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Abstract

We analyze the structuture of a large metabolic network, that of the energy and
biosynthesis metabolism of Escherichia coli. This network is a paradigmatic case for the
large genetic and metabolic networks that functional genomics efforts are beginning to
elucidate. To analyze the structure of networks involving hundreds or thousands of
components by simple visual inspection is impossible, and a quantitative framework is
needed to analyze them. We propose a graph theoretical description of the E. coli
metabolic network, a description that we hope will prove useful for other genetic
networks. We find that this network is a small world graph, a type of graph observed in a
variety of seemingly unrelated areas, such as friendship networks in sociology, the
structure of electrical power grids, and the nervous system of C. elegans. Moreover, its
connectivity follows a power law, another unusual but by no means rare statistical
distribution. This architecture may serve to minimize transition times between metabolic
states, and also reflect the evolutionary history of metabolism.



The information necessary to characterize the genetic and metabolic networks driving
all functions of a living cell is being put within our reach by various genome projects.
With the availability of this information, however, a problem so far unknown to
molecular biologists will arise: how to adequately represent and describe the structure of
large genetic networks. While it is trivial to understand the structure of metabolic
pathways, transcriptional cascades, or signalling pathways that consist of a small number
of genes, networks consisting of anywhere from hundreds to tens of thousands of
components are less easily described. If networks encountered in areas ranging from
neurobiology to sociology are any guide, we can assume that the structure of genetic and
metabolic networks will be a complex mix of ordered and random elements. However, a
body of theory suitable to analyze large networks exists only for networks at either end
of this spectrum, networks that are perfectly orderly or completely random. Thus, a
quantitative framework suitable to describe the structure of large biological networks
remains to be developed. A description of genetic and metabolic networks is, however,
only a first step towards a second, deeper level of inquiry, which asks for an explanation
of the structure of such networks. Needles to say, any explanation of a network's
organization, whether it invokes historical accidents or functional optimality principles
requires a prior understanding of what that organization is.

Here, we analyze the structure of a large metabolic network, that of the
Escherichia coli intermediary metabolism for energy generation and small building block
synthesis. To obtain insight into both structural and functional aspects of this network,
we first propose and motivate a mathematical representation suitable for our purpose. We
then introduce some quantities useful to describe the network's structure. Significantly, we
find that this structure is similar to one observed for networks in several unrelated areas
of science, such as sociology. Qualitatively new hypotheses on network function and
evolution can be based upon the detection of such global organizational patterns. While
this attempt is only a modest beginning, we hope that it points towards the kind of global
properties of biological networks that will be found in years to come, and that similar
approaches will lead to an understanding of the evolutionary forces shaping such
networks.

Metabolic and genetic networks can be represented at multiple levels of
mathematical resolution. The most fine-grained of these involves detailed modeling of
each gene products' activity as a function of substrate, product, and effector
concentration. This level of detail may be difficult to achieve even for the smallest
networks, because individual enzymes may show quite complex behavior. A case in point
is glutamine synthase, which has at least nine small-molecule effectors regulating its

activity 1-2. Modeling an entire metabolism on this level of detail is certainly hopeless. A
second, coarser level of representation is metabolic control analysis, which requires less
detailed information about enzyme kinetics. The hundreds of steps for which even this
smaller amount of information would be required, together with needed information on
metabolic fluxes and concentrations, makes this representation currently impractial for a
network of this magnitude. A third and more manageable level of representation is that of
stoichiometric equations describing network reactions (Fig. 1a), a representation for
which the apparatus of metabolic flux balance analysis and linear programming can

provide useful information on admissible steady state metabolic fluxes 3-6 Here, we
choose a fourth, graph theoretic representation derived from stoichiometric equations.
Our motivation to use a graph representation of metabolism instead of analyzing
metabolic flux is twofold. First, in graph theory a mathematical toolbox is already in
place that can be used to describe the structure of metabolic networks, and that is
currently not available for stoichiometric equations. Second, a graph theoretic
representation is a common denominator permitting a comparison of seemingly unrelated
networks, which has recently led to the exposure of deep similarities among networks



found in sociology, engineering, and neurobiology /. While undoubtedly crude, we note
that a graph model still allows a qualitative analysis of network function, for example in

terms of how disturbances propagate through a network 7.

Based on publicly available information 8-12 we assembled a list of 317
stoichiometric equations involving 287 substrates that represent the central routes of
energy metabolism and small-molecule building block synthesis in E.coli. Because there is
considerable variation in the metabolic reactions realized under different environmental
conditions, we attempted to include only those that would occur under one particular
condition: aerobic growth on minimal medium with glucose as sole carbon source and O,
as electron acceptor. We deliberately omitted (i) reactions whose occurrence is reportedly

strain-dependent 8, (i1) biosyntheses of complex cofactors (e.g., adenosyl-cobalamine)
which are not fully understood, and (iii) syntheses of most polymers (RNA, DNA,
protein) because of their complex stoichiometry.

Our metabolic map comprises the following pathways: Glycolysis (12 reactions),
pentose phosphate and Entner-Doudoroff pathways (10), glycogen metabolism (5),
acetate production (2), glyoxalate and anaplerotic reactions (3), tricarboxylic acid cycle
(10), oxydative phosphorylation (6), amino acid and polyamine biosynthesis (95),
nucleotide and nucleoside biosynthesis and (72), folate synthesis and 1-carbon metabolism
(16), glycerol 3-phosphate and membrane lipids (17), riboflavin (9), coenzyme A (11),
NAD(P) (7), porphyrins, heme, and sirohaem (14), lipopolysaccharides and murein (14),
pyrophosphate metabolism (1), transport reactions (2), glycerol 3-phosphate production
(2), isoprenoid biosynthesis and quinone biosynthesis (13). The reaction list is available
from DAF upon request.

From these reaction equations, a stoichiometric matrix 3 was automatically

generated from the reaction list using the software package INDIGO 13
(http://members.tripod.co.uk/sauro/biotech.htm). From this matrix, the substrate and
reaction graph were derived under omission of the following metabolites: CO,, NH;, SOy,
thioredoxin (oxidized and reduced form), organic phosphate (P;) and pyrophosphate
(PP;). Graph analysis software was written in C++ using the LEDA library of data types
14

We will consider two complementary representations of a metabolic network.
The first of these is the substrate graph Gg=(Vg, Eg). Its vertex set Vg consists of all
chemical compounds (substrates) that occur in the network. Two substrates S, S, are
adjacent if there exists an edge e, i.e., e=(S|, S,) O Eg, the edge set of this graph, if they
occur (either as substrates or products) in the same chemical reaction (Fig. 1b). Second,
consider the reaction graph Gg=(Vy, ER). Its vertex set Vy shall consist of all chemical
reactions in the network. Two reactions are adjacent if there exists an edge, i.c., (R, R,)
O Eg, the edge set of the reaction graph, if they share at least one chemical compound,
either as substrate or as product (see Fig. 1c).

We will now briefly discuss why we have avoided two obvious alternatives to these
representations. First, perhaps the most natural representation of a metabolic network is

that of a hypergraph 15 However, hypergraphs are much less intuitive constructs than
graphs, and the tools our analysis needs have not yet been developed for them. Second,
one might argue that the existence of irreversible chemical reactions would make a

directed graph 15 3 better choice, i.e., a graph where each edge has a direction. For
instance, one might wish to connect a substrate S and a product P of an irreversible
reaction as S — P. However, we deliberately avoid directed graphs here for the following
reasons. One of the uses of a graph representation of metabolic networks is to assess
qualitatively how perturbations of either enzyme concentrations (e.g., via mutation) or
substrate concentrations (e.g., via changes in consumption or availability) propagate



along the network. A directed graph representation, however, would not accurately
reflect how perturbations at individual vertices propagate. Consider the substrate graph,
and a perturbation in the concentration of a compound that is the product of an
irreversible reaction. Even for irreversible reactions, the concentration of a reaction
product potentially affects the reaction rate by occupancy of the active site. Thus, a
perturbation in a product concentration downstream of an irreversible reaction (S — P)
can affect the reaction rate, and thus substrate concentrations “upstream” of that
reaction. A directed substrate graph would not capture this behavior, because by
definition P can not influence S in this representation. In a similar vein, in control

analysis, flux and concentration control coefficients of an enzyme 10 and not the
reversibility of the reaction, show how it is possible for a change in concentration of an

enzyme to propagate into the part of the network “upstream” of the reaction 17,18 A
directed reaction graph would not capture this behavior. The two graph representations
used here are complementary and obviously related. Consider three substrates S;-S; in
the substrate graph, connected by two reactions R, R,. Then, R; and R, are nodes in the
reaction graph connected by an edge corresponding to S,. Conversely, consider three
reactions R;-R;in the reaction graph, connected by two substrates S, S,. Then, S; and S,
are vertices of the substrate graph connected by reaction R,.

The terminology introduced now will apply equally to both types of graph 15,
The degree k of a vertex is the number of other vertices it is adjacent to. Two vertices v,
v; are connected if there exists a path, i.e., a sequence of adjacent vertices vy, v;, ..., Vi;, V;
from v, to v;, We will be concerned only with connected graphs, i.e., graphs where all
vertex pairs are connected. Notice that (i) the law of mass conservation, and (ii) the fact
that the carbon of all biomass is ultimately derived from CO, imply that metabolic
networks are connected. The path length / is defined as the number of edges in the
shortest path between v, and v;. The characteristic path length L of a graph is the
pathlength between two vertices, averaged over all pairs of vertices. Another important

quantity 19 is the clustering coefficient C(v) of a vertex v. Consider all £, vertices adjacent
to a vertex v, and count the number m of edges that exist among these k, vertices (not
including edges connecting them to v). The maximally possible m is k,(k,-1)/2, in which
case all m vertices are connected to each other, and we define C(v):=m/(k,(k,-1)/2). C(v)
measures the “cliquishness” of the neighborhood of v, i.e., what fraction of the vertices
adjacent to v are also adjacent to each other. In extension, the clustering coefficient C of
the graph is defined as the average of C(v) over all v. It is best viewed as a measure of the
graph’s “cliquishness” (see also below).

In analogy to statistics, where hypotheses are tested by comparing a data set to
some random distribution, we will find it useful to compare the properties of the
metabolic graph to a reference graph, a random graph with the same number of vertices n
and mean degree k. This is not to say that we believe that metabolic network graphs will
be well approximated by random graphs, only that random graphs provide a useful
benchmark to evaluate exactly how metabolic graphs are different from them. This is

made feasible by the available statistical theory of random graphs 20. Importantly,
random connectivity and a close variant, k-regular random connectivity 15 have
frequently been the assumptions of choice during more than three decades of modeling

genetic networks 21-24 1t is thus useful to see how the actual structure of a cell biological
network (albeit not a regulatory one) relates to one key assumption made in this
tradition.

In connected sparse random graphs with n nodes and average degree k (k«n) , the
probability p of two vertices being connected is given by p=k/(n-1). Such graphs show (i) a
binomial distribution of vertex degree £, (ii) a very small clustering coefficient C=(k-1)/n,



close to the theoretically attainable minimum of zero for large n, and (iii) a characteristic
path length that is also close to the theoretically attainable minimum, although no closed

mathematical form exists 7. Thus, among all connected graphs with the same number of
vertices and edges, random graphs are among the most rapidly traversed.

Variation in connectivity of metabolic networks greatly exceeds that of random
graphs. Because of the ubiquity of the metabolites adenosine triphosphate (ATP),
adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), as well as its

phosphorylated and reduced forms 1 we explored two situations, one in which these
metabolites are included, and another one in which they are omitted. Table 1 shows basic
connectivity statistics for reaction and substrate graphs representing the central energy
and biosynthetic metabolism of Escherichia coli. Similar to networks found in

neurobiology or ecology 25,26 metabolic graphs are sparse (Table 1). That is to say that
the average degree of each vertex (metabolite or reaction) is small compared to the
maximally possible degree k=n-1. For our E. coli network, k is of order log n. In a random
graph with n nodes and probability p of two nodes being connected, the degree of each
vertex follows a binomial distribution with variance (n-1)p(I1-p). The variance in degree
for the metabolic graphs, however, is up to 20-fold greater than that of the corresponding
random graph with p=k/(n-1). This implies that some vertices in metabolic graphs have
many more, and others many fewer neighbors than vertices for a random graph. Given
this enormous dispersion, k-regular random graphs would be particularly poor statistical
models of metabolic networks.

Comparison to random graphs also lends itself to a statistical definition of “key-
metabolites” or “key-reactions”, particularly highly connected vertices in metabolite
graphs . For example, for the substrate graph, one might define a key metabolite as one
whose vertex degree k,, exceeds the average k by three standard deviations,

km >k+ 3arandor7z :k+ dﬂn;l;&)

Applying this to thensug)strate graph with £=4.76 (Table 1), leads to k,>11.25 and
13 key metabolites, of which the five most highly connected are glutamate, coenzyme A,
o-ketoglutarate, pyruvate, and glutamine (Table 2; left column). This list overlaps with
sets of key metabolic intermediates of E.coli used by other authors in metabolite
balancing studies, where they represent the common biosynthetic source of all cell

materials. For instance, Varma and Palsson 27 followed Ingraham et al. 28 in using a set
of 12 biosynthetic precursors produced by the catabolism of all carbon sources: glucose 6-
phosphate, fructose 6-phosphate, ribose 5-phosphate, erythrose 4-phosphate, triose
phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, oxaloacetate, 2-

oxoglutarate, acetyl CoA and succinyl CoA. Holmes 29 chose a smaller subset of 8 key
precursors from which all cell biomass could be produced: glucose 6-phosphate, triose
phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, oxaloacetate, 2-
oxoglutarate, and acetyl CoA.

Substrate graphs have a power-law degree distribution. The high variance in
connectivity warrants a closer look at the distribution of metabolite degrees
("connectivity"), which is shown in figures two and three for substrate graphs and
reaction graphs, respectively. Each figure shows a histogram of degree vs. frequency, as
well as a rank distribution of vertices (metabolites or reactions), where the vertex with
the highest connectivity was assigned rank 1. Figure 2 reveals that the degree distribution
of a substrate graph is consistent with a power-law, i.e., the probability P(k) of finding a



vertex with degree &, P(k) [J k. While displaying frequency data as a log-log binned
histogram is the most common way of visualizing a power law, much statistical
information is lost by binning, resulting in little statistical confidence for a small graph
such as this one (Fig. 2a). It is thus reassuring that the rank distribution which does not
discard information and is essentially an estimate of the cumulative probability
distribution of £, is also in good agreement with a power law (Fig. 2b) However, little
confidence can be placed in the estimated value of the exponent T (e.g., T = 1.38 from
the rank distribution), because of the small network size. The large variance in degree
discussed above is a consequence of the power law relation.

Power laws are “fat-tailed” probability distributions that have been detected in a
variety of seemingly unrelated processes in nature and society, such as population size
fluctuations in birds, price fluctuations in the stock market, the topography of the world

wide web, or the magnitude of extinction events in the fossil 30-33, Their fat tail reflects
an overabundance of large events or objects, e.g., stock market crashes or highly
connected metabolites. While it has been proposed that power laws reflect some deep

commonalities among many processes in nature 34 alternative explanations resort to
more mundane explanations. For instance, power laws may result from pooling log-
normal distributions which are commonly found in nature (Li, pers. comm.).

The distribution of vertex degrees in the reaction graph does not follow a simple
power law (Fig. 3). The rank vs.degree plot (Fig. 3b) shows that the it defies a
straightforward classification, and appears to be governed by at least two qualitatively
different regimes (Fig. 3b).

Metabolic graphs are small world graphs. What do the architecture of the C.
elegans nervous system, the power grid of the western United States, the structure of
some sociological network, and the world wide web have in common ? The surprising
answer is that they are all small world graphs, a type of graph formally characterized by

7,19,30 Small-world graphs are best illustrated with friendship networks in sociology,
where small-worldness is known in folklore as “six degrees of separation”. Friendship
networks are sparse (each of >2x10® individuals in the United States is connected to at
most 1000 “friends”), and highly clustered (one’s friends tend to be friends of each
other). This means that most of the few connections per individual are tied up in local
interactions within “cliques” of individuals. Nevertheless, every individual in the U.S may
be linked to every other individual by a short chain of acquaintances, as suggested by

empirical work in sociology 35 a suggestion that has been confirmed for some

completely mapped sociological networks 19 A more formal definition of a small-world
graph is that it is sparse and is much more highly clustered than an equally sparse random
graph (C»C,,,4om), but that its characteristic path length L is close to the theoretically
possible minimum, that of a random graph (L=L,,,4,»)- The reason why a graph can have
small L despite being highly clustered is that few nodes connecting distant clusters may

suffice to cause small L 7. It follows that "small-worldness" is a global graph property that
can not be found by studying local graph properties.

Figure 4a demonstrates that the E.coli metabolic network is much more highly
clustered than random graphs. However, its characteristic path length is very small, and
within one step of that of random graphs. Thus, it falls into the category of small world
graphs, a feature that would not be obvious on the level of individual metabolic pathways.
Substrate graphs illustrate this property particularly well. Their characteristic path length
is within 5 percent (<0.1 steps) of that of an equally sparse random graph, although they
are at least 17 times more clustered than random graphs. The high clustering coefficient
is the result of local interations within metabolic pathways, the “cliques” in this network.
To illustrate this, we analyzed separately the substrate graphs of ten of the longest
individual pathways in our metabolic network, which were otherwise chosen arbitrarily.
The analyzed pathways comprise 203 substrates and include glycolysis, the tricarboxylic



acid cycle, biosyntheses of riboflavine, folate, histidine, branched chain amino acids,
aromatic amino acids, threonine and lysine, arginin, putrescine and spemidine,
porphyrene and heme, and coenzyme A. Their mean clustering coefficient, averaged over
10 pathways, calculates as C=0.44 (0=0.14, n=10), not significantly different to that of
C=0.48 measured for the whole network. We interpret this as an indication that the
overall high clustering of the network is due to the individual metabolic pathways or
modules. When considered as separate pathways, the coefficient of variation s in vertex
degree (mean vertex degree averaged over ten pathways: £ = 3.2) is found to be equal to
s=0.52, which is much lower than that observed for the complete network (s=1.017; Table
1), and closer to that expected for a random graph with the same number of vertices
(n=203) and average degree k (s=0.39). This suggests that the highly connected
metabolites linking the individual pathways into a connected network are responsible for
the great variance in degree. Their high connectivity provides the “glue” of the network
and is also responsible for the short pathlength. This is suggested by the mean
characteristic path among each of the ten separate pathways, which is L=3.08 (0=0.62),
and thus not much smaller than the L=3.88 observed for the whole network.

Like most graph theoretical models, our model of metabolic networks omits most
quantitative information, and is suited only to analyze network topography. However, it
has two advantages to more fine-grained models. First, the required information
(stoichiometric equations) is available. Second, by using a conceptual framework not
restricted to chemistry, but important to many areas of science, it allows us to expose a
deep structural similarity to seemingly unrelated networks. However, having identified a
common design principle, one has to return to biology and think about its possible
origins.

What might be the functional or phylogenetic significance of the observed
patterns, a power law distribution of connectivity, and the small-world nature of the
metabolic graph? It is of course possible that there is no such significance, because the
laws of chemistry might constrain network structure so severely that only one design of a
metabolic network can ensure that all basic cellular functions are fulfilled. In this case, the
observed structure is determined by chemical constraints alone, and because the nature of
these constraints is poorly understood, we could say little further. We can not strictly
exclude this possibility, but some existing work speaks to the issue and suggests otherwise.
First the biosyntheses of various compunds, such as lysine or isopentenyl diphosphate,

occur by different routes in different organisms 36, Recent analysis of the tricarboxylic
acid (TCA) cycle from the viewpoint of chemical design showed that there are several
chemically possible solutions to the tasks it performs, of which the solution realized in

cells is the one that involves the fewest chemical transformations 37. Moreover,
considerable variation exists in the presence or absence of particular reactions in the TCA

cycle in 19 prokaryotes with completely sequenced genomes 38, Strikingly, in a majority

of these species, the TCA cycle appears incomplete or absent 38 If even key
components of metabolism can show such variation, how much more variation must
there be in more peripheral parts of a metabolic network? At the very least, these studies
suggest that chemistry does allow flexibility in the design of a metabolic net. If this is the
case, then the observed architecture may be a relic of evolutionary history, a product of
evolutionary optimization, or a mixture of both. Which of these may be more important
we may never know, but we will offer two speculations.

First, could the observed network structure be an indicator of the evolutionary history of

metabolism? Barabési and collaborators 39 have recently proposed a mathematical model
that generates large graphs from small graphs by adding nodes and edges. If new links
between nodes are made preferentially between nodes that already have many links, then
the resulting graphs are small-world graphs with power-law degree distributions. A key
prediction is that vertices with many connections are vertices that have been added early



in the history of the graph. Cast in terms of metabolism, if early in the evolution of life
metabolic networks have increased in size by adding new metabolites, then the most
highly connected metabolites should also be the phylogenetically oldest. Indeed, many of
the most highly connected metabolites in Table 2 have a proposed early evolutionary
origin. RNA cofactors such as coenzyme A, NAD, or GTP are among the most highly
connected metabolites, and are thought to be among the remnants of an RNA world.
Glycolysis and the TCA cycle are perhaps the most ancient metabolic pathways, and
various of their intermediates (0- ketoglutarate, succinate, pyruvate, 3-phosphoglycerate)
occur in Table 2. Early proteins are thought to have used many fewer amino acids than
extant proteins, and the highly connected amino acids glutamine, glutamate, aspartate,

and serine are thought to be among those used earliest. 40-45 The potential relation
between evolutionary history and connectivity of metabolites corroborates a postulate
put forth and defended forcefully by Morowitz [, 1992; 493], namely that intermediary
metabolism recapitulates the evolution of biochemistry. Our highly connected
metabolites pyruvate, a-ketoglutarate, acetyl CoA, oxaloacetate are identified by

Morowitz 40 as belonging to the original core metabolism, and glutamate, glutamine and
aspartate are the links from this core into the next earliest subset of compounds, the first
amino acids.

Second, which aspect of metabolic function might a small-world network
optimize? Metabolic networks need to react to perturbations, either perturbations in
enzyme concentrations, or changes in metabolite concentrations. Because metabolic
networks are connected, each component in the network may be affected by such
perturbations, and thus the network as a whole must adapt to the changed conditions by
assuming a different metabolic state. The importance of minimizing the transition time

betwen metabolic states has been recognized and discussed by other authors 47,48 Any
response to a perturbation and transition to a new metabolic state requires that

information about the perturbation has spread within the network. Watts and Strogatz 7
studied how fast perturbations spread through small-worldnetworks. Significantly, they
found that the time required for spreading of a perturbation in a small-world network is
close to the theoretically possible minimum for any graph with the same number of nodes
and vertices. In other words, perturbations spread extremely fast, and small-worldness
may thus allow a metabolism to react rapidly to them.

These hypotheses might not be tested easily. However, they serve to illustrate
that a suitable mathematical framework can allow us to perceive global patterns of
biological organization, patterns that are not visible on a local level, patterns that allow
us to build qualitatively new kinds of hypotheses. Detecting order in the torrent of
genomic data descending upon the life science community will certainly require such
hypotheses.
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a) Stoichiometric Equations

wf

1 Glucose 6-phosphate (G6P) + 1 NADP™ [ 1 6-Phosphoglucono d-lactone (6PGL) + 1 NADPH
rgl

1 6-Phosphoglucono 6-lactone + 1 H,O O 1 6-Phosphogluconate (6PG)
gnd

1 6-Phosphogluconate + 1 NADP" O 1 Ribulose 5-phosphate (RSP) + 1 NADPH
rpe

1 Ribulose 5-phosphate = 1 Xylulose 5-phosphate (X5P)

b) Substrate Graph ¢) Reaction

Graph

X5P RSP

Fig. 1: Graph representation of metabolic networks. a) Four stoichiometric

equations taken from the pentose-phosphate pathway of E.coli after 1.8, Names in
parentheses are acronyms for compounds used in b). Acronyms above arrows indicate
genes encoding the respective reactions (enzymes) in E. coli (zwf: Glucose-6-phosphate
dehydrogenase [EC 1.1.1.49]; pgl: 6-Phosphogluconolactonase [EC 3.1.1.31]; gnd: 6-
Phosphogluconate dehydrogenase [EC 1.1.1.4]; rpe: Ribose-5-phosphate isomerase [EC
5.3.1.6]). b) Substrate graph derived from stoichiometric equations as describd in the text.
¢) Reaction graph derived from stoichiometric equations as described in the text.



Substrate Graph: Degree Distribution
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Fig. 2. The substrate graph shows a power law distribution of metabolite
connectivity.

a) Log-log histogram of the relative frequency of metabolites with a given degree
(number of connections) k. Vertices were binned into five intervals according to degree:
1<k<8, 8<k<16, 16<k<32; 32; 32<k<64; 64<k<128). Values on the abscissa indicate the
upper boundary of each interval. Coefficient of determination r’=0.93. b) Metabolites
were ranked according to the number of connections (degree) they have in the substrate
graph. Shown is metabolite rank vs. degree on a log-log scale. Assuming that the degree of
a metabolite can be described by a random variable D, plotting data as in a) can be used to
estimate the probability function P(log D=k), whereas b) estimates the counter-
cumulative probability function P(log D>Ig). Both a) and b) are consistent with a power
law distribution of D, i.e., P(log D>k) [Je™" and thus P(D>k) [ k. However, little
confidence can be placed in the estimated value of the exponent T because of the small
network size.



Reaction Graph: Degree Distribution
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Fig. 3. Degree distribution in the reaction graph. Plotted are connectivity (degree)
of nodes in the reaction graph vs. binned frequency in a) and rank in b), completely
analogous to Fig. 3 (see legend). a) already indicates that the degree distribution does not
follow a power law, and b) shows further that no simple cumulative probability function
would appropriately approximate the rank distribution shown. This is because there are at
least two distinct regimes in the degree distribution, where the degree changes much slower
among the most highly connected reactions among less highly connected reactions.



a) Clustering Coefficient
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Fig. 4. Metabolic network graphs are small-world graphs. Shown are characteristic
path length L in a) and clustering coefficients C in b) for reaction graphs, substrate
graphs, and random graphs. Notice the great difference between metabolic graphs and
random graphs in clustering coefficient, and the similarity between metabolic graphs and
random graphs in characteristic path length. This similarity becomes more striking if one

considers how large L can become for graphs with the same connectivity (k) 7 shows that
the maximally possible L is close to n/2(k+1)]. Using Table 1, these values calculate as
15.14, 5.38, 24.2, and 16.9 from left to right for the metabolic graphs shown in the
figure. The substrate graph conforms better to the small world model than the reaction
graph. Values shown for random graphs are mean and standard deviations (error bars) over
100 numerically generated connected random graphs where the probability for two
vertices to be connected was chosen as k/n (Table 1).



Table 1: Elementary Statistics of Substrate and Reaction Graphs. Shown are the
number of nodes (n), the mean degree (k), and standard deviation in degree (0;) for
reaction graph and substrate graph. For reference, standard deviation in degree is also
shown for 100 numerically generated random graphs with the same » and & as those of
the metabolic graphs. Two versions of each metabolic graph were analyzed, one in which
the metabolites ATP, ADP, NAD, NADP, NADH, NADPH, CO,, NH;, SO,, thioredoxin,
phosphate and pyrophosphate were eliminated, and another one in which ATP, ADP,
NAD, NADP, NADH, and NADPH were included. Upon removal of one or more
metabolites, other vertices in the graph may become isolated. Such vertices were removed
before analysis.

n k Oy O, random graph
Substrate Graph 275 476 4.79 2.12%0.08
w/o ATP, ADP, NAD(P)(H)
Substrate Graph 282 7.35 10.5 2.67%0.11
Reaction Graph 311 9.27 9.59 3.01%£0.12

w/o ATP, ADP, NAD(P)(H)

Reaction Graph 315 28.3 29.1 5.04 +0.21



Table 2: Thirteen "key metabolites" defined as metabolites whose degree in the
substrate graph lies at least three standard deviations beyond the mean metabolite degree.
Also shown for comparison are the 13 metabolites with the shortest mean path length
(also known as the "importance number"). These two indicators of a metabolite's
centrality are correlated but not identical. Values in parentheses are metabolite degree
(left column) and mean pathlength (right column). NAD, ATP and their derivatives
would be the most highly connected metabolites, but are not shown in the table.

ranked by degree ranked by mean path length
("connectivity"} ("importance number")
glutamate (51) glutamate (2.46)

pyruvate (29) pyruvate (2.59)

coenzyme A (29) coenzyme A (2.69)
o-ketoglutarate (27) glutamine (2.77)

glutamine (22) acetyl CoA (2.86)
aspartate (20) oxo-isovalerate (2.88)
acetyl-CoA (17) aspartate (2.91)
phosphoribosyl pyrophosphate (16) d-ketoglutarate (2.99)
tetrahydrofolate (15) phosphoribosyl pyrophosphate (3.1)
succinate (14) anthranilate (3.1)
3-phosphoglycerate (13) chorismate (3.13)

serine (13) valine (3.14)

oxo-isovalerate (12) 3-phosphoglycerate (3.15)



