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Abstract. Local minima and the saddle points separating them in the energy landscape are known to
dominate the dynamics of biopolymer folding. Here we introduce a notion of a “folding funnel” that is
concisely defined in terms of energy minima and saddle points, while at the same time conforming to a
notion of a “folding funnel” as it is discussed in the protein folding literature.

PACS. 87.10.+e General theory and mathematical aspects – 87.15.Cc Folding and sequence analysis –
89.75.Fb Structures and organization in complex systems

1 Introduction

The dynamics of structure formation (“folding”) of biopoly-
mers, both protein and nucleic acids, can be understood
in terms of their energy landscapes. Formally, a landscape
is determined by a set X of conformations or states, a
neighborhood structure of X that encodes which confor-
mations can be reached from which other ones, and an
energy function E : X → R which assigns the folding
energy to each state. In the case of nucleic acids it has
been demonstrated that dynamics features of the folding
process can be derived at least in a good approximation
by replacing the full landscape by the collection of local
minima and their connecting saddle points [1].

The notion of a “folding funnel” has a long history in
the protein folding literature [2–8]. It arose from the ob-
servation that the folding process of naturally evolved pro-
teins very often follows simple empirical rules that seem to
bypass the complexity of the vast network of elementary
steps that is required in general to describe the folding pro-
cess on rugged energy landscapes. Traditionally, the funnel
is depicted as a relation of folding energy and “conforma-
tional entropy”, alluding to the effect that the energy de-
creases, on average, as structures are formed that are more
and more similar to the native structure of a natural pro-
tein [9]. It may come as a surprise, therefore, that despite
the great conceptual impact of the notion of a folding fun-
nel in protein folding research, there does not seem to be a
clear mathematical definition of “funnel”. Intuitively, one
would expect that a funnel should be defined in terms
of the basins and barriers of the fitness landscape (since,
as mentioned above, these coarse-grained topological fea-
tures determine the folding dynamics). Furthermore, it

should imply the “funneling” of folding trajectories to-
wards the ground state of the molecule.

Methods to elucidate the basin structure of landscapes
by means of trees that represent local minima and their
connecting saddle points have been developed indepen-
dently in different contexts, among them ±J spin models
[10], potential energy surfaces (PES) for protein folding
[11,12] and molecular clusters [13,14], and the kinetics of
RNA secondary structure formation [15].

2 Folding Dynamics as a Markov Chain

We consider here only finite discrete conformation spaces
X with a prescribed set of elementary moves of transitions
that inter-convert conformations. In the following we write
M(x) for the set of conformations accessible from x ∈ X .
For example, X = {−1, +1}N in spin-glass setting, where
flipping single spins is the natural definition of a move.
In the case of RNA or protein folding, the breaking and
formation of individual contacts between nucleotides or
amino acids, resp., is the most natural type of move set
[15].

The dynamics on X is modeled as usual by the 1st or-
der Markov chain with Metropolis transition probabilities

p(y|x) =
1

|M(x)|
min{1, exp(−β(Ey − Ex))} for y ∈ M(x)

p(x|x) = 1 −
∑

y∈M(x)

p(y|x)

(1)

All other transition probabilities are zero.
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We will be interested in the average time τx the system
takes to reach a pre-defined target state x0 ∈ X when
starting at state x ∈ X , given by the recurrence

τx = 1 +
∑

y∈M(x)

p(y|x)τy + p(x|x)τx (2)

with τ0 = 0 (starting from the target state).
In order to investigate the physical basis of the “fun-

neling effect” we start with a simple 1-dimensional toy
model with landscapes defined over the integers {0, . . . n},
see Table 1 and Figure 1. The time τ to target crucially
depends on the ordering of barriers. The time to target is
shortest when barriers are decreasing towards the ground
state as in panel (c) of Fig. 1. At the same time, the
property of decreasing barriers towards the ground state
matches the intuition of folding funnels. In the following
section we therefore generalize this picture to arbitrary
landscapes.

3 Geometric Funnels

A conformation x ∈ X is a local minimum if Ex ≤ Ey for
all y ∈ M(x). Allowing equality is a mere mathematical
convenience [16]. Let Pxy be the set of all walks from x to
y. We say that x and y are mutually accessible at level η,
in symbols

x"
η

# y , (3)

if there is walk p ∈ Pxy such that Ez ≤ η for all z ∈ p,

respectively. The saddle height f̂(x, y) between two con-
figurations x, y ∈ X is the minimum height at which they
are accessible from each other, i.e.,

f̂(x, y) = min
p∈Pxy

max
z∈p

Ez = min{η|x"
η

# y} (4)

The saddles between x and y are exactly the maximal
points along the minimal paths in the equation above. We
say, furthermore, that a saddle point s directly connects

the local minima x and y, if (i) Es = f̂(x, y) and (ii) s
has neighbors s′, s′′ ∈∈ M(s) such that there are gradient
descent paths ps′x and ps′′y starting from s′ and s′′ that
end in x and y, respectively. Note that this includes the
case that s′ = x and/or s′′ = y.

For simplicity, we assume weak non-degeneracy for our
energy landscape as follows. For every local minimum x
there is a unique saddle point sx of minimal height h(x) =

Table 1. Definitions of the one-dimensional landscapes in
Figure 1 (a)-(d).

Landscape E(x) =
x even x odd

(a) x/(N − 1) x/(N − 1)
(b) x/(N − 1) x/(N − 1) + 0.35
(c) x/(N − 1) 1.5x/(N − 1)
(d) x/(N − 1)/2 + 0.75 x/(N − 1)
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Fig. 1. (a-d) Dynamics on the one-dimensional energy land-
scapes E(x) (thick curves) defined in Table 1. Thin curves show
the average first passage time for state x0 = 0 when starting
from given state x, for temperatures β = 0 (circle), β = 1
(square), β = 2 (diamond), β = 3 (triangle up), β = 4 (triangle
left). Bottom panel: temperature dependence of first passage
times in the landscapes (a-d); τmax is the average time to reach
x0 for the first time starting at the “rightmost” state x = 19.
Slight changes in the slopes or other details of the landscapes
E(x) do not change the qualitative behavior of τmax as long as
the ordering of barrier heights is conserved.

minz f̂(x, z). Note that sx is necessarily a direct saddle
between x and some other local minimum z, which for
simplicity we again assume to be uniquely determined.
This condition is stronger than local non-degeneracy but
weaker than global non-degeneracy in the sense of [16]. In
particular, it implies that gradient descent paths are also
uniquely defined for all initial conditions. In the degener-
ate case, we consider the set of all direct saddles and the
set of the local minima directly connected to them.
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Fig. 2. Fraction of minima belonging to the funnel vs. the total
number of minima found in the landscape. RNA hairpins (filled
squares) and RNAs with two different near-ground state struc-
tures (filled circles). The straight line has slope -1. Landscapes
with only the ground state in the funnel fall on this line. Open
symbols are the results for the number partitioning problem
with (NPP) with sizes n = 8 (circles), n = 10 (squares) and
n = 12 (triangles). For each system size, 30 instances were
generated by drawing random numbers a1, a2, . . . , an and c
independently from the unit interval. The energy for a state
(x1, . . . , x

N) ∈ {−1, 1} is E(x) = |
P

n

i=1
xiai + c|. The c rep-

resents an extra “clamped” degree of freedom to break the
symmetry under reversal of all spins. This ensures that almost
all instances have a unique ground state.

With these preliminaries, we are now in the position
to define the funnel of a landscape recursively as the fol-
lowing set F of states:

(1) The ground state is contained in the funnel F .
(2) The local minimum x belongs to the funnel F if a mini-

mum saddle sx connects x directly to a local minimum
in the funnel F .

(3) A state z belongs to the funnel if it is connected by a
gradient descent path to a local minimum in F .

Using the above definition, we can recursively partition
the landscape into “local funnels”: Simply remove F from
X and recompute the funnel of the residual landscape.

The current implementation of the barriers program
[15], which given an energy-sorted list of states computes
the local minima and the saddle points separating them,
also contains a routine that recursively decomposes a min-
imum height path between a given pair of local minima
into a sequence of local minima and saddle points that di-
rectly connect two subsequent minima. This function can
of course be used in particular to determine all pairs of lo-
cal minima that are directly connected by a saddle point.
It is not hard to see that the barriers program can be ex-
tended to compute the complete funnel-partitioning of the
energy landscapes. We will report on this topic elsewhere
in more detail.
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Fig. 3. Funnel partitioning for the folding landscape of the
RNA sequence xbix (CUGCGGCUUUGGCUCUAGCC). The landscape
falls into three funnels. In [1] it was shown that a large part
of the folding trajectories reach the metastable state 2 whose
energy lies 0.8 kcal above the energy of the ground state 1.
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Fig. 4. Funnel partitioning for one instance of the number
partioning problem of size n = 8. State 1 is the unique ground
state.

4 Examples

As one example of biopolymers we consider small artifi-
cial RNA sequences which have been designed either to
fold into a single stable hairpin structure or to have two
near-ground state structures that have very few base pairs
in common. In the first case we expect landscapes domi-
nated by funnels because the RNAinverse algorithm [17]
tends to produce robustly folding sequences. In the second
case we used the design procedure outlined in [18] to pro-
duce sequences that have decoy structures with moderate
to large basins of attraction. The sequences we use here
have a length of 30 nucleotides or less, shorter than most
structured RNAs of biological importance.

Figure 2 shows the fraction of local minima contained
in the funnels of several landscapes. The RNA folding
landscapes have folding funnels comprising a large part
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of the landscape. The landscapes of RNA sequences form-
ing hairpins have the largest funnels. For comparison, we
plot the relative sizes of funnels for number partitioning
problems (NPP) of different sizes, as defined in the cap-
tion of Fig. 2. These artificial landscapes have significantly
smaller funnels than the RNA folding landscapes. Thus
the latter have folding funnels much larger than expected
for random rugged landscapes. Through these large fun-
nels the folding polymer may be “guided” towards the
native state.

Figure 3 shows an example of an RNA sequence with
a strong kinetic trap studied in detail in [1]. In this land-
scape, a suboptimal structure has a local funnel that cov-
ers most of the landscape, while the ground state is sep-
arated by comparably high barriers from almost all other
local optima. For comparison, the funnel partitioning of
an instance of the NPP is shown in Figure 4.

5 Concluding Remarks

In summary, we have introduced here a rigorous definition
of a folding funnel that is tractable computationally for ar-
bitrary energy landscapes. In the case of RNA, where the
lower fraction of the landscape can be generated without
the need for exhaustively enumerating all configurations
[19], funnels can be computed explicitly even for sequences
that are of immediate biological interest. Our first compu-
tational results show that the energy landscapes of RNAs
typically differ from the rugged landscapes of spinglass-
style combinatorial optimization problems by exhibiting
significantly larger funnels for the ground state. It remains
to be investigated in future work whether this is also true
e.g. for lattice protein models. A second important topic
of ongoing research is the question which and to what ex-
tent evolutionary processes select molecules with funnel-
like landscapes.
Acknowledgments. This work was supported in part by
the EMBIO project in FP-6 (http://www-embio.ch.cam.ac.uk/).
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