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We analytically explore the scaling properties of a general class of nested subgraphs in complex
networks, which includes the K-core and the K-scaffold, among others. We name such class of
subgraphs K-nested subgraphs due to the fact that they generate families of subgraphs such that
...SK+1(G) ⊆ SK(G) ⊆ SK−1(G).... Using the so-called configuration model it is shown that any
family of nested subgraphs over a network with diverging second moment and finite first moment
has infinite elements (i.e. lacking a percolation threshold). Moreover, for a scale-free network with
the above properties, we show that any nested family of subgraphs is self-similar by looking at
the degree distribution. Both numerical simulations and real data are analyzed and display good
agreement with our theoretical predictions.

I. INTRODUCTION

The internal organization of most complex systems dis-
plays some sort of nestedness associated to some type
of hierarchical organization. Such patterns can be de-
tected by using appropriate theoretical tools which help
us understanding the system’s structure in terms of a
network [1–7]. Furthermore, the structure of such com-
munities can provide us valuable information about in-
variant properties and potential universals. In this work
we will define a general class of network substructure
which we called K−nested subgraph. Such class of sub-
graphs includes the K-core, the K-scaffold or the ran-
dom deletion of nodes. But it also includes any other
substructure you can define, if it holds a small set of
probabilistic restrictions. We develop a general, unified
framework that enables us to study generic properties of
such K−nested subgraphs. As we should see, the most
common class of real networks, those with connectivity
patterns following a power-law distribution P (k) ∝ k−α,
2 > α > 3, have very interesting properties when looking
to subgraph nestedness. In this context, theoretical stud-
ies on the resilience of both K-cores [4, 8] and K-scaffolds
[6, 9] suggest that arbitrary large scale-free networks con-
tain infinite, asymptotically self-similar, K-cores and K-
scaffolds, indicating that such subgraphs are highly ro-
bust against random deletion of nodes. Metaphorically,
it has been suggested that the structure of complex nets
is similar to a Russian doll [4].

These results are consistent with the mounting evi-
dence indicating that scale-free networks exhibit general
self-similar properties [4, 10–13]. From the physical point
of view, the assymptotical invariance of the degree dis-
tribution of scale-free nets under nesting operations is
one of their most salient properties. At the theoretical
level, the conservation of P (k) the degree distribution
implies self-similarity, as far as most of the properties
of a random graph are determined by its degree distri-
bution [14]. Of course, real nets are not exactly random
graphs, but such approach revealed surprisingly adequate
to study real systems[15]. Furthermore, self-similar prop-

erties and scaling laws might be an indication that such
objects are organized near criticality [16, 17].

In this letter we generalize previous approaches, show-
ing that any nested family of subgraphs of a given scale
free network has an infinite percolation threshold i.e.,
there is an infinite set of Russian dolls for such networks.
Moreover, it can be shown that such families are self-
similar. We develop such concepts under the framework
of the so-called configuration model [18], which works on
an ensemble of arbitrarily large, sparse and uncorrelated
graphs with specific properties. The remaining of the
paper is organized as follows: First, we formally define
the concept of K-nested subgraph and we show how the
above mentioned examples hold the required conditions.
Then, we derive the general percolation properties and
the final, generic form, of an arbitrary nested subgraph
of a given net. From the developed formalism, we apply
our results to specific network topologies.

II. NESTED SUBGRAPHS

Formally, a complex network is topologically described
by a graph G(V,Γ) where V is the set of nodes and Γ :
V → V the set of edges connecting nodes of V . If P (k) is
the probability that a randomly chosen node is connected
to k other nodes, then

〈k〉 =
∞∑
k

kP (k) 〈k2〉 =
∞∑
k

k2P (k)

is the average connectivity of G and the second moment
of the distribution, respectively.

We will say that S(A,ΓA) is an induced subgraph of
G(V,Γ) if A ⊆ V and ΓA ⊆ Γ, being ΓA a mapping
ΓA : A → A. We can define many subgraphs from a
given graph. Here we are interested in a special set of
subgraphs, hereafter K-nested subgraphs, which includes,
as special cases, the family of successive K-cores or K-
scaffolds and the so called ν̂−deletion graph, obtained
by deleting a fraction ν̂ of nodes. A K-nested family of
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FIG. 1: Some subgraphs samples that enable us to define a
nested family of subgraphs. In the original graph (left) we
shadowed the nodes that disappear under the operation of
SK . In the right-hand side, we display the giant component of
the obtained graph, SK . We find the K-scaffold, (K = 3) (a).
The K-scaffold is the subgraph obtained by choosing all the
nodes whose connectivity is equal or higher than K and all the
nodes connected to them. Such a subgraph enables to study
the fundamental hub-connector structure of the complex net-
works. (b) The K-core (K = 3), the largest induced subgraph
whose minimal connectivity is equal to K. (c) A subgraph ob-
tained by randomly deleting a fraction (bν = 5/21) of nodes
(commonly referred by the literature as random failures.)

subgraphs N is a collection of subgraphs of a given graph
G, N = {S1(G), S2(G), ..., Si(G), ...} such that:

...SK+1(G) ⊆ SK(G) ⊆ SK−1(G)... (1)

For every family of K-nested subgraphs we associate a
nesting function ϕK(k), namely the probability for a ran-
domly chosen node with degree k to belong to SK . If
U ⊆ R is a set that depends on the nature of the nest-
ing, ϕK(k) is such that:

ϕK(k) : U ×N → [0, 1]

It is easy to see that, for a function to be a nesting func-
tion, it has to fulfill the following logical conditions:

(ϕK(k′) > ϕK(k))⇒ (k′ > k) (2)

(ϕK′(k) > ϕK(k))⇒ (K ′ < K) (3)

(∀ϕK)(∃λSK ∈ (0, 1])|( lim
k→∞

ϕK(k)) = λSK ) (4)

where λSK is a scalar whose value will depend on the
explicit form of SK . In short, ϕK(k) is a non-decreasing

a) b)

c)

FIG. 2: A complex network with broad distribution of links
(a) and two nested subgraphs: (b) Its K-core (K = 4) and
(c) the corresponding K-scaffold (K = 20)

function on k (eq. (2)) and a non increasing function
on K (eq. (3)). Note that such a function implies that
all the nodes satisfying the conditions are taken into ac-
count: Our subgraphs are maximal under the conditions
imposed by ϕK . Furthermore, note that, for a fixed K,
ϕK(k) has an horizontal asymptote at ϕK(k) = λSK (eq.
(4)). Thus:

lim
k→∞

(ϕK(k + 1)− ϕK(k)) = 0 (5)

From (2, 3, 4, 5) we can see that, for a fixed K, and
0 < δ < 1 there exist a k∗ such that:

(∀ki, kj > k∗)⇒ (||ϕK(ki)− ϕK(kj)|| < δ)

and we can conclude that the sequence {ϕK(k)} =
ϕK(1), ϕK(2), ..., ϕK(i), ... is a Cauchy sequence. As we
should see, this property will be useful in the following
sections. Let us now explore some relevant nesting func-
tions.

a) K-core subgraphs. The K-core is the largest in-
duced subgraph whose minimal connectivity is K (see
figs.(1b, 2b)). Intuitively, it is clear that a collection of
K-cores from a given graph G defines a nested family of
subgraphs. Within the configuration model, we can in-
formally identify the probability for a given node of G to
belong to the giant K-core with the probability to be-
long to an infinite (K − 1)-ary subtree of G [4, 8, 19].
Therefore, the probability for a given node to belong to
the K-core equals to the probability of belonging to an
infinite (K − 1)-ary subtree. Let R be the probability
that a given end of an edge is not the root of an infinite
(K − 1)-ary subtree. The associated nesting function for
the K-core is ϕK(k) = 0, if k < K and

ϕK(k) =
k∑

i=K

(
k

i

)
Rk−i(1−R)i

otherwise. It is straightforward to check that such a func-
tion follows (2, 3, 4).
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b)K-scaffold subgraphs The K-scaffold of a given
graph is the subgraph obtained by choosing all the nodes
whose k ≥ K and the nodes that, despite their connec-
tivity is k < K, they are connected to a node e′ whose
k′ ≥ K [6, 9] (see figs.(1a, 2c)). The nesting function for
the K-scaffold is ϕK(k) = 1, if k ≥ K and

ϕK(k) = 1−

(∑
k′<K

k′P (k′)
〈k〉

)k

otherwise. Note that, for both the K-nested families of
K-scaffolds and K-cores, λSK = 1. A variety of sub-
graphs can be defined from the K-scaffold, such as the
naked K-scaffold (a subgraph obtained by cutting all the
nodes whose degree is k = 1 in the K-scaffold).

c)Random deletion of nodes.- Suppose we delete a frac-
tion ν̂ = 1− ν of nodes from our graph. Such an opera-
tion can be also formalized in terms of nesting functions.
For the sake of simplicity, if we are performing a random
deletion of a fraction of nodes from G, we will indicate
the nesting function and the subgraphs as ϕν and Sν ,
respectively. The associated nesting function is, simply:

(∀k)(ϕν(k) = ν) (6)

For mathematical purposes, let us introduce an addi-
tional class of subgraphs, SKγ , of a given subgraph SK .
The main feature of such subgraphs is that SKγ ⊆ SK .
We name such subgraphs minor subgraphs of SK . To
characterize such subgraphs, we say that γK(k) is a mi-
nor nesting function of ϕK(k) if (γK(k) < fK(k)) for all
k. Given an arbitrary ϕK(k), we can build a minor nest-
ing function as follows: Let k′ be the minimum k such
that ϕK(k′) 6= 0 (it could be k′ = 1). Then find an ε > 0
such that ε < ϕK(k′). Thus,

γK(k) =
{

0 if k < k′

ε if k ≥ k′ (7)

This trivial way to define a minor subgraph from a given
subgraph SK is enough, since both γK(k) and ϕK(k)
verifie (2,3,4). Moreover, it is clear that[23] (SKγ ⊆ SK)
for all K.

III. PERCOLATION OF NESTED SUBGRAPHS

Previous to determining the specific statistical proper-
ties of the obtained subgraphs, we are interested in know-
ing whether there is a giant component in SK , i.e., if the
operation of nesting breaks (or not) the initial graph G
into many small components. We consider first the gen-
eral problem.

Let us define the generating functions for an arbitrary
K-nested subgraph with an associated nesting function
ϕK(k) defined on G with arbitrary (but smooth) degree

distribution P (k).

F0(z) =
∞∑
k

P (k)ϕK(k)zk (8)

F1(z) =
1
〈k〉

∞∑
k

kP (k)ϕK(k)zk−1 (9)

The averages -i.e., the values at z = 1 of eqs. (5) and
(6)- are, respectively, µ ≡ F0(1) and ω ≡ F1(1). Here,
µ is the fraction of nodes from G that belong to SK .
Similarly, ω is the relation among 〈k〉 and the average
number of nodes from V reachable after computing the
nested subgraph. The generating function for the size of
components -other than the giant component- which can
be reached from a randomly chosen node is:

H1(z) = 1− ω + zF1(H1(z))

and the generating function for the size of the component
to which a randomly chosen node belongs to is [15, 20]:

H0(z) = 1− µ+ zF0(H1(z))

thus, the average component size other than the giant
component is:

〈s〉 = H ′0(1) = µ+ F ′0(1)H ′1(1)

If we compute the derivative, it is straightforward to see
that it leads to a singularity when F ′1(1) = 1. Thus, if
F ′1(1) = 1

〈k〉
∑
k k(k − 1)ϕK(k)P (k), to ensure the pres-

ence of a giant SK , the following inequality has to hold:∑
k

k(k − 2)P (k) >
∑
k

k(k − 1)ϕ̂K(k)P (k)

Where ϕ̂K(k) = 1−ϕK(k). This can be seen as the nat-
ural extension of the Molloy and Reed criterion [21] for
any nested subgraph SK , with associated nesting func-
tion ϕK(k). A more compact expression of such a crite-
rion is: ∑

k

k2ϕK(k)P (k)− (1 + ω)〈k〉 > 0 (10)

IV. DEGREE DISTRIBUTION OF SK

The next step is to compute the degree distribution
of the nested subgraphs, PSK (k). The key question is
finding the average number of nodes a given node will
reach, if it survived to the computation of SK . Tak-
ing into account the set of all nodes of G, the aver-
age connectivity will decrease a factor ω ≡ F1(1) =
1/〈k〉 ×

∑
k kϕK(k)P (k). Clearly, the probability for a

surviving node whith connectivity k in G to display con-
nectivity k′ ≤ k in SK , P(k → k′), is:

P(k → k′) =
(
k

k′

)
ωk

′
(1− ω)k−k

′
(11)
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FIG. 3: The simplest family of nested subgraphs, obtained
by removing all nodes whose connectivity is less than K:
ϕK(k) = Θ(K, k), where Θ(K, k) = 1 iff k ≥ K and 0 oth-
erwise. (a) Numerical computation of the size of the giant
component p∞ = 1−H0(1) = µ− F0(u) where u is the first,
non trivial solution of u = 1−ω+F1(u), for ϕK(k) = Θ(K, k).
This curve corresponds to a scale-free network with α ≈ 2.15.
No specific scale is identified. The sharp decay for the large
K values can be attributed to the finite size of the system (In
this simulation, we assumed kmax ≈ 5000 ). (b) The same
computation over an Erdös Rényi graph with 〈k〉 = 30 dis-
plays a clear characteristic scale where the giant component
is completely eliminated.

And, in absence of correlations, a node whith connectiv-
ity k in G now will survive with a probability ϕK(k) and
it will be connected, on average, to ωk nodes. If we take
into account all the possible contributions of the nodes
of G to the abundance of nodes with certain degree k in
SK , we have:

PSK (k) =
1
µ

∞∑
i≥k

ϕK(i)
(
i

k

)
ωk(1− ω)i−kP (i) (12)

Where PSK (k) is the probability to find a node of degree
k after the computation of SK . Note that the factor 1

µ

normalizes PSK (k). Clearly, if we define δ(ω, λSK ) as:

δ(ω, λSK ) ≡ 1
µ

∞∑
i≥k

(λSK − ϕK(i))
(
i

k

)
ωk(1− ω)i−kP (i)

We can rewrite PSK as:

PSK (k) =
λSK
µ

∞∑
i≥k

(
i

k

)
ωk(1− ω)i−kP (i)− δ(ω, λSK )

But note that, due to relation (6), for large k’s:

λSK
µ

∞∑
i≥k

(
i

k

)
ωk(1− ω)i−kP (i)� δ(ω, λSK )

Thus PSK is reduced to:

PSK (k) ≈ λSK
µ

∞∑
i≥k

(
i

k

)
ωk(1− ω)i−kP (i) (13)

Let us rewrite equation (13) in order to extract analyti-
cal results. If the first generating function of the degree

distribution of G, without taking into account the nesting
operation, is:

G0(z) =
∞∑
k

P (k)zk

It is straightforward that:

dk

dxz
G0(z) =

∑
i≥k

i!
(i− k)!

P (k)zi−k

Thus, we can rewrite the degree distribution (13) in terms
of the derivatives of G0(z):

PSK (k) ≈ λSK
µ

ωk

k!
dk

dzk
G0(z)

∣∣∣∣
z=1−ω

(14)

In the following, we will apply our results to standard
topologies of network theory: The Erdös Rényi graphs
and the Power-law graphs.

V. ERDÖS RÉNYI GRAPHS

. In the Erdös Rényi (E-R) graph,

P (k) =
〈k〉ke〈k〉

k!

and 〈k2〉 = 〈k〉2. To study specifical percolation pre-
operties, we need to know the specific shape of ϕK(k).
In (fig.3-b)) we approached numerically the size of the
giant component in an E-R graph where a nesting suc-
cessive nesting operation is performed. A clear thresh-
old is observed, displaying a critical point where the gi-
ant connected component is completely eliminated. The
special case of ϕK(k) = ν recovers the well-known perco-
lation condition for E-R graphs under random damage,
〈k〉 > (1 + ν)/ν. The predictions for the degree distri-
bution are more general and accurate. Indeed, the ex-
pression for G0(z) in E-R graphs is GER0 (z) = e〈k〉(z−1).
Thus, if, as we defined above, µ ≡ F0(1) :

PERSK (k) ≈ λSK
µ

〈ωk〉ke〈ωk〉

k!
(15)

This implies that, for large k′s, the nesting operation
over an E-R graph results in an E-R graph but with a
factor ω correcting the mean value, whose value goes from
〈k〉 → ω〈k〉.

VI. SCALE-FREE NETS

Let us assume a scale-free network with

P (k) ∝ k−α (16)

with scaling exponent 2 < α < 3. We will show that, at
the thermodynamic limit, any family of subgraphs has



5

10
0

10
1

10
2

10
3

k

10
0

10
1

10
2

10
3

10
4

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

10
0

10
1

10
2

10
3

k

10
0

10
1

10
2

10
3

10
4

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

FIG. 4: Analyzing the web obtained from the O. Wilde’s novel
The portrait of Dorian Gray. The network was built up by
tracing an arc between two adjacent words, if they appear
one after the other within the same sentence. The obtained
graph has N = 5696 nodes and displays a scale-free distribu-
tion P (k) ∝ k−α (grey circles), with an exponential cut-off
at high connectivities (k > 1000). In this graph, α ≈ 2.15
and 〈k〉 ≈ 8.814 . We plot the cumulative frequency for the
K-cores, 4 ≥ K ≥ 11 (left). Despite the strong connectivity
requeriments imposed for theK-core, the distribution behaves
as an statistical invariant. The same is observed with succes-
sive naked K−scaffold subgraphs, K = 14, 16, 18, 20, 22, 30, 40
(right). The naked K−scaffold subgraph is obtained from the
K-scaffold but deleting all the nodes with k < K that are con-
nected only to one node with k′ ≥ K.

infinite subgraphs. This has been shown separately for
the K-core [4, 8] and the K-scaffold [6]. One of the main
characteristics of such nets is that 〈k2〉 → ∞, and that
〈k〉 does not diverge with network size.

What we should prove is that, under these conditions,
relation (10) holds for all K’s. In other words, there is
no characteristic scale for the substructure generated by
ϕK(k). Indeed, our subgraphs need to fulfill the inequal-
ity: ∑

k

k2ϕK(k)P (k)− (1 + ω)〈k〉 > 0

But we cannot work directly with an arbitrary nesting
function ϕK . Thus, to prove the above claim, we build a
minor nesting function γK(k) of our ϕK(k), as defined in
(7), assuming k′ as the smallest k such that ϕK(k) > 0.
Thus, if ωγ ≡ F γ1 (1) has the form:

ωγ = ε

(
1−

∑
k<k′

kP (k)
〈k〉

)
≡ ε′

The corresponding percolation condition for SKγ is, thus:

ε
∑
k≥k′

k2P (k)− (1 + ε′)〈k〉 > 0

But since 〈k2〉 diverges, we will have ε
∑
k≥k′ k2P (k) →

∞ and condition (10) always holds, provided that 〈k〉 is
finite. This implies that percolation of any nested sub-
graph of an arbitrary large scale-free network is guaran-
teed, as far as SKγ ⊆ SK . Numerical simulations (see

(fig3-a)) of the size of the giant component display no
critical scale for the emergence (elimination) of the Gi-
ant connected component.

The above mathematical machinery will lead us to
demonstrate that our families of nested subgraphs exhibit
invariance in degree distribution. If we put the distribu-
tion P (k) = C−1k−α, (C = ζ(α)), equation (14) becomes
to:

PSK (k) ≈ λSK
ωk

k!
dk

dzk
GSF0 (z)

∣∣∣∣
z=1−ω

(17)

Thus the problem lies on finding the k-th derivative of
GSF0 (z). The computation is slightly more complex than
the E-R graphs, and involves some approaches. First,
we compute the generating function for an scale-free net
P (k) = C−1k−α whose exponent lies between 2 and 3,
GSF0 (z):

GSF0 (z) = C−1Liα(z)

= C−1 z

Γ(α)

∫ ∞
0

dt
tα−1

et − z

Where Liα(z) =
∑∞
k

zk

kα is the polylogarithm function
and, to obtain the last step, we used its integral form.
But, actually, we are interested in the derivatives of
GSF0 (z). If we assume z → 1− the k − th derivative
of GSF0 (z) can be approached by:

dk

dzk
GSF0 (z) ≈ C−1 k!

Γ(α)

∫ ∞
0

dt
tα−1

(et − z)k+1

≈ C−1 k!
Γ(α)

∫ ∞
0

dt
tα−1

(t+ τ)k+1

= C−1 k!τα−1−k

Γ(α)

∫ ∞
0

dy
yα−1

(y + 1)k+1

Where, in the first approach, we used the fact that, if
z → 1, we are near a singularity when t → 0. Thus, the
dominant terms of the sum will be those close to t = 0.
This enables us to rewrite et ≈ 1 + t+O(t2). In the last
step, we made the coordinate change τ = 1−z and, then,
t = yτ . If we evaluate such an expression at z = 1 − ω,
with ω small enough:

dk

dzk
GSF0 (z)

∣∣∣∣
z=1−ω

≈ C−1 k!ωα−1−k

Γ(α)
Jk+1,α+1

Where Jk+1,α+1 is defined as:

Jk+1,α+1 ≡
∫ ∞

0

dy
yα−1

(y + 1)k+1
=

Γ(α)Γ(k − α+ 1)
k!(k − α+ 2)

If we check the behavior of Jk+1,α+1 for large k’s, we see
that:

Jk+1,α+1 ≈
Γ(α)
kα

(18)
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Thus, if we introduce the above results into the definition
of PSK :

PSK (k) ≈ λSK
µ

ωk

k!
dk

dzk
GSF0 (z)

∣∣∣∣
z=1−ω

= C−1λSK
µ

ωα−1k−α (19)

Which can be rewritten in the standard form when de-
scribing of self-similar objects:

PSK (k) ≈ ρ−αP (k) = P (ρk) (20)

Where ρ is a constant that, interestingly, depends both
with the scaling exponent α and the nature of the nesting,
namely:

ρ =
(

µ

λSKω
(α−1)

) 1
α

(21)

VII. DISCUSSION

Many interacting systems found in nature display a
scale-free topology, P (k) ∝ k−α, with 2 < α < 3. In this
letter we have shown that the assumptions of the config-
uration model are enough to explain many of the scaling

and self-similar properties of the observed nested sub-
graphs nets. The resulting prediction (20) reveals that,
under no correlations, we should expect invariance in de-
gree distributions of nested subgraphs to occur. This
is what we observe in the analysis of real nets (see fig.
(4)). Indeed, in the analysis of the degree frequency we
see that, despite the finite size of our system, the degree
frequency acts as an invariant, only modulated by an
scaling factor. These results contrast with previous work
on sampled subnets obtained from scale-free graphs [22].
Although is true that arbitrary subsets of nodes might
not display invariance, our families of nested subgraphs
are defined in such a way that our results are expected to
hold. Further work should address the impact of the self-
similarity in the functional aspects of the net, as well as
a broader study of nested subgraphs involving different
types of real networks.
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Journal 272 6423 2005
[10] Song, C., Havlin, S. and Makse, H. A. Nature 433 392

2005
[11] Goh, K. -I.; Salvi, G.; Kahng, B. and Kim, D. Phys. Rev.

Lett. 96 2006
[12] Alvarez-Hamelin, J. I. , Dall’Asta, L., Barrat, A., Vespig-

nani, A. arXiv.org:cs/0511007
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