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Biological and social systems are often characterized by the emergence of gen-
eral macroscopic patterns within a structure of local variations. Such varia-
tions - whether in an ecosystem or a city - express not only statistical accidents
but also a rich history of innovation, selection and resulting local adaptations.
For these reasons, it has remained a challenge to analyze the structure of com-
plex systems and characterize how much information they contain at different
scales of organization. Here we develop a unifying framework for studying
the local heterogeneity of complex systems across scales. We show how meth-
ods from evolutionary biology and statistical learning theory can be used to
quantify how much information is encoded at local levels and how complex-
ity builds up from coarse-grained simple patterns to rich local structures. To
illustrate our approach, we apply these ideas to the neighborhood structure
of US cities. We observe a strong pattern of local heterogeneity in household
income across over 900 cities and 200,000 neighborhoods within a simple and
general statistical pattern at the metropolitan level. In this way, we identify
variable strengths of local selection by income and quantify the complexity of
explanation needed to account for different neighborhood structures observed
across US urban areas.
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Complexity has been defined as the presence of structure with variations (1). Such a de-
scription is deceptively simple, though. It glosses over the fact that local structures in a patch
of forest or on a street in a large city represent not mere statistical fluctuations but a rich his-
tory of serendipity and adaptation (2–6). This point is well understood by biologists, ecologists
and social scientists. Such variations matter: they contain information (4) and should not, in
general, be averaged over as is typically done in statistical physics (7) or in models that assume
representative behavior. These variations are also the source of the diversity that drives evo-
lutionary processes (4, 5, 8). Thus, to attain a more complete understanding of biological and
social systems we must develop methods to analyze how information is encoded and evolves
across different scales of organization (4, 5).

There are two related approaches to this problem. We can (i) start from variable local
patterns and average them to obtain a more coarse-grained description of the system, usually at
longer spatial or temporal scales. Or, (ii) we can proceed in the opposite direction and generate
detailed local patterns from more aggregated statistics. Historically, these two approaches have
been developed separately, in distinct disciplines and motivated by different questions.

The coarse-graining approach is the basis for the renormalization group (RG) in statistical
physics (1,7). RG methods are the essential tools to analyze phase-transitions and have resulted
in powerful ideas of universality, often invoked to explain complex systems (9). Universality
states that many microscopic descriptions result in the same macroscopic dynamics, thus iden-
tifying classes of equivalent models. Proceeding in this direction leads to information loss as
local states are replaced by averages over larger scales (9). Because of this essential feature, RG
methods are not invertible: we cannot recover more detailed systems from their coarse-grained
versions. Thus, to proceed in the opposite direction (fine-graining) we must specify more in-
formation as new scales (degrees of freedom, in the language of physics) are considered (4). In
different but parallel ways, such methods have been developed in statistical learning theory (10)
and in evolutionary biology (11).

Here, we unify these approaches and show how they lead to the quantification of the pat-
terning of complex systems across scales, measured in units of information. We provide an
empirical illustration through the analysis of household income statistics in neighborhoods of
US cities. This is motivated not only by the emerging availability of high-quality data for mil-
lions of neighborhoods across the world, but also because such analysis addresses important
questions of socioeconomic and urban development (2, 3, 12, 13) throughout history (14, 15).
The application of these ideas to other locally heterogeneous systems, such as ecosystems (6)
or neural networks (16), is straightforward but requires datasets of comparable scope and qual-
ity.

Consider the pattern of household income in New York City neighborhoods (9), Figure
1A and Figs. S1-S19. We observe strong heterogeneity at different spatial scales, from adja-
cent neighborhoods with different average household incomes to larger recognizable patches of
wealth and poverty, e.g. the Upper East Side (the richest part of Manhattan) or the Bronx, Fig.
1B. This spatial heterogeneity is long-lived, persisting for decades or longer through several
economic cycles and substantial demographic turnover.
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Such rich and detailed pattern contrasts with the simple normal distribution for (the log-
arithm of) household income across the entire city, Fig. 1C. This coarse-grained statistics is
common to all US metropolitan areas: the distribution of income across all cities is well de-
scribed by a lognormal, see Figs. S18-S19 (9). Moreover, the two parameters characterizing
this distribution are themselves simple and general. The mean obeys a scaling relation (17, 18),
well parameterized by a power-law of the form hyi(N) = y0N

�, with � a general system-wide
parameter (18), while the variance of the distribution is also a simple general number, see Figs.
S20-S21 (9).

Thus, a ”universal” statistical regularity emerges at the city-wide scale as the result of
averaging a rich pattern of local variations. While this coarse-grained statistic is interest-
ing (9,19,20), we now focus on the structure of the variations using the regularity as a reference.
Specifically, we quantify the complexity of the pattern of variations at the neighborhood level
by comparing probability distributions at different levels of aggregation. We write

p(y`|nj) = w`,j p(y`), (1)

where p(y`, nj) is the distribution of income y (in discrete bins labeled by ` (9)) in neighborhood
nj (the colorful patches in Fig 1A), and p(y`) is the income distribution at a more aggregate level
(Fig. 1C) that we take to be the city. Eq. 1 defines the weights w`,j ⌘ p(y`|nj)/p(y`) � 0, which
transform one distribution into the other, Fig. S22. With this definition, the average weights
over income obey hwji =

P
` w`,jp(y`) = 1, 8j .

Eq.1 is recognizable from two different perspectives. First, it is the haploid model of popula-
tion genetics (11), also known as the ”replicator” equation in evolutionary game theory (21). In
that context, the two distributions are related across time (not space) and the weights w` are the
fitness for allele `, expressing its differential propagation into the next generation. The stronger
the deviation of w` away from unity the stronger the selection for allele `, corresponding to high
fitness if w` � 1, and vice-versa, if w` ⌧ 1. This interpretation gives a formal correspondence
between evolutionary biology (in time) and neighborhood structure (in space).

Second, Eq. 1 is a form of Bayes’ relation, which leads to the interpretation of w`,j as
probability ratios

p(y`|nj) =

p(nj|y`)p(y`)

p(nj)
! w`,j =

p(nj|y`)
p(nj)

=

p(y`|nj)

p(y`)
=

p(nj, y`)

p(y`) p(nj)
. (2)

Here, p(nj|y`) is the probability for a household in the city to reside in neighborhood nj given
that they have income y` while p(nj) is the probability to be in neighborhood nj (9). This second
perspective leads to another powerful correspondence between probability theory and statistics
and associated methods of inference, and neighborhood structure in complex systems. In this
context, ln w`,j in Eq. 2 is the (non-averaged) Shannon information (22) between neighborhood
j and the distribution of income y across the city. To see this more explicitly consider

hln wji =

X

`

p(y`|nj) ln

p(y`|nj)

p(y`)
= DKL [p(y|nj)||p(y)] . (3)
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This is the Kullback-Leibler divergence, DKL, between the local neighborhood j and the city-
wide distributions of income. DKL is a fundamental quantity in information theory from which
many other quantities can be derived (22, 23). For each neighborhood, this is the amount of
information needed to describe its statistical pattern of income, given that we start by know-
ing the aggregate income distribution across the city. Atypical neighborhoods, with income
distributions very different from the city as a whole, will require a longer explanation (more
information), whereas neighborhoods that reflect the city require no further considerations and
hln wji ! 0. Thus, this measure expresses the strength of neighborhood effects (3, 24–27)
relative to city-wide dynamics measured in units of information (28).

Fig. 2A shows the strength of neighborhood selection across New York City, measured by
hln wji (see Figs. S23-S39 for examples from other cities). We observe a very mixed pattern
of local selection with many neighborhoods reflecting the distribution of income for the city
as a whole, but with a significant fraction of others manifesting primarily a strong local flavor.
Comparing Figs. 1A and 2A reveals that the most atypical neighborhoods tend to have both the
highest and the lowest average household incomes. It turns out that this is a general pattern of
selection across all US cities. This effect can be assessed more directly via

hln w`i =

X

j

p(nj|y`) ln

p(nj|y`)
p(nj)

= DKL [p(n|y`)||p(n)] . (4)

This is the average information necessary to explain the distribution of specific income ranges `
across the city, given that we know its neighborhood structure. In the absence of neighborhood
effects (i.e. of spatial selection), this quantity is zero. Thus, its magnitude quantifies the differ-
ential strength of neighborhood effects for different income levels in each city. Fig. 2B shows
that the strength of neighborhood effects is highest for the highest income group, followed by
the lowest. Mid-incomes are spatially the most mixed.

These effects are summarized by a single measure that captures the overall strength of neigh-
borhood effects for each city in units of information, Fig. 2C. This is the total (mutual) informa-
tion between neighborhood structure and personal income, given as the average of the previous
quantities over the remaining variable,

hln wi =

X

j

p(nj)DKL [p(y|nj)||p(y)] =

X

`

p(y`)DKL [p(n|y`)||p(n)]

=

X

j,`

p(nj, y`) ln wj,` = I(n; y). (5)

If every neighborhood is a microcosm of the city as a whole, there are no (statistical) differences
between neighborhoods and I(n; y) = 0. Conversely, in cities where every neighborhood has
its own unique flavor I(n; y) will be larger. How large depends on the relative amount of
information needed to describe the system at the local level, Fig 1A, vs. as a whole, Fig. 1C.
Thus, the mutual information I(n; y) gives a measure of how well a coarse-grained pattern
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describes a complex system, vs. how important it is to consider all of its local features. In other
words, I(n; y) quantifies the average complexity of any theory of local effects.

Finally, we would like to use the strength of local selection to predict patterns of income,
such as those in Fig. 1A. To do this, we evaluate the deviations in each local patch versus the sys-
tem as whole. Consider the deviation in the average of some function of local characteristics, for
each neighborhood z̄i =

P
` z(y`)p(y`|ni) from that for the entire system z̄ =

P
` z(y`)p(y`).

Using Eq. 1, we write

�z̄j =

X

`

z(y`) (w`,j � 1) p(y`) = covar(wj, z) = �wj ,z�
2
z , (6)

where the regression coefficient, �wj ,z = covar(wj, z)/�2
z . This is the famous Price’s equa-

tion (8, 29, 30) now applied to spatial selection. The simplest instance of this relations is for
z = y, �ȳj = covar(wj, y), which re-derives the neighborhood patterns of Fig 1A, see (9) and
Figs. S40-S42. Any other function of neighborhood characteristics can be computed using the
spatial Price equation.

Selection is a general process by which individuals learn and adapt to their environment
by acquiring information (4, 5, 11), generating local heterogeneities within a context of broader
statistical regularities (1). We have shown how these deviations occur within general coarse-
grained structures and how to account for information embedded in the structure of complex
systems at multiple scales. In this way, we can satisfy at once the contention of two frequently
opposing approaches to the study of biological and social systems and express quantitatively
how coarse-grained universality can co-exist with local exceptionality.
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A. B.

C.

Figure 1: The heterogeneity of neighborhoods in New York City. See Figs. S1-S19 for other
metropolitan areas. A: Average household income in New York City census block groups. B:
Income distributions in selected neighborhood shown in Fig. 1A. C: The city-wide distribu-
tion of household income is well described by a lognormal distribution (green line), which we
show in SOM is a good general model for the household income distribution in all U.S. MSAs.
The mean and variance of this distribution obey simple scaling relations (9). Data was com-
piled by the US Census 5-year American Community Survey (2010 release) comprising of over
200,000 block groups nationwide and about 14,000 in the New York Metropolitan Statistical
Area (MSA). See (9) for Materials and Methods and a discussion of neighborhood units.
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Figure 2: Spatial Selection Measured in Units of Information. A: The information, hln2 wji,
necessary to explain the household income distribution of different neighborhood, given the
city-wide income statistics, Fig. 1C. (See Figs. S23-S39 for other metropolitan areas). The
entropy of the income distribution for the New York metropolitan area is H(y) = 3.89. Thus
neighborhoods in darker grey require very little additional information, while those in red may
demand as much explanation as the city-wide pattern of income itself. Comparing to Fig. 1A,
note that it is both the poorest and richest neighborhoods that tend to require more information
(red). B: The average intensity of local selection by income, measured by hln2 w`i, for several
large US MSAs. The richest income brackets experience the strongest spatial selection, fol-
lowed by the lowest incomes. Incomes near the middle of the distribution are more spatially
mixed and may provide some social connectivity between poorer and richer households. The
variation of hln2 w`i with income can be reasonably fitted by a quadratic form (red line, for New
York MSA) with hln2 w`i(y) = 6.074 ⇥ 10

�11y2 � 1.167 ⇥ 10

�5y + 1.058. C: The average
strength of neighborhood effects across urban areas in the US measured by the mutual infor-
mation I(y; n) (942 units). Orange denotes stronger average neighborhood selection, where the
distribution of income in each of the city’s neighborhoods is less like that of the city as a whole,
and vice versa (purple). Cities with low I(y; n) ! 0 have less distinguishable neighborhood
structure by income. 7
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16. G. Buzsáki, K. Mizuseki, The log-dynamic brain: how skewed distributions affect network
operations. Nature Reviews Neuroscience 15, 264-278 (2014).

17. L. M. A. Bettencourt et al., Growth, innovation, scaling, and the pace of life in cities. Proc.

Natl. Acad. Sci. U.S.A. 104, 7301 (2007).

18. L. M. A. Bettencourt, The Origin of Scaling in Cities. Science 340, 1438-1441 (2013).

19. A. J. Harrison, Earnings by size: a tale of two distributions. Rev. Econ. Studies 48, 621-631
(1981).

20. F. A. Cowell, Measuring Inequality, (Prentice Hall, London, 1995).

21. K. M. Page, M. A. Nowak, Unifying Evolutionary Dynamics. J. theor. Biol. 219, 93-98
(2002).

22. T. M. Cover, J. A. Thomas, Elements of Information Theory (John Wiley & Sons, New
York, 1991).

23. S. Kullback, Information Theory and Statistics (John Wiley and Sons, NY, 1959).

24. R. J. Sampson, S. W. Raudenbush, F. Earls, Neighborhoods and violent crime: a multilevel
study of collective efficacy. Science 277, 918-924 (1997).

25. J. Ludwig et al., Neighborhood effects on the long-term well-being of low-income adults.
Science 337, 1505 (2012).

26. P. Sharkey, J. W. Faber, Where, When, Why, and For Whom Do Residential Contexts
Matter? Moving Away from the Dichotomous Understanding of Neighborhood Effects.
Ann. Rev. Soc. 40, 559 (2014).

27. Y. M. Ioannides, G. Topa, Neighborhood effects: accomplishments and looking beyond
them. J. Reg. Sci. 50, 343-362 (2010).

28. S. F. Reardon, K. Bischoff, Income Inequality and Income Segregation. Am. J. Soc. 116,
1092-1153 (2011).

9



29. G. R. Price, Selection and Covariance. Nature 227, 520-521 (1970).

30. S.A Frank, Natural Selection IV. The Price equation. J. Evol. Biol. 25, 1002-1019 (2012).

31. We thank Clio Andris, Elisabeth Bruch, Rob Sampson and Mario Small for discussions.
This research is partially supported by the John D. and Catherine T. MacArthur Foundation
(grant 13-105749-000-USP) and by the Arizona State University/Santa Fe Institute Center
for Biosocial Complex Systems.

10



Spatial Selection and the Statistics of Neighborhoods

Supplementary Online Material

Luı́s M. A. Bettencourt,1⇤, Joe Hand1 and José Lobo2
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1 Materials and Methods

1.1 Data Sources

Geo-referenced data at the household level (such as income and population) for the United

States is reported at the Census Block Group level through the 2006-2010 5-year American

Community Survey (31). Block groups are statistical subdivisions of Census Tracts, which

in turn are the basic data collection units for the population census. The boundaries of block

groups are generally set so that they contain between 600 and 3,000 people, with a typical size

of about 1,500 (or 500 households). Block Groups are spatially contiguous and tile the entire

country. Data are aggregated into urban areas defined as Core-Based Statistical Areas (CBSA),

which include Micropolitan Statistical Areas and Metropolitan Statistical Areas. Micropolitan

and metropolitan areas consist of a core county, or set of counties, with an urban area having a

population of at least 10,000 people plus adjacent counties having a high degree of social and

economic integration with the core counties as measured through commuting ties. Counties are

the primary legal divisions of States in the U.S., many of which are functioning governmental

units whose powers and functions vary from state to state. Counties differ greatly in their areal

expansion and populations size. For simplicity we refer to micropolitan and metropolitan areas

together as Metropolitan Areas: there are 942 such areas currently in the USA.

1.2 Units of Analysis: Neighborhood Definitions

In the main text we used the colloquial term neighborhood to refer to Census Block Groups, as

shown in Figure 1A and S1 - S17. Block groups provide an exhaustive tiling of the entire na-

tional territory of the United States and its population. In denser areas Block Groups correspond

to smaller land areas, as can be clearly seen in the maps of Fig. 1A and S1 - S17. Adopting

block groups as proxies for neighborhoods is convenient because they are consistently defined

by the US Census Bureau (and similarly by other national census around the world) and pro-
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vide a universal standard for the study of small area statistics across an entire nation. For these

reasons, they are the most common proxies for social units at this scale (neighborhoods). How-

ever, sociologists with a rich knowledge of social dynamics at the local level have debated the

advantages and disadvantages of several neighborhood definitions and have in different detailed

studies adopted different units of analysis, see for example (3) and Hipp (32) for discussions.

Our aim here is to demonstrate effects of spatial selection at any given scale. A systematic

study of the strength of spatial selection at different scales (neighborhood definitions) is beyond

the scope of the present manuscript and will be presented elsewhere.

1.3 Data limitations

The American Community Survey (ACS) and the Decennial Census collect household data in

small spatial units that allow us to characterize patterns of spatial selection in neighborhoods.

The ACS is a statistical survey conducted by the US Census Bureau, sent to approximately

250,000 addresses monthly (or about 3 million per year). Unlike the population census (which

is strictly a population count), the ACS collects socioeconomic information (for example, on

household income). The data are collected primarily by mail, with follow-ups by telephone

and personal visits. ACS data are used to make yearly estimates for counties which are then

aggregated to provide estimates for States and metropolitan areas.1 ACS data has an important

reporting limitation when it comes to the upper tail of the income distribution: the number of

households is listed only for a data bin set by a minimum value (> $200k per household in

2010). We estimate the average income in these upper bins using the constraint provided by the

Price Equation, see below.

It has been often shown empirically (33) that, at higher levels of spatial aggregation, the

upper tail income distribution deviates from the lognormal pattern reported in Fig. 1C and
1For detailed information on the American Community Survey go to www.census.gov/acs/.
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detailed below. Such statistics do, in fact, often follow a Pareto (power-law) distribution for

the top richest fraction of 1% (33). Consideration of a finer distribution in this regime is likely

to produce even higher atypical values of information for neighborhoods that concentrate such

high incomes. In this sense, even though many richer neighborhoods appear the most atypical

from the point of view of their income distribution relative to the city at large, Fig. 2B, it is likely

that this effect is underestimated as a result of the way data for these incomes are reported.

1.4 Practical Estimation of Probabilities

Here, we provide an explicit version of the probability distributions introduced in the main text

and the procedure by which they are estimated from discretely binned data.

Let N be the the total number of households in a given city, or the size of that city, for short.

Let Nj be the number of households in neighborhood j, across all income levels. Then nj,` is

the number of households in neighborhood j, with income (in the interval denoted by) `. N` is,

correspondingly, the total number of households in the city with income in the interval indexed

by `. These quantities obey several simple sum rules:
X

j

Nj = N,
X

`

N` = N, (S1)

X

j

nj,` = N`,
X

`

nj,` = Nj. (S2)

Having defined these quantities, which are the ones typically reported by the U.S. Census

Bureau, we can provide simple frequency estimators for the several probability densities in-

troduced in the main manuscript. The simplest is p(nj), the probability of living in a specific

neighborhood, which is

p(nj) =
Nj

N
. (S3)

Analogously the probability of belonging to a given income level, `, is

p(y`) =
N`

N
. (S4)

7



The conditional distribution for being in a given neighborhood j given income ` is

p(nj|y`) =
nj,`

Nj
. (S5)

From this and Bayes’ relation it follows that

p(y`|nj) =
p(nj|y`)

p(nj)
p(y`) =

nj,`

Nj
. (S6)

The weights wj,` are given by

wj,` = N
nj,`

N`Nj
. (S7)

Finally, we can check that the properties of the conditional probabilities hold, under these

definitions,

X

j

p(nj|y`) =

X

j

nj,`

N`
=

1

N`
N` = 1. (S8)

X

`

p(nj|y`)N` =

X

`

nj,`

N`
N` =

X

`

nj,` = Nj. (S9)

X

`

p(y`|nj) =

X

`

nj,`

Nj
=

1

Nj
Nj = 1. (S10)

X

j

p(y`|nj)Nj =

X

j

nj,`

Nj
Nj =

X

j

nj,` = N`. (S11)

2 Supplementary Text

2.1 The Statistics of Urban Income and Urban Scaling Relations

In Figure 1C, we showed that the frequency distribution of average household income in New

York City (MSA) is visually well described by a lognormal distribution (green line). Here

we demonstrate that this is a general property of all US metropolitan areas and show how the

two parameters of the distribution (the mean logarithmic income and its logarithmic variance)

express scaling relations with city size.
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Figures S18 and S19 present the results of comparing the goodness of fit of the lognor-

mal distribution to that of other alternative distributions using the Bayesian Information Crite-

rion (34) for each city. In the vast majority of cities (83%) the lognormal is the best distribution.

Many other plausible distributions manifestly fail to even occasionally fit the data. In a small

number of cases, we find reasonable fits to the data using an exponential Weibull distribution,

but there has not been much work providing a theoretical justification for such a distribution in

other studies of income distributions (for a notable exception see reference (35)). The lognor-

mal, on the other hand, is well known to fit well the body of distributions of income (33, 36)

and is generally explained in terms of models of multiplicative random growth. The extreme

1% wealthiest part of the frequency distribution has been known to deviate from the lognormal

pattern at the national level but, as discussed above, this regime of urban wealth is not well

represented in the ACS survey data.

The lognormal is characterized by two parameters, the mean of the log-household income

for each city and its variance. Figure S20 shows the correlation between the log-mean income

vs household size for each city (MSA). This relationship is a well known urban scaling rela-

tion (17,18), y(N) = y0N
�, characterizing many urban systems around the world, which share

the same scaling approximate exponent � > 0. Figure S21 shows the scaling plot for the log-

variance. We see that the existence of such a scaling relation is less clear, in the sense that the

relationship is noisier, and may be consistent with no variation of this parameter with city size,

as has been e.g. observed for violent crime in Ref. (37).

A fuller exposition and analysis of these results will be presented elsewhere. Nevertheless,

we would like to emphasize that the present results, in conjunction to other recent research

involving crime (37), the degree of cell phone urban social networks (38) and mobility (39)

point to a general form of the statistics of urban indicators (a sort of statistical universality), that

may also hold not only for contemporary cities, but throughout history (40, 41).
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2.2 Spatial Selection, Neighborhood Effects and Income Polarization

In this section, we briefly discuss how our approach and results relate to relevant work in sociol-

ogy and economics on neighborhood effects and the spatial characteristics of household income

distributions. A fuller treatment of these issues and of the spatial selection approach developed

here to analyzing the empirics of neighborhood income inequality will be pursued elsewhere.

Differences between neighborhoods are perhaps the clearest manifestation of the spatial

heterogeneity of urban areas, that is, the uneven and complex distribution of individuals and

households within cities (42). The question of how the composition of a population affects

the sorting of individuals by place of residence, what sociologist term ”residential selection”,

has been a long-standing question for sociology. In its earliest terms, somewhat simplistic by

today’s standards, Park and Burgess (43) proposed a explanation for spatial urban patterning

in direct analogy to darwinian selection, an approach known as urban ecology. Thinking in

sociology has come a long way since then, but echoes of these first attempts to conceptualize

the issue remain even as a new literature on neighborhood effects has emerged with a strong

empirical base, especially in Chicago (3), (44–46).

The importance of neighborhood selection has been emphasized in this literature because

of its consequences or ”contextual effects”. This refers to the way in which individuals’ social,

economic and health outcomes are affected by the physical and socioeconomic characteristics

of their residential communities (47–50). Income differentials are a major determinant of spa-

tial residential selection and the associated ”neighborhood effects” as higher-income individuals

tend to want to live next to other higher-income individuals while low-income individuals may

have fewer choices, increasingly tied to residing next to other poor households (51), see also

Fig. 2B. This residential selection is often associated with changes in real estate market valu-

ations and tax revenue bases which together have been proposed as a means to sustain cycles

of increasing neighborhood polarization (49). While many of these patterns and their tempo-
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ral change is being reveled by new data and detailed studies at the neighborhood level, much

remains to be done toward a general understanding of the social and economic causes and con-

sequences of spatial selection in cities.

As the evidence and concern mounts for growing income inequality at the national level

(53–55), so it has for the growing income segregation in US urban areas (52,56–60). Residential

selection on the basis of income is related to income inequality but also to the ability and

willingness of individuals to act on preferences regarding who they reside next to. However,

measuring income segregation in urban areas is not a straightforward matter. The workhorse

metric for income inequality, the Gini Index, suffers from several deficiencies when measured

at a spatially disaggregated level, such as neighborhoods. For one thing, the Gini is sensitive

to the number of income categories used when constructing the measure. The typical manner

in which the index is constructed assumes that the spatial units of observation are similar in

population size (but U.S. census tracts or block groups differ in their population size). But

most importantly, the Gini Index cannot distinguish between the effects of an overall increase

in income inequality and increasing income differentiation inside neighborhoods (49, 61). As

an alternative approach, a variety of studies have turned to entropy-based measures as these

are able to capture how individuals or households are distributed across various income groups

within neighborhoods (49, 62–65). But while purely justified on statistical grounds, the use of

entropy measures to capture income inequality across and within neighborhoods is not typically

grounded on a firm theoretical framework.

In this light, we emphasize that the measures introduced here are not new ad-hoc socio-

economic indices but follow inevitably from treating neighborhood heterogeneity as an instance

of spatial selection defined as the relationship between income distributions at two different

spatial levels of analysis. Nevertheless, we note that our informational measures of spatial

selection are close relatives of the Rank-Order Information Theory Index (49), which compares

11



the variation in family incomes within neighborhoods (census tracts) to the variation in family

incomes in the metropolitan area in which the tracts are embedded. Although formally and

quantitatively different, our results agree qualitatively with those of (49), in that we also find

increasing income segregation between neighborhoods in US metropolitan areas over the last

twenty years. This phenomenon is often referred to as neighborhood polarization, and is very

visible e.g. in Detroit, Figs. S6 - S28, St. Louis, S17 - S39 or even Austin, S2 - S24, where

poor and rich section if the city are clearly physically separated almost as a dipole. In other

cities the overall spatial pattern of rich and poor neighborhoods is often more mixed spatially.

The consequences of any selection process on the distribution of a characteristic of interest

in a population can be separated, using Price’s equation (66), into two components: the direct

effects of selection and those of transmission over time. Here, we focused on the purely spatial

aspect of the problem and so have not formally analyzed temporal transmission, which can

clearly be included in the context of the Price equation (see Section 2.4). The derivation of the

Price equation, Eq. 6 in the main text, not only provides a statistical description of the process

leading to spatial heterogeneity within cities, it can also be used to predict actual neighborhood

income patterns. This mathematical account of selection allows us to express neighborhood

heterogeneity in terms of the mathematics of evolution and information, thereby connecting the

diversity of patterns in urban neighborhoods to the study of of how structure, complexity and

diversity arise in other complex systems (67, 68).

2.3 Fine-graining, Information and Learning

In the main text we introduced, Eq. 1, the relation

p(y`|nj) = w`,jp(y`),

for the distribution of some individual trait y (such as income) at two levels of (spatial) aggre-

gation. Here, we show more explicitly why the weights, w`,j , should be interpreted in terms of
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information and how their specification is a process of information gain, i.e., of learning.

In the main text, we used the interpretation of Eq. 1 as Bayes’ relation to write the weights

as

w`,j =
p(y`, nj)

p(y`) p(nj)
=

p(y`|nj)

p(y`)
. (S12)

Taking the logarithm, we obtain

ln p(y`|nj) = lnw`,j + ln p(y`) = ln

p(y`, nj)

p(y`) p(nj)
+ ln p(y`), (S13)

where we identify the lnw`,j term as the specific mutual information (before averaging) be-

tween the states y` and nj . Moreover, note that the specific Shannon entropies are h(y`|nj) =

� ln p(y`|nj) and h(y`) = � ln p(y`) (22). We can then write

h(y`) = h(y`|nj) + i(y`|nj), (S14)

which states that the (higher) entropy of the city wide income distribution is equal to the lower

entropy of the same distribution in each neighborhood plus the mutual information that such

neighborhood has on the city wide distribution. This statement is usually presented in averaged

form (where all three quantities are provably positive (22)), by tracing under the joint p(y`, nj)

as,

H(y) = H(y|n) + I(y;n). (S15)

Here, hlnwi = I(y;n) and is given by

hlnwi = I(y;n) =
X

`,j

p(y`, nj) ln
p(y`, nj)

p(y`) p(nj)
. (S16)

Thus, the operation of disaggregating the structure of the system as a whole to smaller

spatial units requires in general the addition of information (or ”structure”) to that present in

the averaged distribution across the city. What this means is that there is, in general, higher
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complexity of system spatial configurations at the more disaggregated level. In turn, the advent

of this local complexity is associated with the breaking of spatial symmetries of the system (69,

70). As a consequence, we conclude that the process by which (spatial) complexity arises is

driven by selection associated with successive level of symmetry breaking. Intuitively, this

is why local models of neighborhood structure, typical of social scientific approaches, must

contain more information than coarse-grained models, based on statistical physics approaches.

This raises an interesting question of how to do the opposite, namely how to obtain the

aggregated distribution from that of the smaller spatial pieces. This operation is known in sta-

tistical physics as ”coarse-graining” (71) and is at the basis of some of the most important results

for the behavior of systems undergoing critical phenomena, via the application of renormaliza-

tion group techniques (71). These methods perform successive levels of spatial (and sometimes

temporal) averaging to obtain the large-scale (averaged) behavior of a physical system. For

most systems, this procedure either leads to the uninteresting outcomes of an increasingly uni-

form or an increasingly noisy system (it is said that the system flows towards zero or infinite

temperature, respectively, under coarse-graining). But at phase transitions - critical phenomena

when the global properties of the system change coherently, such as a liquid-vapor transition

- the operations of coarsening lead to systems that are spatially self-similar, regardless of a

number of details of the microscopic physics (irrelevant operators) (71). In our case, cities

obtained as averages over neighborhoods, emerge as a kind of self-similar structure out of this

kind of procedure, Fig. 1C, as they are characterized by the same simple statistics although with

parameters that themselves depend on city size (scaling) (17,18).

To see what is entailed by coarse-graining in terms of the framework developed in this

section we simply write the inverse of Eq. 1 as

p(y`) = w̄`,jp(y`|nj), (S17)
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and by taking logarithms and comparing to Eq. 1 we readily identify

w̄`,j = � ln

p(y`, nj)

p(y`) p(nj)
= ln

p(y`) p(nj)

p(y`, nj)
= �i(y`, nj). (S18)

Thus, we write

h(y`|nj) = h(y`)� i(y`|nj) ! H(y|n) = H(y)� I(y;n), (S19)

where the last relation is obtained under averaging, as above, under the joint distribution. As

might have been expected, we see that the operation of coarse-graining entails the removal of

information present at the neighborhood level to obtain a spatially averaged distribution. This

corresponds to the common intuition that averaging can mask important or revealing detail.

How much information is ”thrown away” in this process is quantified on average by the mutual

information between units of analysis at different levels of aggregation and the variable(s) of

interest. Thus, the mutual information I(y;n) is a city-wide average measure of the strength

of neighborhood effects. It should be clear that such transformation maps potentially very

complex patterns, such as those of Fig. 1A, to relatively simple ones, such as those of Fig.

1C. The formal treatment of this operation and its more common uses in statistical physics will

be presented elsewhere. It should nevertheless be clear that such coarse-graining operations

typically lead to simpler aggregate statistics and can, under certain specific conditions, result

in Zipfian scale-free phenomena in ways that generalize approaches to criticality in physical

systems (37).

2.4 Spatial Selection and the Price Equation

In this section, we clarify the use of the Price equation in spatial selection and contrast it with

its most common use in evolutionary dynamics. As George Price himself emphasized referring

to his eponymous equation: ”The mathematics given here applies not only to genetical selection

but to selection in general” (72): spatial selection, therefore, is no exception.
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In the canonical formulation of the Price equation, the evolution of the average value of

any population characteristic z (household income in our case) is the result of the variation

introduced by two distinct terms. Following Frank (73) we write

�z̄ = �sz̄ +�tz̄ =

X

i

(wi � 1)zip(zi) +

X

i

�zip
0
(zi), (S20)

respectively. The first term, �sz̄, is associated with selection whereas the second, �tz̄, encodes

all other processes that may change the value of z during the process. In practice, in processes

of evolutionary biology (73) this second term is often invoked to account for errors in the trans-

mission of genetic information between generations (e.g. copying errors due to mutations). In

our process of spatial selection we have assumed that such a term is zero, �tz̄ = 0, as there is

no change in income during the process of neighborhood choice.

The selection term is often written in a number of equivalent ways:

�sz̄ =

X

i

(wi � 1)zip(zi) = covar(w, z) = �wz�
2
w = �zw�

2
z . (S21)

The third term results from the first via the standard definition of covariance (74). The last

two terms express the covariance between w and z in terms of the product of the variance of

each variable (�2
w and �2

z ) and that of the regression (74) of the variable w on z, �wz and

vice-versa. It is worth noting that, for a lognormal distribution, the Gini-coefficient provides

a measure of income inequality, which is only a function of the �2
ln y. Thus, neighborhood

polarization (deviations of average neighborhood household income from the city-wide mean)

will be correlated to larger city-wide inequality, through the correlation of ln y on the selection

strengths w, Fig. 2B.

We have also used the Price equation to predict the pattern of neighborhood wealth shown in

Figure 1A. This allows us to derive an estimate of the mean wealth in the richest bin (a quantity

censured in the data) and the distribution of incomes in each of the coarse income bins provided

by the ACS, see Figures S40 - S42.
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The Census reports household income figures at the block group level in two different ways:

i) the aggregate household income (and total households to calculate the mean income) and ii)

the number of households in sixteen discrete income bins, Fig. 1B. All households with an

income greater than $200,000 are grouped into the last bin. To estimate the mean income value

of the richest bin in each neighborhood, we determine the amount of income missing for each

neighborhood, ✏j , by comparing the reported mean income to the value calculated using the

minimum value of each income bin:

ȳj =

P
` ȳ`,jn`,j

Nj
=

P
` ymin,`n`,j

Nj
+ ✏j (S22)

where ymin,` is the minimum value of income in the bin ` (e.g. $0 for the bin $0 - $10K). In

this way we can estimate an upper bound on the mean income value of the richest bin in each

neighborhood to make up for the missing income, as seen in Figures S40 and S41. We observe

that there were some neighborhoods where any value above the lower bound resulted in too

much total income.

For neighborhoods without households reported in the richest bin, we adjust the mean in-

come calculation using the other bins. We explored the difference between the detailed sum

of every actual income and the calculation using the given bins, where we sum the number of

households in each bin times the corresponding average income. Because the latter is not given

we are free to estimated it to derive the given total. In practice, we have parameterized the total

income in each bin in terms of a parameter a defined as

aj =
ȳj � ȳmin,j

ȳm,j � ȳmin,j
(S23)

where ȳj is the reported mean average income for each neighborhood, ȳmin,j is its value com-

puted using the lower bound in each income bin and ȳm,j is the same value computed using the

midpoint of income in each bin. Because the distribution is strongly skewed no specific point
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within the income bin (smallest or mid-point), is likely to give the actual correct result, which

then can be estimated through a. Figures S40 - S42, show this process for New York City.

2.5 Average Household Income & Information Maps for US Urban Areas

In the main text we illustrated the diversity of income across American urban areas using a map

of New York City, because we thought that this would be the best known case to most readers.

Figures S1 - S17 and Figures S23 - S39 show similar maps (average household income by block

group and the DKL for each neighborhood) for other large US metropolitan areas, including a

larger map of New York City.
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3 Supplementary Tables

Table S1: Top 10 US Metropolitan Areas by I(y;n)
City Mutual Information Total Population

Dallas, TX 0.697 6,154,265
New York City, NY 0.689 18,700,715
New Orleans, LA 0.685 1,105,020

Reno, NV 0.681 416,860
College Station, TX 0.680 219,058
Morgantown, WV 0.677 125,691

Memphis, TN 0.671 1,301,248
Midland, TX 0.667 132,103
Fresno, CA 0.666 908,830

San Antonio, TX 0.665 2,057,782

Table S2: Lowest 10 US Metropolitan Areas by I(y;n)
City Mutual Information Total Population

Mount Vernon, WA 0.378 115,231
Hinesville, GA 0.372 76,996
Palm Coast, FL 0.362 91,806

Wausau, WI 0.357 132,644
Glens Falls, NY 0.328 128,795

Dover, DE 0.327 156,918
Coeur d’Alene, ID 0.323 134,851

Mankato, MN 0.319 94,990
Sheboygan, WI 0.315 115,328
St. George, UT 0.310 134,033
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Table S3: Top 10 US Micropolitan Areas by I(y;n)
City Mutual Information Total Population

Lamesa, TX 0.774 13,853
Beeville, TX 0.763 31,896
Bay City, TX 0.723 36,647
Hobbs, NM 0.710 62,503

Edwards, CO 0.690 57,832
Wauchula, FL 0.680 27,521
Greenville, MS 0.651 52,455

Arcadia, FL 0.649 34,557
Clewiston, FL 0.648 39,030
Clovis, NM 0.645 46,924

Table S4: Lowest 10 US Micropolitan Areas by I(y;n)
City Mutual Information Total Population

Sayre, PA 0.260 62,415
Huntingdon, PA 0.252 45,830

Cadillac, MI 0.250 47,615
Bradford, PA 0.245 43,853
DeRidder, LA 0.241 35,000
Platteville, WI 0.235 50,716

Menomonie, WI 0.230 43,365
Miami, OK 0.229 32,193

Natchitoches, LA 0.222 39,274
Baraboo, WI 0.206 60,957
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4 Supplementary Figures
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Figure S1: Atlanta, GA Mean Household Income (2010)
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Figure S2: Austin, TX Mean Household Income (2010)
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Figure S3: Boston, MA Mean Household Income (2010)
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Figure S4: Chicago, IL Mean Household Income (2010)
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Figure S5: Denver, CO Mean Household Income (2010)
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Figure S6: Detroit, MI Mean Household Income (2010)
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Figure S7: Houston, TX Mean Household Income (2010)
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Figure S8: Los Angeles, CA Mean Household Income (2010)
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Figure S9: Minneapolis, MN Mean Household Income (2010)
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Figure S10: New York City, NY Mean Household Income (2010)
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Figure S11: Orlando, FL Mean Household Income (2010)
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Figure S12: New Orleans, LA Mean Household Income (2010)
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Figure S13: Phoenix, AZ Mean Household Income (2010)
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Figure S14: Portland, OR Mean Household Income (2010)
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Figure S15: Seattle, WA Mean Household Income (2010)
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Figure S16: San Francisco, CA Mean Household Income (2010)
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Figure S17: St. Louis, MO Mean Household Income (2010)
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Figure S18: BIC fit test for the distribution of mean income in all CBSA’s in the US, first place
results.
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Figure S19: BIC fit test for the distribution of mean income in all CBSA’s in the US
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Figure S20: Scaling Mean. The mean income of a city, in relation to number of households, is
characterized by an exponent of 0.0825 (95%CI = [0.075, 0.090], R2

= 0.317).
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Figure S21: Scaling Variance. The variance of block group income for a city, in relation to num-
ber of households, is characterized by an exponent of 0.0611 (95%CI = [0.054, 0.068], R2

=

0.235).
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Figure S22: The weights w`,j for the richest (left, in green) and poorest (right, in red) income
bins for New York City.
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Figure S23: Atlanta, GA DKL (2010)
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Figure S24: Austin, TX DKL (2010)
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Figure S25: Boston, MA DKL (2010)
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Figure S26: Chicago, IL DKL (2010)
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Figure S27: Denver, CO DKL (2010)
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Figure S28: Detroit, MI DKL (2010)
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Figure S29: Houston, TX DKL (2010)
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Figure S30: Los Angeles, CA DKL (2010)
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Figure S31: Minneapolis, MN DKL (2010)
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Figure S32: New York City, NY DKL (2010)
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Figure S33: Orlando, FL DKL (2010)
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Figure S34: New Orleans, LA DKL (2010)
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Figure S35: Phoenix, AZ DKL (2010)
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Figure S36: Portland, OR DKL (2010)

57



Figure S37: Seattle, WA DKL (2010)
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Figure S38: San Francisco, CA DKL (2010)
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Figure S39: St. Louis, MO DKL (2010)

60



0 100000 200000 300000 400000 500000 600000 700000

Calculated Mean Income

0

100000

200000

300000

400000

500000

600000

700000

R
ep

or
te

d
M

ea
n

In
co

m
e

Actual (Lower Bound)
Adjusted

Figure S40: Household income for NYC block groups as reported by the Census and as calcu-
lated using the sixteen income bins. Using the lower bound of each income bin, we show the
minimum mean income vs the reported incomes, in yellow. Then we increase the value of the
top bin (previously $200,000) bin to account for the missing income, in blue.
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Figure S41: New values for the $200K+ bin used for adjusting the mean value.
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Figure S42: Price a value
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38. M. Schläpfer et al., The scaling of human interactions with city size. J. R. Soc. Interface
11, 20130789 (2014) doi:10.1098/rsif.2013.0789.

39. P. Wang et al., Understanding Road Usage Patterns in Urban Areas. Scientific Reports 2,
Article number: 1001 (2012) doi:10.1038/srep01001.

40. S. G. Ortman, A. H. F. Cabaniss, J. O. Sturm, L. M. A. Bettencourt, The Pre-History
of Urban Scaling. PLoS ONE 9(2), e87902 (2014) doi:10.1371/journal.pone.
0087902.

41. S. G. Ortman et al., Settlement scaling and increasing returns in an ancient society. Sci.
Adv. 1, e1400066 (2015) doi:10.1126/sciadv.1400066.

64



42. D. S. Massey, N. A. Denton, The dimensions of residential segregation. Social Forces 67,
281-315 (1988).

43. R. Park, E. W. Burgess, R. D. McKenzie, The City (Univ. of Chicago Press, Chicago, 1925).

44. W. J. Wilson, The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy
(Univ. of Chicago Press, Chicago, 1987).

45. R. J. Sampson, P. Sharkey, Neighborhood Selection and the Social Reproduction of Con-
centrated Racial Inequality. Demography 45, 1-29 (2008).

46. E. E. Bruch, How population structure shapes neighborhood segregation. Amer. J. Soc. 119,
1221-1278 (2014).

47. C. E. Ross, J. Mirowksy, S. Pribesh, Powerlessness and the amplification of threat: neigh-
borhood disadvantage, disorder, and mistrust, Ame. Soc. Rev. 66, 443-478 (2001).

48. R. J. Sampson, J. D. Morenoff, T. Gannon-Rowley, Assessing neighborhood effects: social
processes and new directions in research, Ann. Rev. Soc. 28, 443-478 (2002).

49. S. F. Reardon, K. Bischoff, Income inequality and income segregation, Amer. J. Soc. 116,
1092-1153 (2011).

50. J. Ludwig et al., Neighborhood effects on the long-term well-being of low-income adults,
Science 337, 1505-1510 (2012).

51. S. F. Reardon, D. OSullivan, measures of spatial segregation, Soc. Metho. 34, 121-162
(2004).

52. S. F. Reardon, B. Bischoff, ”Growth in the Residential Segregation of Families by Income,
1970-2009” (Russell Sage Foundation, Providence, RI, 2011).

53. T. Piketty, E. Saez, Income inequality in the United States, 1913-1998, Qua. J. Econ. 118,
1-39 (2003).

54. T. Piketty, Capital in the 21st Century (Belknap Press, Cambridge, MA, 2014).

55. T. Piketty, E. Saez, Inequality in the long run, Science 344, 838-843 (2014).

65



56. D. S. Massey, M. J. Fischer, The geography of inequality in the United States, 1950-2000.
Brookings-Wharton Papers on Urban Affairs, 1-40 (2003).

57. T. Watson, Inequality and the measurement of residential segregation by income in Ameri-
can neighborhoods. Rev. Inc. Wealth 55, 820-844 (2009).

58. D. H. Weinberg, ”U.S. neighborhood income inequality in the 2005-2009 period” (Ameri-
can Community Survey Reports, U.S. Census Bureau, Washington, D.C. 2011).

59. E. Kneebone, C. Nadeau, A. Berube, ”The re-emergence of concentrated poverty:
metropolitan trends in the 2000s” (Metropolitan Policy Program, Brookings Institution,
Washington, D.C., 2011).

60. R. Fry, P. Taylor, ”The Rise of Residential Segregation by Income” (Pew Research Center,
Washington, D.C., 2012).

61. A. Walks, ”Income Inequality and Polarization in Canadas Cities: An Examination and
New Form of Measurement” (Research Paper 227, Cities Centre, University of Toronto,
2013).

62. B. Harsman, J. M. Quigley, The spatial segregation of ethnic and demographic groups:
comparative evidence from Stockholm and San Francisco. J. Urb. Econ. 37, 1-16 (1995).

63. M. J. Fischer, The relative importance of income and race in determining residential out-
comes in U.S. urban areas 1970-2000. Urban Affairs Review 38, 669-696 (2003).

64. E. Talen, Neighborhood-level social diversity: insights from Chicago. J. Ame. Plan. Asso.
72, 431-446 (2006).

65. G. C. Galster, J. C. Booza, J. M. Cutsinger, Income diversity within neighborhoods and
very low-income families. Cityscape 10, 257-300 (2008).

66. S. A. Frank, Foundations of Social Evolution (Princeton Univ. Press, Princeton, 1998).

67. J. T. Bonner, The Evolution of Complexity by Means of Natural Selection (Princeton Univ.
Press, Princeton, 1988).

68. J. K. Parrish, L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in ani-
mal aggregation. Science 284, 99-101 (1999).

66



69. A. M. Turing, The Chemical Basis of Morphogenesis. Philosophical Transactions of the
Royal Society of London B 237, 37-72 (1952).

70. P. W. Anderson, More is Different. Science 177, 393-396 (1972).

71. N. Goldenfeld, ”Lectures On Phase Transitions And The Renormalization Group” (Fron-
tiers in Physics, Addison-Wesley, Boston, MA, 1992).

72. G. R. Price, Extension of covariance selection mathematics. Ann. Hum. Genet. 35, 485490
(1972).

73. S. A. Frank, Natural selection. IV. The Price equation, Journal of Evolutionary Biology 25,
10021019 (2012).

74. M. Lynch, B. Walsh, Genetics and Analysis of Quantitative Characters (Sinauer Asso-
ciates, Sunderland, MA, 1998).

67


	Untitled.pdf
	The Statistics_of_Neighborhoods+SOM (1)

