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Abstract Large-scale — even genome-wide — duplicationKeywords Hox clusters, Fish-Specific Genome Duplica-

have repeatedly been invoked as an explanation for major réion, goldeyeHiodon alosoides

diations. Teleosts, the most species-rich vertebrateclad

derwent a “fish-specific genome duplication” (FSGD) that is

shared by most ray-finned fish lineages. We investigate herg|ntroduction

the Hox complement of the goldeyéd{odon alosoides a

representative of Osteoglossomorpha, the most basal telgenome duplication is a powerful evolutionary mechanism

ostean clade. An extensive PCR survey reveals that goldhat has contributed to the diversity of the vertebrateslire

eye has at least eightox clusters, indicating a duplicated (Ohno, 1970). Present evidence supports that two rounds of

genome compared to basal actinopterygians. The possegenome duplication (called 1R and 2R) occurred in early

sion of duplicatedHox clusters is uncoupled to species rich- chordate phylogeny and are common to the ancestor of jawed

ness. Thedox system of the goldeye is substantially differ- vertebrates (cartilaginous, lobe-finned, and ray-finnée&

ent from that of other teleost lineages, having retained seySidow, 1996). The clade of ray-finned fishes (Actinoptery-

eral duplicates oHox genes for which crown teleosts have gji, Figure 1) underwent a third round of genome duplica-

lost at least one copy. A detailed analysis of the PCR fragtion dubbed the 3R or the FSGD (fish specific genome du-

ments as well as full length sequences of tdaxAl3par-  plication, red arrow in Figure 1) (Taylat al, 2001; Chri-

alogs, andHoxAl0andHoxC4genes places the duplication stoffelset al, 2004; Vandepoelet al, 2004). The FSGD is

event close in time to the divergence of Osteoglossomolproposed to be a whole genome event (Tagibal, 2003;

pha and crown teleosts. The data are consistent with — brunetet al, 2006), a fact that is well supported by the ob-

do not conclusively prove — that Osteoglossomorpha shareservation that spotted green pufferfish (Teleodteiraodon

the FSGD. nigroviridis) has two syntenic regions (paralogons) corre-
sponding to each single region in the human genome (Jail-
lon et al, 2004). Comparative mapping, furthermore, shows
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as is found in cartilaginous (shark (Chet al., 2002; Kim
et al, 2000; Prohaskat al, 2004; Venkateskt al,, 2007)),
lobe-finned (human (Krumlauf, 1994), latimeria (Ketal,,
2003; Powers and Amemiya, 2004)), and basal ray-finned
(bichir (Chiuet al,, 2004)) fishes.

In contrast, zebrafish has 7 Hox clusters that house ex-
pressed gene$lpxAa, Ab, Ba, Bb, Ca, Cb, Da (Amores
et al, 1998), wheréda andAb duplicated clusters are each
orthologous to the singléloxA cluster of outgroup taxa
such as human (Amoresal., 1998, 2004; Chiet al, 2002)
Recently, theDb cluster (the 8th cluster) in zebrafish has
been found to contain a single microRNA and no open read-
ing frames (ORFs) (Woltering and Durston, 2006). Evidence
of duplicatedHox clusters is reported for additional teleosts
including pufferfishesTakifugu rubripesand Tetraodon ni-
groviridis (Jaillonet al, 2004; Amoreset al., 2004; Apari-
cio et al, 2002), medaka(ryzias latipegKasaharat al,,
2007; Kurosawaet al, 2006; Naruseet al., 2000), striped
bass Morone saxatiligSnellet al,, 1999)), killifish (Fundu-

Pse
Lme
Xtr

Fig. 1 Simplified phylogeny of jawed vertebrates, with focus on-ray

lus heteroclitugMisof and Wagner, 1996)), cichlid©Ofe-
ochromis niloticusg(Santini and Bernardi, 2005Astatoti-
lapia burtoni(Hoegget al,, 2007; Thomas-Chollier and Le-
dent, 2008)), salmorSalmo sala{Moghadanet al.,, 2005b;
Mungpakdeeet al,, 2008)), rainbow trout@ncorhynchus
mykiss(Moghadanmet al, 2005a)), goldfish@arassius au-
ratus(Luoet al, 2007)), and Wuchang breaégalobrama
amblycephaldZou et al.,, 2007)).

Comparative analysis dflox clusters and genes in te-
leosts showed that the duplicated Hpandb clusters have
experienced divergentresolution producing variatioraney

finned fishes (actinopterygians). The jawed vertebrateectamhsists
of three branches, the cartilaginous (Chondrichthyeg)|dbe-finned
(Sarcopterygii), and ray-finned (Actinopterygii) fisheg @t al., 1993;
Venkatestet al,, 2001; Kikugawaet al, 2004; Inoueet al, 2003); the
close relationship of cichlids is supported by both nuclgemes and
phylogenomics data (Chest al,, 2004; Steinkest al., 2006).
Abbreviations: Hfr,Hetrodontus franciscihorn shark); Xtr,Xeno-
pus tropicalis (frog); Lme, Latimeria menadoensigcoelacanth);
Pse,Polypterus senegaluéichir); Hal, Hiodon alosoideggoldeye);
Dre, Danio rerio (zebrafish); Mam,Megalobrama amblycephgla
Ssa, Salmo salar (salmon); Omy, Onkorhynchus mykisgrainbow
trout); Gba, Gonostoma bathyphilunightfish); Gac, Gasterosteus
aculateus(three-spined stickleback); Ol@ryzias latipes(medaka);
Oni, Oreochromis niloticugnile tilapia); Abu, Astatotilapia burtoni

content (Lynch and Force, 2000; Prohaska and Stadler, 200%)i, Tetraodon nigroviridis(spotted green pufferfish); Triakifugu

and increased rates of substitution in both protein codingHbripes(Japanese pufferfish)

(Chiu et al, 2000; Wagneket al,, 2005; Crowet al., 2006)

and noncoding (Chiet al,, 2002, 2004; Tumpedt al., 2006)

sequences. Consistent with a shared duplicationHive derived teleost fishes arose gradually in ray-finned fish phy-
paralogs form two distinca andb clades (Amorest al,  logeny with many innovations already predating the FSGD.
2004). All teleosts examined to-date represent only twe speVlany of these extinct clades that have been shown to predate
cies-rich actinopterygian clades, the Ostariophysi (geg. the FSGD were species rich themselves. Hence fossil evi-
brafish), and Euteleostei (Acanthopterygii: pufferfistids, —dence suggests that the FSGD is uncoupled to species rich-
lifish, medaka, bass, and cichlids; Salmoniformes: salmor)ess. By showing that the species-poor Osteoglossomorpha
trout), comprising 6,000 and 16,000 species, respectivelgxhibit duplicatedHox clusters, we add molecular evidence
(Nelson, 1994) (Figure 1). to this view.

One may ask whether the FSGD is directly responsi- Evidence from a handful of molecular evolution stud-
ble for the biological diversification (i.e. speciosity)mfy- ies is consistent with this hypothesis. Phylogenetic ssedy
finned fishes (Vogel, 1998; Wittbrodt al., 1998; Meyerand of four Hox genesloxA11 HoxB5 HoxC11, andHoxD4)
Schartl, 1999; Venkatesh, 2003; Postlethvedital, 2004; (Crow et al, 2006), duplicated ion and water transporter
Meyer and Van de Peer, 2005; Volff, 2005). Alternatively,genes in eels (Cutler and Cramb, 2001), three nuclear genes
species-richness and large-scale duplications have torbe ¢ (fzd8, sox11, tyrosinase (Hoegy al., 2004), the ParaHox
sidered as independent phenomena. The examination of tickister (Mulleyet al,, 2006), and combined datasets (Hurley
actinopterygian fossil record (Donoghue and Purnell, 2005et al, 2007) in basal, intermediate and derived actinopte-
shows that there are 11 extinct clades between teleosts angjians together suggest that the FSGD is coincident with
their closest living relatives. The authors conclude that t the origin of teleosts. More precisely, the data place the du
character acquisitions often attributed as synapomosptiie plication event after the divergence of bowfin (Amia) and
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Fig. 2 Hox cluster complement
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sturgeon but prior to the appearane&35 mya of the lin- HoxD, clusterAF224262. The representatives of the lobe-
eages leading to 23,637 (93%) of the 23,681 extant specidmned fishes are coelacanthatimeria menadoensgisand
of present-day teleosts (Benton, 2005). frog (Xenopus tropicalis Coelacanth homeobox fragments
In order to assess thdox complement in the earliest are listed in (Kolet al,, 2003); we (Chitet al,, 2000) also se-
teleost lineages we identifiddox genes in the goldeyddf-  quenced théloxAllortholog AF287139). FrogHox clus-
odon alosoidels a member of the species-poor Osteoglossoters were taken from the Ensembl Web Browser Xenopus
morpha (Nelson, 1994; Hurlest al, 2007; Benton, 2005). tropicalis genome JGI3 0xA, scaffold29 1,777,789-2,133,
Results of a PCR survey of Hox genes in the goldeye cous31; HoxB, scaffold329 415,000-1,016,00Bi0xC, scaf-
pled with phylogenetic analyses of four individual Hox or- fold280 199,492-581,36%joxD scaffold353 474,676-800,
thologs HoxA1Q HoxA13-1 HoxA13-2 HoxC4 provide  000.
conclusive evidence that the goldeye has dupliceizdclus-
ters. The organization of the goldeiex clusters, however,
is significantly different from that of other teleosts, iratlit
has retaineddox genes in all eight clusters.

The representatives of the ray-finned fishes include bichir
(Polypterus senegalyiand several teleost fishes. The bichir
HoxA cluster was assembled from two BAC clones with
accession numbersC126321 and AC132195 as in (Chiu
et al,, 2004). Zebrafish[janio rerio) Hox clusters were as-

2 Materialsand Methods sembled from PAC clonedioxAa, AC107364; HoxAb,
AC107365 (with an alteration of nucleotide 79,324 from T
2.1 Gnathostomelox Genes to C to avoid a premature stop codoHR)pxBa, BX297395,

AL645782; HoxBb, AL645798; HoxCa, BX465864 and
Nucleotide and amino acid sequences of individd@akgenes BX005254; theHoxCb cluster was taken from Ensembl Web
analyzed in this study came from three sources: genomiBrowser Danio rerio genome (Zv3)ioxDa, BX322661. The
databases, published literature, and targeted PCR amplifiebrafisiHoxDb cluster does not houstox genes (Wolter-
cation using degenerate primers designed here (see below)g and Durston, 2006) and was excluded in this study. Nile
Amphioxus Brachiostoma floridaghomebox sequences are tilapia (Oreochromis niloticusHoxAa, AF533976; striped
from (Garcia-Fernandez and Holland, 1994; Fergenl, bass Morone saxatiliy HoxAa, AF089743. Medaka Qry-
2000). The representative of the cartilaginous fishes ia horzias latipe¥ Hox clustersAB232918-AB232924. Spotted-
shark Heterodontus francisgi HoxA cluster,AF479755;  green pufferfishTetraodon nigroviridiy Hox clusters were
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extracted from the Tetraodon Genome BrowsétoxAa,  paralog groupsioxl-Hox13was initially determined based
chr21.2,878,001-3,153,408pxAb, chr.8 6,506,471-6,727, on nucleotide and amino acid sequence similarity to pub-
504; HoxBa chr.Un 37,928,410-38,293,038pxBb, chr.2  lished Hox sequences usitgast (Altschul et al, 1990,
1,321,876-1,537,03340xC, chr.9 4,083,941-4,353,227; 1997). The second layer of analysis used neighbor-joining
HoxDa, chr.2 10,975,763-11,218,409 (a T was deleted afSaitou and Nei, 1987) trees with deduced amino acid se-
position 11,134,740 in order to shift back to correct frame) quences (see Electronic Supplement) and assigned goldeye
HoxDb, chr.17 9,471,3559,694,740. Japanese pufferfisk-( PCR fragments based on assigned the identity of the subtree
ifugu rubripeg Hox clusters were acquired from the En- in which they are located. With the exception of the “middle-
sembl genome browser (assembly FUGU 2.0). FAlexAa  group paralogs” Hox4-Hox7, we find that the paralog-groups
cluster is constructed from the entire scaffold 47 fuxAb  are reconstructed as monophyletic clades (with the excep-
cluster is constructed from scaffold 330, see (Ckiwal, tion of the posterior sequences from Amphioxus (Garcia-
2002). Short homeobox fragments for QM analysis were irfFernandez and Holland, 1994; Ferrirl.,, 2000).

addition taken from (Prohaska and Stadler, 2004).

2.2 PCR amplification, cloning, and sequencing 2.4 Assignment by Quartet Mapping

Whole genomic DNA was extracted from 80 milligrams
of ethanol preserved tissue of goldey¢iddon alosoidels
and lightfish Gonostoma bathyphiluyrusing the DNeasy
kit (Qiagen) and protocols.

PCR amplification of an 81 base pair (bp) fragment o

All subsequent analyses were performed using homeobox
nucleotide sequences. Middle-group genes were identified
using Quartet Mapping (QM), see (Nieselt-Struwe and von

{Haeseler, 2001) and an application of QM to homeobox PCR

the highly conserved homeobox of PG1-8 was performeﬂclf'ag_rr.‘ents from lower \{ertebrates (Stadégral, 2004) for
using a degenerate homebox primer p&i84: 5-GAR YTI additional details. To this end, we use the teleost homeobox

GAR AAR GAR TTY-3-335 5-ICK ICK RTT YTG RAA caa- Seguencesfrom (Amoresal, 2004), the collection of home-

3]. PCR amplification of an 114 bp fragment of the higthObOX fragments from (Prohaska and Stadler, 2004), seqaence

conserved homeobox of PG913 was performed using th@f human, shark, coelacanth and the biddimxA cluster

degenerate primer${B913Forward5-AAA GGA Tcc Tac  (Chiuetal, 2004) as well as sequences from our own un-
AGA ARM GNT GYC CNT AYA SNA A-3: HB113Reverses- published PCR study of the bichir (Raincretal, in prepa-

ACA AGC TTG AAT TCA TNC KNC KRT TYT GRA ACC A-  ration). We first determing QM support for paralog groups
3]. PCR amplifications were performed with AmpliTag Gold PG4 PG5, and the combination of PG6 and PG7. For those
DNA polymerase (Applied Biosystems) using the following S€dUences thgt are not |Qentlfled as PG4 homeoboxes, we re-
cycling parameters: initial denaturation at'@sfor 5 min,  'un the analysis computing supportfor PG5, PG6, and PG7.

30 cycles of 95C for 1 min, 50C for 1 min, and 72C for In a second experiment we then consider trees of the
1 min, and final extension at 7€ for 10 min. Final concen- form (({x},R), (U, (V,W))) or (({x},(RU)),(V,W)),
tration of MgCh was 35 millimolar. Amplified fragments Where {x} denotes the query sequence from Hiodon and
were purified by agarose gel extraction (Qiagen) and clonefR U,V,W} = {PG4,PG5,PG6, PGT7} are the sets of known
into a pGEM-T Easy vector (Promega) following the man-homeobox sequences from the four middle paralog groups.
ufacturers protocol. Clones containing inserts of theaxirr Together with the query sequence, we thus consider quin-
size were identified using colony PCR and sequenced at tHgts, which can be represented in the form of six inequivalen
UMDNJ-RWJIMS DNA Sequencing and Synthesis Core Faguartets depending on which pair of paralog groups form a
cility2. For each clone, both strands were sequenced usirggmmon subtree:
T7 and SP6 sequencing primers. (({xHLRINU, (V,W))); ({3 RV, (U,W)): (X} R)I(W, (U, V)));

(({x} (RUNIV,W)): (I (RV)IU,W)); (X} (RW))[(U,V)).

We analyze each of these six quartets using quartet map-
2.3 Initial assignment of PCR fragments ping, i.e., we determine which assignment of the four para-

log groups tdR, U, V, W yields the maximal support for the
The 81 bp and 114 bp long sequences of PG1-8 and PG9-}&e. This yields a support value for each Hiodon query se-
homeoboxes, respectively, were compared with the corrguencexto be placed in a common subtree with either a sin-
sponding sequence fragments from a range of chordates (sgg paralog group or with a pair of paralog groups. Ideally,
above). The membership of each PCR fragment to one of thg placed together with the same paralog grBubree times

! http://www.genoscope.cns.fr/externe/tetranew/entry_ and placed together with the combinatiorRdnd one other
ggb.html paralog group in the remaining three quartets. Our imple-
2 http://www2.umdnj.edu/dnalbweb mentationquartm of the Quartet Mapping method performs
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this quartet analysis of quintets automatically. The paogr was performed under the reaction conditions (initial denat
can be free downloaded from the authors’ welisite ration at 95 C for 5 min, 30 cycles of 9% for 1 min, 55C
for 1 min, and 72C for 1 min, and final extension at 7@
for 10 min. Final concentration of Mgglwas 3.0 millimo-
2.5 Assignment by phylogenetic analysis lar). TheHoxA10like sequence of goldeye built from a con-
tig of these overlapping PCR fragments, spanning from the
The quartet mapping analysis was complemented by the copromoter to exon 2, is deposited in Genbalpdrkit1122799).
struction of neighbor joining (Saitou and Nei, 1987) and  TheHoxC4ortholog of bichir Polypterus senegaluBse;
maximum parsimony (Swofford, 2003) trees from the samegbankit1123044,bankit1123047 and theHoxC4alike para-
datasets. In the next step we used the same procedure sepgy of goldeye (Hal; Genbankankit1122797 were ampli-
rately for each paralog group to assign a sequence to one fiéd with a degenerate primer pail¢xC4Forward 5-CAT
the four gnathostome clustefoxA, HoxB, HoxC, HoxD.  GAG CTC GTY TTT GAT GGA3; HoxC4Reverses-AYT TCA
In the final step we then attempted to resolve the assignmemtc TKC GGT TCT GA-3) using the following PCR condi-
of the Hiodon PCR fragments from each class to one of théions (initial denaturation at 9€ for 5 min, 30 cycles of
two teleost-specific paralog groups. 95°C for 1 min, 53C for 1 min, and 72C for 3 min, and
final extension at 7Z for 10 min. Final concentration of

MgCl, was 2.0 millimolar).
2.6 Sequencing of foudox orthologs

All PCR amplifications were performed with AmpliTaq Gold 2-7 Phylogenetic analysis of exon 1 sequences

DNA polymerase (Applied Biosystems). Cloning and se- i

quencing were performed as described above. Alignments of Hox gene nucleotide sequences were done
Goldeye duplicate#ioxA13-1andHoxA13-2sequences using theclustalw algorithm (Thompsoret al., 1994) in

and the lightfishHoxA13b-like sequence (Figures 3a and the software package MacVector, version 8.1.1, using de-
4) were PCR amplified using univerdabxA13primers se- fault settings. Nucleotide sequences were trimmed so each

guences (Chitet al, 2004) using the following PCR con- S€dUeNnce was 9f equal length. AIignmenthB(gene pre-
ditions (initial denaturation at 9& for 5 min, 30 cycles of dicted amino acid sequences were done usingthetali

95°C for 1 min, 53C for 1 min, and 72C for 3 min, and algorithm in the software package MacVector version 8.1.1
final extension at 72 for 10 min. Final concentration of using default settings. Amino acid alignments were coect
MgCl, was 20 millimolar). The lightfishHoxal3blike se- by eye and trimmed so each sequence was of equal length.

quence is deposited in Genbartiagkit1122802); the gold- Alignme_nts can be_viewed in the Electronic Supplement. .
eye duplicatedHoxA13.1 and HoxA13.2 sequences have Maximum Parsimony trees were created using PAUP

accession numbetsankit1122788 andbankit1122792, re-  V4-0010 (Swofford, 2003) under the parsimony optimality
spectively criterion. Heuristic searches were performed under defaul

Two overlapping primer pairs were used to PCR amplifysettings. Neighbor-Joining (Saitou and Nei, 1987) treagwe

the goldeyeHoxA10like sequence (Figure 3¢ and Supple_also created using the PAUP* v4.0b10 package using the

mental Figure 2). The first set of degenerate primétsx¢ d!sta.nce optimality crltenop with dgfault settings. Mmum_
A10Uforward 5-CDG TNC CVG GYT ACT TCC G-3: Hox- Likelihood trees were obtained using GARLIv0.951 (Zwick,

A10Ureverse5-CCC AAC AAC AKR ARA CTA CC-3) amp- 2006). Defa_ult settings were uged unle_ss otherwi_se stated
lify approximately the last third of exon 1, the intron, and below. Sta_rtlng trees were _obta|_ne(_1 using heuristic search
most of exon 2 using the following cycling parameters (ini_under the likelihood opt|mallty criterion in PAUP* v4.0b1(_)
tial denaturation at 9% for 5 min, 30 cycles of 9% for 1 (Swoﬁord, 2003), default settings were use.d. The substitu
min, 55°C for 1 min, and 72C for 1 min, and final extension tion model was set to the 2 rate model which corresponds
at 72C for 10 min. Final concentration of Mggwas 3.5 to the HKY85 mp_del. Under the Run Termination critgria
millimolar). To amplify the N terminal portion of exon 1 we "Bootstrgp repgtmons" was:' set to 2,000 and "Generations
designed a forward primePFCA75 5-TTT GYW CRA GAA W'thOUt improving topology was setto 5,000 as §}Jggested
ATG TCA GC-3) from an evolutionarily conserved noncod- in the GARLT manual when using bootstrap repetitions. For

ing sequenceRFCAEF75 Raincrowet al, in preparation) all three methodes, node confidence was scored using the

immediately upstream of thdoxA10start codon. PCR us- bootstrap Iresampling metho‘?‘ and 59% cutoff.

ing this forward primer and a reverse priméfalexon1R _Bayesian trees were obtained usingayes v3.1.2 (Ron-

5.CCT TAG AAG TTG CAT AAG CC-3)thatis specific to the quist and Huelsenbeck, 2003) and the parallel version of
MrBayes v3.1.2 (Altekaret al, 2004).MrBayes settings

goldeyeHoxA1Glike exon 1 sequence (described above), e ; .
were as follows: 2 rate substitution model, relative rate di

3 http://www.bioinf.uni-leipzig.de/Software/quartm/ tribution = gamma, number of generations = 1,000,000, sam-
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ple freq = 1,000, number of chains = 4, and temperature problem by examining exon sequences of fdox orthologs,
0.2. "Burn-in” was assessed using the "sump” commandHoxA13(two paralogs)HoxAlGandHoxC4 For theHoxA13
Normally, the first 1 or 2 trees were discarded as "burndocus, we cloned and sequenced the gene proper region of
in” before creating the final consensus tree. Node confidendevo HoxA13like paralogs Hal13.1andHal13.2) including
was scored using the Bayesian posterior probability pexvid the beginning of exon 1 (12aa from the start codon), intron,
by the program. and most of exon 2 including the homeobox. Notably, the
Phylogenetic networks were computed using the neighbleemeodomain sequencestdd/13.1andHal13.2are identi-
net algorithm (Bryant and Moulton, 2004) implemented incal to homeobox fragments 13.1 and 13.2, respectively, iso-
the SplitsTree package (Huson and Bryant, 2006) usinglated in our independent PCR surveytbfalosoidesvhole
the same distance matrices that also underlie the neighbayenomic DNA.
joining trees. Interestingly, while homebox fragmenis3.1 and 13.2
are tentatively assigned BloxAl13aandHoxA13h(Figure 2),
gene tree reconstructions usiHg/13.1andHal13.2exon 1
3 Results amino acid sequences (Figure 3a) show that both HoxA13-
like paralogs of goldeye do not group in either thexAl13a
The first step of this study is to estimate the numbefoX  or HoxA13bclades of teleost fishes. Instead, bbibxA13
clusters in the goldeyeH{odon alosoidel Using degener- paralogs of goldeye branch at the base of teleosts, prior to
ate primers that target homeoboxes (see Methods), we clongg duplication but after divergence of bichit: 6enegalus
and sequenced a total of 42ox fragments (81 and 114 the most basal living lineage (Chatial,, 2004; Mulleyet al.,
bp long, depending on the primer set utilized) and 23 non2006). Gene trees reconstructed using exon 1 nucleotide se-
Hox fragments (not further analyzed). Using a combinationguences do not resolve the phylogenetic position of the two
of blast (Altschul et al, 1990, 1997), similarity, Quartet HoxA13like paralogs (see also Supplemental Figure 1a).
Mapping (QM; .(Nieselt-Struwe and-von Haeseler, 2001), We examined the exon 1 nucleotide sequences of each
and phylogenetic analyses (Electronic Supplerhehe 421 1,713 jike paralog in goldeye and did not detect evidence

Hox sequences group into 41 unique sequences (Figure 2}, yene conversion (data not shown). Interestingly though

For each sequence, allelic exclusion tests were performq;;hen we examined the predicted primary amino acid se-

as described in (Misof and Wagner, 1996). The 41 homegence ofHal13.1andHal13.2paralogs, we found that they

obox sequences of goldeye found in this study hav_e beethare many amino acids at positions that have diverged in
depqsneq n GenBanE\]_015270-FJ015310. Afulllistis  yhe duplicated paralogs of all crow teleosts (zebrafishyChi
provided in the_ Ele_ctronlc Supplement. et al, 2002), medaka (Kasahaet al,, 2007; Naruset al,

As shown in Figure 2 (bottom panel), the goldeye has)ong. kyrosawat al., 2006), tilapia (Santini and Bernardi,
dupllca_ted paralogs on egch qf the four Hox_clusters. FOQOOS)' lightfish (this study) and pufferfishes (Jailleinal,
HoxA-like clusters, there is evidence for duplicated 9grouPx004; Aparicioet al, 2002)), see Fig. 4. The amino acid
10,11, and 13 paralogsioxB-like clusters, group 40xC- hqsitions shared by the duplicatedxAl3like paralogs in
like clusters, groups 5, 6, 9, 12, 13; aHoxD-like clusters, g qeve are the ancestral sites, as determined by thezcshar
groups 3 and 10. Strikingly, the goldeye is the only tele'presence in the bichiPplypterus senegaliiswhich has a
ost fish examined to date that has evidence for retatitwed singleHoxA cluster (Chitet al, 2004). We examined whe-
genes on each of the eight Hox clustef@(Ab, Ba, Bb,  her there is selection acting on synonymous substitutions
Ca, Cb, Da, Dbj . . (Ks) at these two loci in the goldeye (Yang, 1997), but we

~ Phylogenetic analysis and QM mapping, however, asgiq not find any statistical support (data not shown). Our
signed only thirteen sequencesdor b paralog clades ob-  fingings for the goldey#loxAl3like paralogs are striking

served in advanced teleost fishes (Figure 2). Aboutthe samg,cayse they do not exhibit a pattern of sequence evolution
number of sequences is preferentially classified with thtiein oo hcistent with intensive diversifying selection (van deP

plicated genes in bichir, shark, or sarcopterygians. Th& PCg( 51 2001: Crowet al, 2006) following duplication. The

fragments therefore do not provide enough information tqyqgeye thus may be a good model to test the predictions of
decide whether the goldeye sharesitex duplication with 1« ppc model (Forcet al, 1999), whereby amino acid se-

the crown teleosts, i.e., whether its eidox clusters are  q,ence divergence of duplicated paralogs may be small but
orthologous to the eight teleolsiox loci, or whether an in- divergence in regulatory sequences is large.

dependent duplication event occured in Osteoglossomorpha

e . Using overlapping primer sets (see below), we cloned
Because the homeobox sequence amplified in a genomjc . sequenced the gene proper region ibaA10like se-

PCR survey is so short, we chose to further investigate th'auence (Figure 3b) including a promoter sequence (not shown
4 http://www.bioinf .uni-leipzig.de/Publications/ The homeodomain sequence of thexA1Glike ortholog is
SUPPLEMENTS/Hiodon/ an exact match to fragment 10-1 (Figure 2), assigned as a
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TruA13b TruHoxC4a OmyHoxC4a 2
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——LmeAl3 0.05 0.05
HrA13 PseHoxC4 PseHoxC4
GgaAl3 LmeHoxC4 LmeHoxC4

Fig. 3 Examples of phylogenetic analysis Hbx exon 1 sequences. Species abbreviations as in Fig. IH§XN13tree reconstructed using
neighbour-joining (Saitou and Nei, 1987) analysisHifxA13amino acid sequences. Bootstrap support (2000 replicjtiare shown at the
nodes. (B)HoxA10tree reconstructed using Bayesian (Ronquist and HuelsknB803; Altekaret al., 2004) analysis of amino acid sequences.
Node confidence values of 1,000,000 generations are sh@yrCgnsensugloxC4tree reconstructed using Neighbor joining (Saitou and Nei,
1987), heuristic maximum parsimony (Swofford, 2003), arakimum likelihoodSwofford:03,Zwickl:0@&nalyses of amino acid sequences. Node
confidence values are listed as NJJHMP/B. (D) ConsehtmeC4tree reconstructed using Neighbor joining analysis of eeiitle sequences.
Node confidence values are listed as NJ/MP/B/ML. See texddtails of phylogenetic analysis.

1 Exon1l £220 Exon 2 tains only a singldHoxAlOlocus that did not accumulate
ﬂl — substitutions at an increased rate observed when both du-
plicated paralogs are retained following duplication itete
ABDARL B RIS AR AR 22 ost crown groups (Chiet al, 2000; Wagneet al, 2005;
MM S A SS  HoxAl3a van de Peeet a]., 2001). In fact, phylggenetic .analysis. of
crown teleosts  exon 1 of the single HoxA10b locus in zebrafish provides
coL VAV L PG HoxAl3b strong support for branching within the teleosténnlade
only at the amino acid (Figure 3b), but not nucleotide se-
* * quence (Supplemental Figure 1b) level. Hence, following a
TTMAA LS VM S G HOXA13_1goldeye duplication, if one of the paralogs is immediately lost, the
MM S VLSS HoxA13-2 rate of nucleotide substitution of the remaining singleyma
be conservative. A second possibility raised by our find-
--MAA S SV I S G HoxA13 bichir ings is that goldeye experienced a duplication that is inde-

Fig. 4 Goldeye duplicatedHoxA13like paralogs do not diverge at
the amino acid level. Cartoon depiction ldbxAl13exon 1 and exon
2 domains. Amino acid numbers accordingHoxA13aof pufferfish
(Takifugy, see text. Amino acid positions (black bars) that diverge i
the duplicatedHoxA13aandHoxal3bparalogs of species-rich teleosts
are shown and contrasted with the duplicatkrkA13like paralogs of
goldeye. Only two of amino acid positions diverge in goldégster-
isks). See text for further description.

pendent from that in the crown group of ostariphysians and
acanthomorphs. A third scenario, although not tenable with
available data, is that goldeye experienced massive gese lo

shortly after the FSGD and subsequently experienced lin-
eage specific duplications of all or parts of its genome, in-
cluding theHox clusters, minimally the HoxA-like cluster.

Intriguingly, phylogenetic analysis of the majority of @xo
1 of a HoxC4like sequence found in this study provides
strong support that this locus HoxC4alike at the level

HoxA10 homeobox. As illustrated in phylogenetic analysisof amino acid (Figure 3c) and nucleotide (Figure 3d) se-
of exon 1 amino acid sequences, thexAlGlike sequence quences. Hence, this result supports that goldeye shaes th
of goldeye branches outside the duplicatéoxAlO0aand FSGD. Importantly,the homeodomain sequence oftlois-
HoxAlObclades (Figure 3b), similarly to thdoxAl3like  C4alike locus is an identical match to our PCR homeobox
paralogs (Figure 3a). The topology of this gene tree is simisurvey fragmen#-5 (Figure 2) that we independently as-
lar to that reported in (Hurlegt al., 2007) for other nuclear signed asioxC4ausing phylogenetic methods and QM (Ta-
genes. Interestingly, the promoter of the goldéi@xA1G  ble 1 in the Electronic Supplement). This result, i.e., that
like ortholog also has not acquired diagnostic teleostean p goldeye experienced the FSGD, is consistent with the phylo-
alog a and b specific nucleotides (not shown). There aregenetic branching arrangement of three Hox gétesAlla,

at least two possibilities that could account for these reHoxall3, and HoxB3 in goldeye into HoxAlla, HoxAllb,
sults. First, followingHox cluster duplication, goldeye re- and HoxB5b teleostean clades, respectively (Cedval,,
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Fig. 5 Neighbor-net analysis of theloxA13 (left) and C4 (right) nucleic acid
sequences. Thenet represents also alternative hypotheses by expanding &ulges
! boxes corresponding to alternative splits that are alspa@tgd by the sequence
Trual3a data. This provides a graphical impression on the treediks of the data and
vizalizes the signal to noise ratio of the data set.

OniA13a GacAl3a
DreAl3a

2006). Interestingly, our PCR survey above detected twaelection, which is in contrast to the pattern of strong {posi

unique HoxA11-like homeobox fragmentsl(-1, 11-2 Fig- tive selection (i.e. molecular adaptation with/Ks > 1) that

ure 2 that both are assigned, with weak support, to be HoxAh#ab been reported when duplicated paralogs are retained,

like. Our PCR screen did not yield HoxB5-like homeoboxsuch as the zebrafistoxC6aandHoxC6bparalogs (van de

sequences. Peeret al,, 2001),HoxA cluster duplicated paralogs of os-
tariophysan and acanthomorph lineages (Gttial,, 2000;
Wagneret al., 2005) and other nuclear loci (Brunet al,,

4 Discussion 2006).

Our findings contribute to the understanding of the Hox com- The d_uplicati_on of thédox gene s_yst(_am in gold_eye to-
plement in a basal teleost lineage (Figure 2) and permit ingether with previously reported duplications (relativette

ferences on when duplicate Hox paralogs have been lost ﬁ;lnathostome ancestor) of several other nuclear genesdn oth
actinopterygian phylogeny, bony tongues (Hoeget al,, 2004) suggests that we are deal-
While acantomorpha have completely lost one of theing with a whole-genome duplication. A genome duplica-

HoxC duplicates, and ostariophysi as well as SalmoniformelO™ or the possession of a duphcatddx.syst-em In partic-
have lost all protein coding genes from one of thexC du- ular, is therefore uncoupled from species-richness. Our re

plicates, goldeye has retaineldxgenes of all eight clusters. ,SUItS emphasize the genome plasticity of actinopterygians

As illustrated in Figure 2, goldeye in particular possesseg1 general and suggest that different mechanisms may be at

duplicate paralogs dfoxB4 HoxC5 HoxC6 HoxD3 and work in t_he earliest (species poor) versus later (speatds ri
HoxD1QIn contrast zebrafish, with the exception of HoxC6teIeOSt fishes.
(Amoreset al, 1998), medaka (Kasahagbal,, 2007; Naruse Strictly speaking, our data fail to conclusively resolve
et al, 2000; Kurosawat al, 2006) cichlids (Santini and the question whether or not the duplicatddx clusters in
Bernardi, 2005; Hoeggt al., 2007; Thomas-Chollier and goldeye are true orthologs of the eight teleostean clugisrs
Ledent, 2008), and pufferfishes (Apari@bal, 2002; Jail- illustrated in Figure 3a, the branch length of e&ttxA13
lon et al, 2004), each possess at most a single copy of thedike sequence in goldeye is long, suggesting they deriva fro
loci (Figure 2). Based on fossil evidence, we infer thatéhesan ancient duplication and not a lineage specific duplica-
genes were lost in the time interval spanning from 250 mil4ion as observed in paddlefish idoxB5duplicated paralogs
lion years ago (Amia) to 135 million years ago (appearanc€Crowet al., 2006). The ambiguity of the phylogenetic anal-
of ostariophysans) (Benton, 2005). ysis, furthermore, in itself implies that the duplicatiob-o
The functional consequences of this seeming bias in gerserved in osteoglossomorpha must have been alesein
losses remain to be explored. One prediction is that the réime to the divergence of this lineage from crown teleosts,
maining single ortholog of each locus may exhibit a patterra conclusion also drawn in (Croet al,, 2006). This is il-
of sequence evolution diagnostic of negative or stabifjzin lustrated nicely by the phylogenetic networks in Figure 5,



GoldeyeHox Genes 9

which show that the phylogenetic signal (branch lengthsfparicio S, Chapman J, Stupka E, Putnam N, Chia Jm, De-
separating the FSGD from the divergence of Osteoglosso- hal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke
morpha and crown teleosts is comparable to the noise inher- MDS, Roach J, Oh T, Ho lY, Wong M, Detter C, Ver-
entin the available data. hoef F, Predki P, Tay A, Lucas S, Richardson P, Smith

In conclusion, our analysis is consistent both with inde- SF, Clark MS, Edwards YJK, Dogget N, Zharkikh A,
pendent duplications in both lineages shortly after themst ~ Tavtigian SV, Pruss D, Barstead M, Evans C, Baden H,
glossomorpha-crown teleost split, and with the — more par- Powell J, Glusman G, Rowen L, Hood L, H. TY, El-
simonious — interpretation of a single FSGD pre-dating this gar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S,
divergence (Crovet al, 2006). We suspect that a definitive  2002. Whole-genome shotgun assembly and analysis of
resolution of this question will require genome-wide dataa the genome oFugu rubripes Science 297:1301-1310.
well as a denser taxon sampling at key points in actinopteryBenton MJ, 2005. Vertebrate Paleontology. Malden: Black-
gian phylogeny. well, 3rd edn.
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