycle.

b Numbers of observed fixed points with p̄1 ≥ 0, p̄2 ≥ 0 before and after the bifurcations are separated by |, the number in parentheses is the degree of the polynomial
derived from equations (14). It is tantamount to the maximal number of fixed points.
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Table 5: Results of numerical sampling of systems with randomly chosen parameter values.a

Regulation G1 Regulation G2 Dynamical Bifurcation Frequencies

Type F1(p2) n1 Type F2(p1) n2 pattern b type of patterns b

activation
p2

2

κ21+κ22p2+p2

2

2 repression κ11

κ11+κ12p1+p2

1

0/2 S 1

activation
p2

2

κ21+κ22p2+p2

2

2 intermediate κ12p1

κ11+κ12p1+p2

1

1/2 E |B(E,S) saddle-node 0.603|0.397

activation
p2

2

κ21+κ22p2+p2

2

2 activation
p2

1

κ11+κ12p1+p2

1

2/2 E |B(E,S) saddle-node 0.663|0.337

activation p23

κ21+κ22p2+κ23p2

2
+p23 3 repression κ11

κ11+κ12p1+κ13p2

1
+p13 0/3 S |O Hopf 0.998|0.002

activation p23

κ21+κ22p2+κ23p2

2
+p23 3 intermediate κ12p1

κ11+κ12p1+κ13p2

1
+p13 1/3 E |B(E,S) |O saddle-node |Hopf 0.642|0.354|0.004

activation p23

κ21+κ22p2+κ23p2

2
+p23 3 intermediate

κ13p2

1

κ11+κ12p1+κ13p2

1
+p13 2/3 E |B(E,S) |O saddle-node |Hopf 0.715|0.283|0.002

activation p23

κ21+κ22p2+κ23p2

2
+p23 3 activation p13

κ11+κ12p1+κ13p2

1
+p13 3/3 E |B(E,S) saddle-node 0.720|0.280

activation
p4

2

κ21+κ22p2+κ23p2

2
+κ24p3

2
+p4

2

4 repression κ11

κ11+κ12p1+κ13p2

1
+κ14p3

1
+p4

1

0/4 S |O Hopf 0.988|0.012

activation
p4

2

κ21+κ22p2+κ23p2

2
+κ24p3

2
+p4

2

4 intermediate κ12p1

κ11+κ12p1+κ13p2

1
+κ14p3

1
+p4

1

1/4 E |B(E,S) |O saddle-node |Hopf 0.673|0.321|0.006

activation
p4

2

κ21+κ22p2+κ23p2

2
+κ24p3

2
+p4

2

4 intermediate
κ13p2

1

κ11+κ12p1+κ13p2

1
+κ14p3

1
+p4

1

2/4 E |B(E,S) |O saddle-node |Hopf 0.740|0.258|0.002

activation
p4

2

κ21+κ22p2+κ23p2

2
+κ24p3

2
+p4

2

4 intermediate
κ14p3

1

κ11+κ12p1+κ13p2

1
+κ14p3

1
+p4

1

3/4 E |B(E,S) saddle-node 0.751|0.249

activation
p4

2

κ21+κ22p2+κ23p2

2
+κ24p3

2
+p4

2

4 activation
p4

1

κ11+κ12p1+κ13p2

1
+κ14p3

1
+p4

1

4/4 E |B(E,S) saddle-node 0.742|0.258

a The frequencies of bifurcation patterns are derived from a large numbers (N > 10 000) of randomly chosen combinations of parameters. The values for a parameter
π are taken from the interval −9.25 ≤ log π ≤ 9.25 under the assumption of a uniform distribution of log π (See also section 5).

b The sequence of states is obtained by increasing (kQ

1 , kQ

2 ) at constant values of the other parameters, states are separated by |, and the dynamical patterns are
characterized by the symbols described in the footnote of table 4.
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6 Discussion

The work reported here aims at the presentation of a straightforward and
fairly simple mathematical technique that allows for full characterization of
the dynamical patterns for gene regulation by transcription kinetics follow-
ing equations (11) and (12). The procedure can be extended to investiga-
tions of the entire parameter space since, despite a rather large number of
kinetic parameters and equilibrium binding constants, only very few quan-
tities determine the dynamical pattern of the system – as encapsulated in
the fixed points and their stabilities: Stationary mRNA concentrations (15)
are proportional to stationary protein concentrations (14) and therefore it is
sufficient to study the dynamical systems in the protein subspace. Moreover,
the fixed points in protein space depend only on the binding function and
one rational expression of kinetic parameters, ϑj = (kQ

j · kP

j )/(d
Q

j · d P

j ), for
every gene. The stationary protein concentrations are obtained as solutions
of polynomials. Since the polynomials are of high degrees for cooperative
systems (Hill coefficient n ≥ 2) a combined analytical and computational
technique, consisting in the numerical calculation of the polynomial roots,
is mandatory. Despite high degrees the polynomials allow for an analytical
handling of limits like high and low binding affinities. Local stability analy-
sis is performed in terms of the eigenvalues of the Jacobian matrix at fixed
points.

In this contribution we presented examples for a (quite general) class
of genetic regulations – denoted here as simple – where the analysis of the
Jacobian is largely facilitated by its structure (21): Computation of the reg-
ulatory determinant D is sufficient for the stability analysis of fixed points.
At two computable critical values, DoneD and DHopf , the fixed points be-
comes unstable through a one dimensional bifurcation or a Hopf bifurcation,
respectively. Fixed points are stable in between, DoneD < D < DHopf . It
is important for generalizations that DoneD is always negative whereas DHopf

has always positive sign. For two gene systems the class simple is constituted
by cross-catalysis which expresses that regulatory binding functions depend
only on the concentration of the protein derived from the other gene: F1(p2)
and F1(p2). Apart from this restriction the binding functions can be arbitrar-
ily complicated, only differentiability is required for the computation of D:
Examples for more complicated cases analyzed here are leaky transcription
(two terms) and intermediate complexes as transcription initiators.

The approach can be readily extended to more than two genes and there
the properties of the class simple are fulfilled by catalytic cycles consisting
of a closed loop of regulatory functions, GN ⇒ G1 ⇒ G2 ⇒ · · · ⇒ GN for
arbitrary N . A description of such regulatory systems by means of dynamical
graphs has been reported in [32]. One concrete example of a regulatory loop
with N = 3 is the repressilator [15] which has been analyzed in detail (for
example in [33]). On the other hand, there are also examples of two gene
systems that do not fall under the classification simple, for example self-
activation and cross-repression or self-repression and cross activation, because
then the regulatory binding functions depend on the concentrations of both
proteins: F1(p1, p2) and F2(p1, p2). Attempts to generalize our approach and
to group these non-simple systems into subgroups according to the dynamical
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structure related to the difficulty of analysis are under way [27].
The dynamical pattern of gene regulation has been analyzed for sev-

eral cooperative binding functions, F1(p2) and F2(p1), with different Hill
coefficients by means of a new technique using the regulatory determinant
D(p1, p2) introduced and defined in equation (21). We computed and clas-
sified only the generic dynamic features and the bifurcation patterns which
were found in full agreement with the literature wherever previous studies
were. No attempt has been made yet to make a complete search in parameter
space, nor did we try in this paper to adjust to experimental data. Therefore
concentrations and parameter values were chosen to illustrate best the basic
features of the bifurcation diagrams and the oscillatory dynamics. A forth-
coming study will deal with fitting regulatory dynamics to experimental data
by making use of inverse methods [34, 35]. A particularly challenging prob-
lem is reverse engineering of bifurcation patterns for which first approaches
are now available [36].

All cooperative systems (except activation-repression with Hill coefficient
n = 2) show an unregulated and a regulated regime. The regulated regime
is reached at sufficiently high values of the ratio ϑ/K implying that (i) tran-
scription and translation are fast enough compared to mRNA and protein
degradation, and (ii) binding is sufficiently strong. The pure systems10 fall
into three classes: act-act, act-rep, and rep-rep. Each class has its own
regulatory characteristic, (i) act-act leads to both genes active or both genes
silenced, (ii) act-rep results in oscillatory activity of the two genes, and (iii)
rep-rep represents a bistable switch with the two states: (i) G1 active and
G2 silenced, and vice versa (ii) G1 silenced and G2 active. In pure systems D
is either always negative (act-act and rep-rep) or always positive (act-rep)
and accordingly we find bistability only in the first two classes of systems
and oscillations occur exclusively in the third class. More complicated bind-
ing functions may give rise to mixed behavior resulting from simultaneous
appearance of one dimensional and Hopf bifurcations in the same bifurcation
diagram. The cases of intermediate regulation discussed in section 4.2 may
serve as examples.

The model for gene regulation and the technique to analyze regulatory
dynamics presented here provides a fast tool for computational bifurcation
analysis. The parameter spaces of small genetic networks with several genes
can be scanned completely. Regulatory systems can be classified into simple

and non-simple systems according to the structure of the Jacobian matrix.
Simple systems are accessible to a highly efficient combined analytical and
computational approach. Analytical expressions are available for the compu-
tation of bifurcation points. The current procedure will be developed further
into an automatic tool for the exploration of entire parameter spaces that is
applicable to systems with several genes (approximately up to five genes).
Future work aims also at an upscaling to systems with many genes.

10The term pure indicates that the complex active in transcription is either fully
saturated – H(4) in figure 17 implying activation (act) – or unbound – G in figure 17
indicating repression (rep).
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Appendix: Condition for a Hopf bifurcation

In order to compute the value DHopf (figure 2) where the two-gene system
looses stability at positive values of D, we use the criterion by Liénard-
Chipart (see [37], pp.221). According to that criterion, the eigenvalues of the
Jacobian have strictly negative part if and only if the zeroth, second, and
fourth coefficient of the secular equation as well as the second and fourth
Hurwitz determinant are positive. The latter two are determinants of 2 × 2
and 4 × 4 matrices, respectively, whose nonzero entries are coefficient of the
secular equation.

From equation (21), the zeroth and the second coefficient are always pos-
itive, and the fourth coefficient is positive for D > −dQ

1 dQ

2 d P

1 d P

2 . The second
Hurwitz determinant is always positive because it expands to an expression
in dQ

1 , dQ

2 , d P

1 , d P

2 with positive coefficients. The fourth Hurwitz determinant is
a quadratic polynomial in D. With the help of the computer algebra system
Maple, one finds that it has two real roots, corresponding to the values

Dtrans = − dQ

1 dQ

2 d P

1 d P

2 and (23)

DHopf =
(dQ

1 + dQ

2 )(dQ

1 + d P

1 )(dQ

1 + d P

2 )(dQ

2 + d P

1 )(dQ

2 + d P

2 )(d P

1 + d P

2 )

(dQ

1 + dQ

2 + d P

1 + d P

2 )2
. (25)

Between these two roots it is positive because its leading coefficient is neg-
ative, the eigenvalues of the Jacobian have strictly negative real parts, and
the corresponding fixed point is asymptotically stable.
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