
Monomeric Bistability and the
Role of Autoloops in Gene
Regulation
Stefanie   Widder
Javier   Macía
Ricard V.  Solé

SFI WORKING PAPER:  2008-10-044

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute.  We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print.  Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis.   Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works  may  be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

 



Monomeric bistability and the role of autoloops in gene regulation

Stefanie Widder,1, ∗ Javier Maćıa †,1, ∗ and Ricard Solé1, 2, ∗
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Genetic toggle switches are widespread in gene regulatory networks (GRN). It is often assumed
that negative feedbacks with cooperative binding (i.e. the formation of dimers or multimers) are
a prerequisite for bistability. Here we analyze the relation between bistability in GRN under
monomeric regulation and the role of autoloops in a deterministic setting. Using a simple geomet-
ric argument, we show analytically that bistability can also emerge without multimeric regulation,
provided that at least one regulatory autoloop is present.

Bistability is known to pervade key relevant biological
phenomena [1] including, e.g. the determination of cell
fate in multicellular organisms [2], stem cell switching [3]
or cell-cycle regulation [4]. This capacity of achieving
multiple internal states is at the core of a plethora of
regulatory mechanisms, often associated to small genetic
circuits, including switches [5–9] and oscillators [10, 11].
Understanding their logic and how it will change under
parameter tuning are two important goals of systems bi-
ology. A general consensus indicates that such switches
are based on a mutual repression of two transcription
factors (figure 1a): protein A inhibits the synthesis of
protein B and vice versa [12]. They can be in two differ-
ent stable states and may change from one to the other
spontaneously or due to an external signal [12–15]. Typi-
cally, their regulatory proteins are known to form homod-
imers (or multimers) to be effective transcription factors
[6, 16, 17] allowing to turn ON or OFF the state of tar-
get genes [12, 18, 19]. For general systems without any
specific assumptions, multimeric regulation was assumed
to be essential to obtain bistable behaviour [22, 23]. De-
spite, monomeric bistability has been found in partic-
ular, bimolecular systems under the indispensable key-
assumptions of Michaelis-Menten kinetics and constancy
of the total amount of proteins [21]. Also, some kind of
multistability is possible in a stochastic scenario with-
out cooperative binding [13, 20], but under fully sym-
metric interactions. However, the flips between the two
states are also stochastic and the observed alternative
states cannot be stabilized (as it occurs in real biologi-
cal switches) due to the effectively monostable character
of the system without noise. In deterministic dynamics,
bistability requires the existence of three fixed points.
In this paper we demonstrate, to our knowledge for the
first time, that deterministic bistability can emerge for
two-component gene circuits by considering solely auto-
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FIG. 1: (a) A genetic circuit with monomeric autoloops and
cross-regulation involving two genes (GA, GB) coding for two
proteins (A, B) acting as transcription factors. Under certain
conditions, this type of genetic circuit can show bistability.
Here all possible regulatory modes are shown (+/−). (b)
Simplified diagram summarizing the logic of this system.

regulatory loops. This is unlike the previously briefly
mentioned cases [13, 21], where bistability is not gener-
ated by the intrinsic characteristics of the circuits, but
by external conditions. Our analysis is based on simple
geometrical features associated to the system’s nullclines
and their crossings. As shown below, the presence of
an autoloop introduces essential geometrical constrains
responsible for the existence of three fixed points. Our
results can help understanding the essential role of au-
toloops in small natural circuits and their synthetic coun-
terparts.

Genetic circuit. We focus our analysis on the most
general system formed by two genes. Gene A is ex-
pressed under the constrains of two different monomeric
regulatory modes. Protein A exhibits an auto-regulatory
loop by binding to its own promoter, as well as a cross-
regulation mediated by protein B. Gene B expression is
analogously regulated (see figure 1). We consider the
general case without any specific assumptions about the
type of regulatory interactions, i.e. activation or inhi-
bition, but introduce them as a tunable parameters α.
The basic dynamical properties of the circuit can be de-
scribed by the following set of ODEs obtained from the



FIG. 2: (a) Graphical representation of the nullcline’s components. The numerator is the parabolic curve and the denominator
the straight line. Two feasible scenarios are shown: the solid line denotes ξ+ > ϕ, the dashed line corresponds to ξ+ < ϕ.
(b),(c) Qualitative behaviour of the nullclines applying the two possible conditions.

set of biochemical reactions:
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We are assuming basal transcription, the standard
rapid equilibrium approximations supposing that bind-
ing and unbinding processes are faster than synthesis and
degradation, and constancy of the total number of pro-
moter sites. Furthermore, the concentration of the other
biochemical elements involved remains constant during
time and can be subsumed in the kinetic constant γi.
The binding equilibrium of the autoloop and the cross-
regulators are denoted by ωi

l and ωi
c, respectively. Fur-

thermore αi
l and αi

c denote the regulatory rates with re-
spect to the basal transcription, for the autoloop and
cross-regulation respectively. Values < 1 correspond to
inhibitory regulation, whereas > 1 accounts for activa-
tion. Finally, di is the degradation rate of protein i. For
a detailed description of this type of calculus, see [17].

Nullclines analysis. In order to analyze the system’s
dynamics we obtain the following expressions for the null-
clines imposing Ȧ = 0 and Ḃ = 0 considering monomeric
regulation:

B =
γA + γAωA

l αA
l A − dAA − dAωA

l A2

ωB
c (dAA − γAαB

c )
(2)

A =
γB + γBωB

l αB
l B − dBB − dBωB

l B2

ωA
c (dBB − γBαA

c )
(3)

The number of crossing points between (2) and (3) de-
fines the number of different fixed points within the sys-
tem. Both nullclines have mathematically symmetric ex-
pressions, tunable by the set of parameters. This sym-
metry facilitates their analysis due to interchangeability
of the characteristic features. Hence, the problem can
be evaluated by reducing the analysis to one expression.
Here (2) is analyzed.

Geometrical features. In order to perform a general
analysis of the nullclines we study the single components
(numerator and denominator) of the expressions indepen-
dently, see figure 2(a). The numerator is a parabolic func-
tion having two analytically well defined crossing points
(ξ+ > 0 and ξ− < 0 ) with the horizontal axis given by

ξ± =
−dA + αA

l γAωA
l ±

√

4dAγAωA
l + (dA − αA

l γAωA
l )2

2dAωA
l

.

(4)
The denominator is a lineal function crossing the hori-
zontal axis in ϕ = γAαB

c /dA. The points ϕ and ξ+ are
the upper and lower bound of the protein concentrations
of the system within the biological meaningful region.
Combining the two components, two different scenarios
are feasible, ϕ < ξ+ or ϕ > ξ+, comprising different
geometrical features. In both cases we find two cross-
ing points with the horizontal axis in ξ±, no inflection
points, and the nullclines tending towards their oblique
asymptotes with an identical slope m = −ωA

l /ωB
c for

both settings A → ±∞. From this expression we see that
the autoloop is related with certain geometrical features.
Systems without auto-regulatory loops (ωA

l = 0) do not
exhibit oblique asymptotes, but horizontal. As shown
later the existence of oblique asymptotes is closely related
with the number of possible fixed points and bistability.

In the first case, ξ+ > ϕ, we obtain a vertical
asymptote in ϕ with its lateral behaviour given by
limA→ϕ± (B)Ȧ=0 = ±∞. For the second case, ξ+ < ϕ,
we find similar asymptotes with opposite lateral be-
haviour according to limA→ϕ± (B)Ȧ=0 = ∓∞. In order
to determine possible extrema of the nullcline (dB/dA =
0), we find, after some algebra, that the inequality

dA(αB
c − 1) + αB

c γAωA
l (αB

c − αA
l ) ≥ 0 (5)

must be met to provide valid solutions, hence extrema.
Rewriting the conditions ϕ > ξ+ and ϕ < ξ+ by using
the previous expressions for ϕ and ξ+ we conclude that
only ϕ > ξ+ satisfies condition (5) and hence provides
extrema.



However, according with the vertical asymptotic be-
haviour and the existence of only one crossing point (ξ+)
within the positive domain, we conclude that the ex-
trema are located within B < 0. Hence, no extrema can
be obtained within the biologically meaningful domains
(A > 0, B > 0) for neither scenario. In figure 2(b),(c)
the two different types of possible behaviour are shown.
Furthermore, a similar analysis has been performed for a
system without basal transcription and the geometrical
features are not affected qualitatively.

Fixed point analysis. Using the previous geometrical
approach, we are in the position to reassemble both null-
clines within the biological meaningful region. Four pos-
sible cases are obtained based on the symmetry of the ex-
pressions for nullcline Ȧ = 0 and Ḃ = 0. They are shown
in figure 3. For the cases [ξ+ > ϕ]Ȧ=0

∧ [ξ+ < ϕ]Ḃ=0

and [ξ+ < ϕ]Ȧ=0 ∧ [ξ+ > ϕ]Ḃ=0 (3(a) and 3(b), re-
spectively), equal geometrical arguments apply. In both
cases the nullclines exhibit opposite monotonies and op-
posite curvatures within the entire domain due to the ab-
sence of extrema and inflexion points. These conditions
solely allow for a single crossing, hence monostability. In
the case [ξ+ < ϕ]Ȧ=0 ∧ [ξ+ < ϕ]Ḃ=0, depicted in figure
3(c), the nullclines exhibit opposite curvature, but equal
monotonies. Again, the absence of extrema and inflec-
tion points does not allow for three crossings, however
under the special condition of [ξ+]Ȧ=0 = [ξ+]Ḃ=0 = 0
two crossing point arise. In accordance with expression
(4), these conditions can be satisfied, if 4diγiω

i
l = 0 with

i = {A, B}. Since γi > 0 and di > 0, only ωi
l can be zero

and in this case (for a system without autoloop regula-
tion) the nullclines’ expressions now read:

B =
γA − dAA

ωB
c (dAA − γAαB

c )
(6)

A =
γB − dBB

ωA
c (dBB − γBαA

c )
,

where the fixed points can be analytically solved. The
solutions are determined by the roots of a polynomial of
second degree allowing for two possible fixed points at
most. However, the polynomial crosses the vertical axis
at −γAγBωA

c αA
c forcing one of the roots to be located

within the negative domain. Hence, without autoloops
only monostability is possible in monomeric gene circuits.

For the setting [ξ+ > ϕ]Ȧ=0 ∧ [ξ+ > ϕ]Ḃ=0 both null-
clines show the same type of curvature and monotony.
Due to the oblique asymptote, introduced by the au-
toloop, no analytical constraints prevent the existence of
three crossing points. In figure 3(d) we show an example
of bistability with monomeric regulation.

In order to determine the impact of the number of au-
toloops on bistability, we have numerically analyzed the
effect of downsizing the system from two to one autoloop
(ωi

l = 0, ωj
l > 0). As figure 4 shows, only one autoloop

is required to allow bistability. In figure 4(a) the null-
clines of a circuit with two autoloops are depicted and

FIG. 3: The four possible scenarios of nullcline combinations.
Dashed line corresponds to nullcline Ȧ = 0, solid line to

Ḃ = 0, ϕȦ and ϕḂ denote the location of the asymptote
for Ȧ = 0 and Ḃ = 0, respectively. Due to the symmetry of
the nullclines’ expressions, the vertical asymptote of Ḃ = 0

corresponds to the horizontal of Ȧ = 0. Analogously, ξȦ
+ and

ξḂ
+ are the crossing points with the axis. (d) The geometrical

features of the nullclines allow for two possible cases. Three
crossing points (depicted) or a single crossing (not depicted).

three fixed points appear for a given set of parameters.
The stability analysis reveals two stable fixed points sep-
arated by an unstable one resulting in the corresponding
basins of attraction. Figure 4(b) shows a system with a
single autoloop. These numerical examples demonstrate
that genetic circuits with monomeric regulation are able
to exhibit deterministic bistability, whereby only a single
autoloop is required to satisfy the necessary geometrical
constraints.
Impact of regulation type on monomeric bistability. In
the previous sections the type of regulatory interactions,
given by αi

l and αi
c was handled generally. However, the

individual regulatory interactions, i.e. activation or in-
hibition, introduces additional constraints for the emer-
gence of bistability. Applying some algebra to condition
ϕ < ξ+ (bistability), we obtain an equivalent expression
as in (5) with the opposite inequality. Focusing on the
type of regulation, it can be rewritten as

αA
l > αB

c −
(1 − αB

c )dA

αB
c γAωA

l

. (7)

This leads us to two different instances: (a) if αB
c > 1,

then αA
l > αB

c and (b) if αB
c < 1, then αA

l > αB
c ∨ αA

l <
αB

c . As a consequence systems with inhibitory regulation



FIG. 4: Numerical simulations and stability analysis of sys-
tems with (a) two and (b) one autoloop. Circle denotes a sta-
ble, square an unstable fixed point. The basins of attraction
are shown in grey and white. The following sets of parame-
ters have been used: (a) γA = 1, dA = 1, αA

l = 10, ωA

l = 1,
ωB

c = 1, αB
c = 0,γB = 1.1, dB = 0.1, αB

l = 2.1, ωB

l = 0.1,
ωA

c = 1.1, αA
c = 0 and (b) γA = 5, dA = 8, αA

l = 9, ωA

l = 1,
ωB

c = 1, αB
c = 0, γB = 8.5, dB = 1, αB

l = 0, ωB

l = 0, ωA
c = 1,

αA
c = 0

in the autoloop and activatory cross-regulation can not
exhibit bistability. In all the other cases no geometric
impediments are present.

Discussion. To summarize, a general, analytic set of
conditions for bistability in simple two-element genetic
circuits has been derived for monomeric regulation. Al-
though previous work suggested that such kind of mech-
anism would be unlikely to be observed, here a simple
geometric argument reveals that wide parameter spaces
allow monomeric regulation to generate multiple stable
states. These results permit to predict the expected sce-
narios where a reliable switch could be obtained. Cur-
rent efforts in engineering cellular systems [24–26] would
benefit from our general analysis. In this context, al-
though dimerization seems to be a widespread mecha-
nism in GRNs, our study indicates that potential sce-
narios for monomeric regulation could be easily achieved
through the appropriate engineered components. Finally,
further work should explore how noise can act on these
type of dynamical systems. In eucaryotic cells, dimeriza-
tion has been shown to provide a source of noise reduction
at least at the level of simple GRNs [27]. Future studies
should see how our monomeric circuits are affected by
noise and what types of limitations and advantages can
be obtained.
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