
Factorizable Language: From
Dynamics to Biology
Bailin Hao
Huimin Xie

SFI WORKING PAPER: 2007-08-016

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works may be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

Titel. Author(s)
Copyright © 2006 copyright holder, location
ISBN: 3-527-XXXXX-X

1

1
Factorizable Language: From Dynamics to Biology
Bailin Hao and Huimin Xie

There is no universal measure of complexity. When the problem under study
leads to description by means of symbolic sequences, formal language theory
may provide a convenient framework for analysis. In this review we con-
centrate on a special class of languages, namely, factorizable languages to be
defined later, which occur in many problems of dynamics and biology. In
dynamics we have in mind symbolic dynamics of unimodal maps and com-
plexity of cellular automata. In biology we draw examples from DNA and
protein sequence analysis.

1.1
Coarse-Graining and Symbolic Description

Let us start by making the following observation [1].
A high energy physicist recognizes the six lower case letters u, d, c, s, b, t as

quark names and associates them with a certain mass, charge and quantum
numbers such as “charm” or “flavor”. More scientists use the symbols p, n, e
to denote proton, neutron and electron each having a certain mass, charge,
spin or magnetic moment, but they are not concerned with from which three
quarks a proton or neutron is made.

Chemists consider H, C, N, O, P, S, · · · to be element names and know their
atomic number, ion radius, chemical valence and affinity. Chemical com-
pounds may be denoted by combined use of such symbols as H2O, NO, CO2,
and so forth. However, when it comes to writing chemical formulas for the nu-
cleotides and amino acids which are the constituents of DNAs and proteins,
there is no need to write down the tens of atomic symbols each time.

Biochemists call the nucleotides a, c, g, t and denote the amino acids by
A, C, · · · , W, Y. Now all one has to know is c and g are strongly conjugated
by three hydrogen bonds while the weak coupling of a and t is made by two
hydrogen bonds. Here “strong” and “weak” differ by many orders of mag-
nitudes from that in high energy physics. In a biochemical pathway or a

2 1 Factorizable Language: From Dynamics to Biology

metabolic network, proteins/enzymes are denoted by simple names and there
is no need to spell out the amino acids that make the proteins.

This observation can be continued further. What is the morale learned? In
describing Nature one cannot grasp the details on all levels at the same time;
one has to concentrate on a particular level at a time treating larger scales
as background and reflecting smaller scales in “parameters”. For example,
in describing the Brownian motion of a pollen the environment at large is
represented by a temperature while the friction force is given by using a co-
efficient of friction. If necessary, one could go down to the molecular level
to calculate the coefficient directly. This is called coarse-grained description.
Coarse-graining is reached by making “approximations”, that is, by ignoring
details on finer scales. Nevertheless, it may lead to rigorous conclusions. Ge-
offrey West, the President of the Santa Fe Institute, once made a remark that
had Galileo be equipped with our high precision measuring instruments he
would not be able to discover the law of free falling body and would have to
write a 42-volume Treatise on Falling Bodies.

Furthermore, coarse-grained description of Nature is always associated
with the use of symbols. If one is lucky enough these symbols may form
symbolic sequences. Coarse-grained description of dynamics leads to sym-
bolic dynamics [2]. Biochemists represent DNA and proteins as symbolic se-
quences. It is an essential fact that all these sequences are one-dimensional,
directed and unbranching chains made of letters from a finite alphabet, thus
bringing these sequences into the realm of language theory.

Since we have come to the notion of symbolic sequences, it is appropriate to
recollect a basic fact on huge collections of symbolic sequences. In Shannon’s
seminal 1948 paper [3] that laid the foundation of modern information theory,
besides the famous definition of information now familiar to all students, he
stated a few other Theorems. Theorem 3 in [3] can be roughly interpreted as
follows. Given a sequence of length N made of 0’s and 1’s, there are in total
2N such sequences. Generally speaking, when N gets very large, these 2N se-
quences can be divided into two subsets: a huge subset of “typical” sequences
and a small group of “atypical” sequences. The statistical property of a typical
sequence resembles that of any other typical sequence or the bulk of the huge
group, while the property of any atypical sequence is very specific and has
to be scrutinized almost individually. The simplest members of the atypical
set are sequences made of N consecutive 1’s or 0’s as well as various kinds
of periodic and quasi-periodic sequences. However, the most significant ones
from the atypical set are those with hidden regularities mixed with seemingly
random background. These are the truly complex sequences we have to char-
acterize. While the typical set may be characterized by statistical means, the
atypical sequences require more specific method to explore, including combi-
natorics, graph theory and formal language theory.

1.2 A Brief Introduction to Language Theory 3

One should not be misled by the adjective “formal”. Given the right con-
text, language theory may provide a framework for rigorous description of
complexity and workable scheme for down-to-number calculation of charac-
teristics.

1.2
A Brief Introduction to Language Theory

Basic notions of formal language theory may be found in many monographs,
for example, [4, 5], and in the comprehensive handbook on formal languages
[6]. Therefore, we only give a brief account of some basic notions.

1.2.1
Formal Language

We start from an alphabet Σ made of a finite number of letters. For ex-
ample, Σ = {0, 1} or {L, R} in symbolic dynamics of unimodal maps [2];
Σ = {A, C, G, T} when dealing with DNA sequences; in studying protein se-
quences Σ consists of the 20 single-letter symbols for the amino acids. Collect-
ing all possible finite strings made of letters from the alphabet Σ and including
an empty string ε, we form a set Σ∗. The empty string ε contains no symbol at
all, but plays an important role in language theory. Its presence makes formal
languages a kind of monoid in algebra [7]. The collection of all non-empty
strings is denoted by Σ+. Obviously, Σ∗ = Σ+ ⋃

{ε}.
Now comes the definition of a formal language: any subset L ⊂ Σ∗ is called

a language. With such a general definition one cannot go very far. The key
point is how to specify the subset L. A powerful way to define formal lan-
guages makes use of generative grammar. A subset of the alphabet Σ is des-
ignated as initial letters. Then a collection of production rules are applied
repeatedly to the initial letters and to strings thus obtained. All strings gener-
ated in this way form the language L.

Obviously, all strings in the complementary set L′ = Σ∗ − L are inadmis-
sible in the language L. We reserve the term forbidden word for members of a
special subset of L′:

Definition 1.1 A word x ∈ Σ+ is called a forbidden word of language L if x /∈ L
but every proper substring of x belongs to L.

The set of all forbidden words of a language L is denoted by L′′. The set L′′

may be defined for any language L and may be empty. However, it will play
a key role in the study of a special class of languages, namely, factorizable
languages, to be defined later in Section 1.2.2.

N. Chomsky classified all possible sequential production rules in the mid
1950s and defined four classes of languages as briefly summarized in Ta-

4 1 Factorizable Language: From Dynamics to Biology

ble 1.1. In the order of increasing complexity these classes are regular lan-
guage (RGL), context-free language (CFL), context-sensitive language (CSL),
and recursively enumerable language (REL). Each class of language corre-
sponds to a class of automata with different memory requirement.

Tab. 1.1 The Chomsky hierarchy of languages and automata.

Language Corresponding Automaton Memory

Regular Finite state automaton (FA) Limited
Context-free Push-down automaton A stack
Context-sensitive Linearly bounded automaton Proportional to input
Recursively enumerable Turing machine Unlimited

As seen from Table 1.1, each language class corresponds to a class of au-
tomata. The finite state automata (FA) that recognize RGL are especially in-
structive because they may be constructed explicitly in many cases. If a FA
has a designated starting state and every state has unambiguous transitions
to other states upon reading in a symbol it is a deterministic FA (DFA); other-
wise it is called a non-deterministic FA (NDFA). DFA and NDFA are equiva-
lent in their capability to recognize the appropriate language. An NDFA may
be transformed into a DFA by means of “subset construction”. Among all
DFAs accepting the same language there exists one with a minimal number of
states. It is called a minimal DFA (minDFA). The size of the minDFA is deter-
mined by the index of an equivalence relation RL generated by the language L
in Σ∗. We will give an example of constructing a minDFA in Section 1.5.4. All
related notions may be found in standard textbook like [4].

In 1968 the developmental biologist A. Lindenmayer introduced parallel
production rules to study the growth of simple multicellular organisms. This
approach developed into another framework for the classification of formal
languages — the Lindenmayer system or L-system. There are more classes in
the L-system: D0L (Deterministic no interaction), 0L and IL (non-deterministic
no interaction and with interaction); if the production rules are chosen from a
set of rules called a Table the languages become T0L and TIL. In the Chomsky
system symbols are divided into terminal and non-terminal ones, the latter be-
ing working variables that do not appear in the final products. The L-system
has been later extended to include non-terminal symbols to make E0L, ET0L
and EIL languages. Referring the interested readers to the monograph [8], we
show the relation of various languages in Fig. 1.11.

1) We take this opportunity to correct an inexactitude in the original
figure on p. 389 of [2].

1.2 A Brief Introduction to Language Theory 5

REL EIL

CSL

IND

ET0L

E0L

CFL

RGL D0L

0L

T0L

IL

Fig. 1.1 The relation between Chomsky hierarchy and the L-system.
Ind denotes indexed language not discussed here.

1.2.2
Factorizable Language

In this review we concentrate on factorizable languages which appear in dy-
namics and some biological applications but have not been mentioned in stan-
dard textbook like [4] or the handbook [6]. First, the definition:

Definition 1.2 A language L has factorial property or L is called a factorizable
language if from x ∈ L it follows that all substrings of x including the empty
string ε belong to L.

A factorizable language L is determined by the set L′′ of forbidden words:

L = Σ∗ − L′ = Σ∗ − Σ∗L′′Σ∗,
L′ = Σ∗ − L = Σ∗L′′Σ∗.

(1.1)

In fact, it follows from the factorizability of L that any string x /∈ L must con-
tain at least one forbidden word; contrariwise, putting any number of letters
in front or behind a forbidden word must lead to strings not contained in L. A
member of the set L′′ was called a Distinct Excluded Block (DEB) in Wolfram’s
analysis of grammatical complexity of cellular automata [9].

In order to calculate L′′ from L′ we need two operators MIN and R acting
on any language M and defined in formal language theory [4]:

MIN(M) = {x ∈ M | no proper prefix of x is in M},
R(M) = {x | xR ∈ M},

where xR means the mirror of x obtained by reversing the string x. Then we
have

L′′ = R ◦ MIN ◦ R ◦ MIN(L′). (1.2)

6 1 Factorizable Language: From Dynamics to Biology

We sketch the proof of Eq. (1.2) by considering a word x ∈ L′. Inspecting x
from the start until encountering a forbidden word v ∈ L′′, we may write
x = uvz where v is the only forbidden word in uv and z denotes all the rest of x
after the first forbidden word v. In fact, z may be any string w ∈ Σ∗ and uvw
represents any member of L′. Now MIN(L′) leaves only strings of form uv
where v ∈ L′′. Further operations are simple: R ◦ MIN(L′) produces strings
of form vRuR, MIN ◦ R ◦ MIN(L′) strips the latter to vR and an additional R
restores v. Since v may be any member of L′ the Eq. (1.2) holds.

However, Eq. (1.2) is rarely needed in practice when the set of forbidden
words L′′ is known beforehand. Then the language is determined directly
from L = Σ∗ − Σ∗L′′Σ∗ as we shall see in subsequent sections.

1.3
Symbolic Dynamics

Symbolic dynamics [2] arises in coarse-grained description of dynamics. Gen-
erally speaking, a dynamics f maps the phase space X into itself:

f : X → X.

Suppose X is a compact space then there exists a finite covering of X. We label
each covering by a letter from a finite alphabet Σ. By ignoring the precise
location of a point x ∈ X and recording only the label of the corresponding
covering, the action of the dynamics f corresponds to a shift S in the space of
all strings over the alphabet Σ:

S : Σ∗ → Σ∗.

The shift dynamics S acting on the space of symbolic sequences over the al-
phabet Σ makes a symbolic dynamics. In this general setting the notion of
symbolic dynamics applies to one-dimensional as well as multi-dimensional
dynamics, and to conservative as well as dissipative systems. Further speci-
fication of f and X enriches the symbolic dynamics as we have learned from
symbolic dynamics of one- and two-dimensional mappings and ordinary dif-
ferential equations [2].

1.3.1
Dynamical Language

Symbolic sequences occurring in a symbolic dynamics may be viewed as a
language L. Any symbolic sequence (word) generated by the dynamics is
admissible in the dynamical language L. It was recognized in the early study
of symbolic dynamics [10] that a dynamical language L has the following two
properties:

1.3 Symbolic Dynamics 7

1. Factorizability: any substring of a word in L also belongs to L, because
any part of a longer symbolic sequence is also generated by the same
dynamics. This property alone makes L a factorizable language.

2. Prolongability: any word in L may be appended by a letter from Σ to get
another word in L due to the time development of the dynamics. Even
a “non-moving” fixed point corresponds to adding one and the same
letter repeatedly to prolong the symbolic sequence.

1.3.2
Grammatical Complexity of Unimodal Maps

In one-dimensional discrete dynamical systems the unimodal maps of the in-
terval and circle maps are best studied examples. Since these cases have been
discussed at length in monographs such as [2] and [5], we only summarize
the new knowledge on grammatical complexity of languages in symbolic dy-
namics of unimodal maps as of the end of 1990s in Fig. 1.2 [11] and Table 1.2.

CSF

CFL

R G L

REL

???

Fibonacci map

Fe
ig

en
ba

um and generalized attractors (ET0L)

Odd Fibonacci sequences

E
ve

n
Fi

bonacci sequences (ET0L)

ρλ∞

ρ∞

Fig. 1.2 Grammatical complexity of languages in symbolic dynamics
of unimodal maps as of the end of the 1990s.

A few explanations follow. Symbolic dynamics of unimodal maps uses two
letters R and L to denote the Right and Left parts of the unit interval divided
by the critical point C of the map. A special symbolic sequence corresponding
to the numerical trajectory starting from the first iterate of C is called a kneading
sequence. Kneading sequences serve as “topological” or universal parameters
of the map that do not depend on the concrete shape of the unimodal mapping
function. Among the new results obtained in the 1990s we indicate:

8 1 Factorizable Language: From Dynamics to Biology

Tab. 1.2 Forbidden words in regular languages of unimodal maps.

Kneading Sequence Set of Forbidden Words L′′ Remark

RL∞ Empty set ∅ A surjective map
L∞ {R} Fixed point only
R∞ {RL} Period 2 appears
(RL)∞ {RLL, RLRR} Period 4 appears
(RLR)∞ {RLL} Period 3 appears
RLR∞ {RL(RR)nL}n≥0 First band-merging point

1. In the dynamical languages of the unimodal maps the class of regular
languages contains only periodic kneading sequences ρ∞ and eventually
periodic kneading sequences ρλ∞ [12], where ρ and λ are finite strings
made of R and L. Examples of these sequences are given in Table 1.2.

2. Since the above result [12] closes the problem of regular languages in
unimodal maps we draw a solid circle around RGL in Fig. 1.2.

3. All attempts to construct context-free languages associated with uni-
modal maps, including various Fibonacci sequences [13] have led to
context-sensitive languages which are not context-free. Hence the as yet
open conjecture: there is no context-free language which is not regular
in unimodal maps [5], a fact represented by the three question marks in
Fig. 1.2.

4. The kneading sequence of the infinite limit of the Feigenbaum period-
doubling cascade may be obtained by infinitely repeated application of
the homomorphism h = (R → RL, L → RR) to the single letter R. It was
the only known context-sensitive language in the unimodal maps in the
beginning of 1990s, first proved to be a non-context-free language [14],
in which the language consists of the set of all substrings of the kneading
sequence only. Now the class of context-sensitive language has split into
layers as shown in Fig. 1.2. All these layers are not empty and may be
characterized precisely in mathematical terms [15].

1.4
Sequences Generated from Cellular Automata

The research of cellular automata were originated from Von Neumann’s study
of formalizing the self-reproduction feature of life in 1950s [16], and popu-
larized by The Game of Life invented by Conway in 1970s [17, ch.25]. The
systematic study of cellular automata, however, was begun in 1980s in a se-
ries of works by S. Wolfram et al, in which many new points of view and tools
were introduced. It is evident that the ideas and results from nonlinear science

1.4 Sequences Generated from Cellular Automata 9

play an important role in cellular automata, including numerical experiment
by computer, statistical method, algebraic method and the method of formal
languages and automata from the theoretical computer science.

Two collections of papers are good references for an introduction into the
area of cellular automata [18,19]. For the arguments caused by Wolfram’s new
book [20] in 2002 many materials can be found from Website, for example,
http://www.math.usf.edu/~eclark/ANKOS_reviews.html.

In this section we will consider the study about sequences generated by one-
dimensional cellular automata. In Subsection 1.4.1 an introduction is given,
including some definitions and simple facts about cellular automata. Subsec-
tions 1.4.2 and 1.4.3 are respectively devoted to two kinds of complexity of
sequences generated by cellular automata, namely the limit complexity and
the evolution complexity. The languages involved in these studies are always
factorizable languages.

1.4.1
Encounter the Cellular Automata

The complex systems in Nature are often composed by coupling many simple
systems, and Cellular Automata (CA) are one of ideal mathematical models for
those complex systems.

The definition of one-dimensional CA can be given as follows.2

Assume that there are infinite cells, namely automata, situated on all inte-
ger points of the number axis, each cell can only take finite states, and the time
variable is discrete, namely, t = 0, 1, 2, It seems true that these discrete fea-
tures of states and time are similar with those features of many automata in
theoretical computer science [4]. The distinct feature of CA, however, is that
here there are infinitely many cells, and they change their states simultane-
ously at each discrete time. In addition, the state of each cell in the next time is
determined by the states of itself and some cells nearby through some definite
rules specified by a given CA, and these rules are all the same for each cells
and each time thenceforth.

Hence the evolutionary rules of CA are homogeneous both for space and
time. From the point of view of computer, CA belong to a class of parallel
computers.

Now the above definition can be rephrased by mathematical language as
follows. Assume that each cell has k > 1 states, and denote these states by the
symbols 0, 1, . . . , k − 1, hence the alphabet set is S = {0, 1, . . . , k − 1}. let ai ∈ S
be the state of the cell posited at the integer i ∈ Z, the set of all integers, and
the state of CA at each time be a bisequence over S:

a = · · · a−n · · · a−2a−1a0a1a2 · · · an · · · , (1.3)

2) Both CA in [16, 17] are two-dimensional.

10 1 Factorizable Language: From Dynamics to Biology

which is called a configuration of CA, and SZ , the set of all bisequence, the
configuration space of CA.

Furthermore, if the states of cells at time t are denoted by at
i , i ∈ Z, then the

evolutionary rule of states can be written in the form of

at+1
i = f (at

i−r, · · · , at
i , · · · , at

i+r), ∀ i ∈ Z, (1.4)

in which the number r is called the radius of neighborhood. The existence of
such r reflects the finiteness of information transmission velocity in CA.

The simplest CA are those CA with the number of states k = 2 and the
radius of neighborhood r = 1, which are conventionally called the elementary
cellular automata (ECA).

Since for ECA the alphabet set being S = {0, 1}, the rule f in the definition
of (1.4) is a mapping from S3 to S. As the arguments of this mapping have only
8 possibilities, namely, 000, 001, · · · , 111, hence an ECA is completely given as
long as the values of f are given on these 8 arguments. A consequence of this

consideration is that there are altogether 223
= 256 possible ECA.

A popular coding scheme for ECA can be explained below (see [18]).
For example, let an ECA be given by the rules

011, 100, 101 → 1; 000, 001, 010, 110, 111 → 0, (1.5)

namely f (011) = 1, f (100) = 1, and so forth. Rearranging the rules (1.5) as
follows

111 110 101 100 011 010 001 000
0 0 1 1 1 0 0 0

and then to convert the binary number 00111000 in the second line to the dec-
imal number 56, and call the ECA thus given the ECA of rule 56.

It is convenient to see the space-time behavior of one-dimensional CA on
computer’s screen. Figure 1.3 is the experimental results performed for the
space-time behavior of 8 different ECA.

In this Figure the rule numbers of each ECA are put on the top of each
subfigure. Every subfigure is obtained by the same procedure as follows. Let
the small white square be the symbol 0, and the small black square the symbol
1. The first line is (a part of) the starting configuration at the time t = 0, which
is generated by a pseudorandom binary generator. The direction of time is
from top to bottom. Each of the other lines is obtained from the previous
line by the rule of ECA. For each subfigure of Figure 1.3 the number of time
steps is 100, and the length of the part of starting configuration is 300. Since
only the center part of width 100 is seen, the trouble of appropriate boundary
effect is removed. (Another experiment method not discussed here for one-
dimensional CA is to use the circular boundary condition, and it can be seen
as if all cells are arranged on a circle.)

1.4 Sequences Generated from Cellular Automata 11

18 22 122 110

0 128 1 23

Fig. 1.3 The space-time behaviors of 8 ECA of different rules

Wolfram did many computer experiments for one-dimensional and two-
dimensional CA, including all 256 ECA, and proposed a classification scheme
for all CA as follows:

1. all configurations converge to an invariant homogeneous configuration
composed of all the same symbols,

2. converge to some simple stable or periodic structures,

3. chaotic and non-periodic behaviors appeared,

4. complex local structures appeared, and some of them can irregularly
propagate.

As pointed by Wolfram that all these 4 kinds of behaviors can be seen in ECA.
Of course this classification scheme is only a phenomenological one, and

more rigorous analysis is absolutely needed. In Figure 1.3 all four kind of be-
haviors are shown, but there exist many questions which cannot be removed
by pure experiment on computer.

For example, the first ECA of rule 0 in this Figure, namely the mapping
from S3 to the state 0, belongs to the class 1, since each configuration from
t = 1 composed by the same symbol 0s, which will be denoted by 0 hereafter.
But it is more difficult for the next one, the ECA of rule 128, since nearly any
experiment with this ECA shows that the configuration will rapidly converge
to 0 as for the ECA of rule 0, but can we say definitely that the ECA of rule
128 belongs to class 1 in Wolfram’s classification scheme? We will come back
to this question in Subsection 1.4.2.

12 1 Factorizable Language: From Dynamics to Biology

Another factor is that different starting configuration can lead to different
space-time behaviors. An example is shown in Figure 1.4. The left subfigure
is obtained from a random starting configuration, and the behavior looks like
those in the class 2. The starting configuration for the middle subfigure is a
random sequence of 00 and 11, and the behavior looks like those in the class 3.
The right subfigure is a combination of those of the two previous subfigures.

Fig. 1.4 Space-time behaviors of ECA of rule 94 for different starting
configurations

There are many studies for the ECA, but still it cannot say that any complete
theory has been established. An example is the ECA of rule 110 in Figure 1.3. It
has been believed that it belongs to the class 4, and only recently an important
result is obtained that the ECA of rule 110 has the power of universal Turing
machine [20, 21].

The remaining part of this Section is devoted to a review of research of se-
quences generated from CA by the method of formal languages.

1.4.2
Limit Complexity of Cellular Automata

The introduction of the method of formal languages to CA began mainly from
Wolfram’s paper [9], in which many conjectures were made based on the ex-
periment on computer. After that some theoretical results are obtained by
Hurd [22, 23], in which and also in other papers the concept of limit set play
an important role. The complexity analyzed by this method will be called the
Limit Complexity of CA.

First define both the limit set of CA and the limit language generated from
the limit set.

The rule f in (1.4) is also called the local mapping of CA. Using f onto a
configuration will generate a new configuration, and hence establish a global
mapping F from the configuration space into itself. We also use the notation,
for example, f56 and F56 to represent the local and global mapping for the ECA
of rule 56.

Using F iteratively generates a dynamical system, and the configuration
space, SZ , becomes the phase space for this dynamical system. The differ-

1.4 Sequences Generated from Cellular Automata 13

ence between this dynamical system generated by the global mapping of CA
and the low-dimensional discrete dynamical systems is that the former one is
an infinite-dimensional dynamical systems. Nevertheless, many mature con-
cepts from dynamical systems can be borrowed for study of CA, for example,
invariant sets, periodic points, trajectories, and so forth. An important feature
of CA is that we have to consider its space structure with its time structure
simultaneously, namely, the space-time behaviors.

Consider the phase space SZ more closely. Since SZ is a product space gen-
erated from the alphabet set S, considering the discrete topology to S, and
using the Tychonoff theorem, SZ is a compact space. Moreover, this compact
topology can also be metrizable, for example, by introducing the distance be-
tween x, y ∈ SZ as follows: let d(x, y) = 0 if x = y, and

d(x, y) =
1

k + 1
,

where the number k is the minimal non-negative integer such that xk *= yk or
x−k *= y−k. Since it can be shown that the global mapping F is continuous on
the space SZ , the image set of F(SZ) is also a compact set.

From the inclusion relation F(SZ) ⊂ SZ it is evident that Fn+1(SZ) ⊂
Fn(SZ) holds for every n ≥ 0. By the theorem about the nonemptyness of
the intersection of non-increasing sequence of compact sets, the set

Λ(F) =
∞
⋂

n=0

Fn(SZ) (1.6)

is non-empty, and called the limit set of CA hereafter. It can be seen that the
limit set contains all periodic points and non-wandering points of F.

From the point of view of dynamical systems, it is evident that the limit set
is just the largest invariant set of the global mapping F. But the limit set of CA
still has its special features as shown by the following theorem [24, p.373]:

Theorem 1.3 If the limit set of a CA has more than one element, then it must be an
infinite set.

The simplest case is the limit set which has only one element: Λ(F) = {c}.
Since any shift of element in limit set is still an element of it, the configuration
c must be a space homogeneous one, namely composed by a single symbol q.
Considering that the configuration c must also be an invariant point of F, then
it is certain that a rule of form as qq · · · q → q must be in f of (1.4). We call
F a nilpotent CA, if its limit set contains only one element. It corresponds the
class 1 in Wolfram’s classification scheme. But it turns out that even here some
difficulty is unavoidable. It is proved already that the problem of deciding a
given CA being nilpotent is an undecidable problem, that is to say there exists
no algorithm to give the answer of “yes” or “no” for the problem of deciding

14 1 Factorizable Language: From Dynamics to Biology

whether a given CA being nilpotent or not. This result has been proved for
some time for CA with dimension more than 1, and for one-dimensional CA
lately in [25].

In order to reduce the study of bisequences to the study of finite sequences,
a language will be generated from the limit set.

For a subset A of the compact space SZ , taking all finite subsequences for
each bisequence of A gives a formal language over S denoted by the notation
L(A). It can be shown that, if the set A is shift-invariant and closed, then it
can be determined by the language L(A) completely [5].

The rest of this Subsection is devoted to the study of limit language of CA,
and its complexity in the Chomsky hierarchy [4].

The first result in this aspect is the following theorem. we will give its proof,
and referred the reader to the textbook [4] for the concepts and tools used
below.

Theorem 1.4 If F is the global mapping of a CA, then for each n ≥ 0, the language
L(Fn(SZ)) is regular.

Proof. Since for each n the mapping Fn is also a CA, it suffices to prove the
conclusion for the case of n = 1. The method used below is to construct the
finite automaton accepting the language L(F(SZ)) exactly.

Let the radius of neighborhood of F be r, and the number of states be k.
Taking all words of length 2r as the accepting states of finite automaton, then
there are k2r states altogether.

The transition rule of states can be determined as follows. Observing the
local mapping f as shown in (1.4), every rule

f (s1s2 · · · s2r+1) = s0

can be interpreted as a transition from the state s1s2 · · · s2r to the state
s2s3 · · · s2r+1 if the symbol s0 is read. In other words, between these two
states there exists an arc labeling by s0 as shown by

s1s2 · · · s2r
s0−→ s2s3 · · · s2r+1 .

It is easy to see that this finite automaton accepts exactly the language
L(F(SZ)).

The limit language has the similar expression as (1.6) that

L(Λ(F)) =
∞
⋂

n=0

L(Fn(SZ)). (1.7)

Hence from Theorem 1.4 it is known that the limit language is the intersection
of countable regular languages, but it cannot tell us that how complex the limit

1.4 Sequences Generated from Cellular Automata 15

language is. In Hurd’s papers [22,23] many CA are constructed such that their
limit languages can have all possible grammatical complexity in Chomsky
hierarchy.

From the expression of (1.7) it is a consequence that a sequence s ∈ L(Λ(F))
if and only if s ∈ L(Fn(SZ)) ∀ n = 1, 2, · · · , and verifying this is usually a hard
work, if not impossible.

Now consider the limit languages of ECA. As discussed above that all nilpo-
tent CA belong to the class 1 in Wolfram’s scheme, and as shown in figure 1.3
the ECA of rule 0 is one of them. But what about the ECA of rule 128 in this
Figure? Here the experiment on computer can easily lead to the conjecture
that this ECA is also one of class 1, since each experiment shows that it con-
verges to all 0’s rapidly. Examing its local mapping

111 110 101 100 011 010 001 000
1 0 0 0 0 0 0 0

means that the configuration of all 1’s also belongs to the limit set, and from
Theorem 1.3 the latter must be an infinite set.

It is not hard to tackle directly the limit language of ECA of rule 128, and
obtain the result that

L(Λ(F128)) = 0∗1∗0∗ = {0m1n0p
∣

∣ m, n, p ≥ 0}, (1.8)

a regular language. Since it is a factorizable language, the concept of forbidden
words (or distinct excluded blocks) [5,26] can be used to it and it is easy to find
out all forbidden words for this language (1.8) being {10n1

∣

∣ n ≥ 1}.
In [9] a measure of complexity for regular languages is proposed and ap-

plied to characterize the behavior of CA. For a regular language L, define the
regular language complexity of L as the number of states of the minimal determin-
istic finite automaton (minDFA) which accepts L. In [18] the regular language
complexity of L(Fn(SZ)) for n = 1 ∼ 5 and 256 ECA are computed and listed
as the table 10 of it.

It turns out that for most ECA belonging to the class 1 or 2, their regular
language complexity are either constant or increasing slowly; but for ECA be-
longing to the class 3 or 4, their regular language complexity are increasing
rapidly such that in many cases the computation of regular language com-
plexity cannot be performed even for n = 4 or 5.

But this method is still not a rigorous and reliable approach to decide the
complexity level of limit languages. In Table 1.3 these results are listed for
some of ECA, whose complexity is already known.

The limit language of the ECA of rule 94 is proved to be non-regular [27]
and this result coincides with the data in Table 1.3. However, we can com-
pare these conclusion with the space-time behavior of ECA of rule 94 shown
in Figure 1.4, in which the left subfigure is the behavior obtained from a ran-
dom starting configuration, and it seems that the configuration converges to

16 1 Factorizable Language: From Dynamics to Biology

Tab. 1.3 Regular language complexity of some ECA for n = 1 ∼ 5

ECA n = 1 n = 2 n = 3 n = 4 n = 5

94 15 230 3904

22 15 280 4506

122 15 179 5088

104 15 265 2340 1394 1542

164 15 116 667 1214

110 5 20 160 1035

a period 6 attractor. This comparison reveals that sometimes the experiment
method is not satisfactory and reliable.

The conclusion about the ECA of rule 22 is similar and proved in [28], but
its space-time behavior as shown in Figure 1.3 is more complex than that of
ECA of rule 94.

As it can be seen from Figure 1.3 that the space-time behavior of the ECA
of rule 122 is similar to that of ECA of rule 22. Here the theoretical analy-
sis gives better result that its limit language, L(Λ(F122)), is not a context-free
language [29].

If it is true that the data in Table 1.3 give the correct evidence of complexity
for the first three ECA, those of rules 94, 22, 122, then it is not so for the next
two ECA, those of rules 104 and 164. As proved in Jiang’s doctoral thesis, both
limit languages of these two ECA are regular, although their regular language
complexity are very high indeed. However, seeing their data in Table 1.3, it
seems that both ECA of rules 104 and 164 may be more complex than the ECA
of rule 110, but it is known that the latter is the most complex ECA as proved
in [20, 21].

The most unsuccessful cases of the application of limit languages happen
for the surjective CA, in which it is evident that

F(SZ) = SZ, Λ(F) = SZ , L(Λ(F)) = S∗. (1.9)

That is to say the configuration space SZ itself, namely, the phase space, is
invariant under the global mapping F, and the limit language is the largest
language over the alphabet S. Its regular language complexity is simply 1,
since there is only one accepting state as it can accept every sequence over S.

There are 30 ECA belonging to this category, and some of them are shown
in Figure 1.5 below.

It is evident that the 4 surjective ECA in the first line of Figure 1.5 are very
simple. The ECA of rule 204 is the identity mapping, each configuration is a
fixed point of it; and the ECA of rule 51 is the flip-flop mapping, its f51 maps 0
to 1 and vice versa, each configuration is a period-2 point of it. The real radius

1.4 Sequences Generated from Cellular Automata 17

30 60 90 106

204 51 170 240

Fig. 1.5 The space-time behaviors of 8 surjective ECA

of neighborhood of these two ECA is r = 0. It is true that both of them belong
to the class 2 in Wolfram’s classification scheme. The ECA of rules 170 and 240
are respectively the left shift and right shift.

It is also evident that the 4 surjective ECA in the second line of Figure 1.5
show much more complex behaviors than those ECA of first line there, and
belong to the class 3 in Wolfram’s classification scheme. The ECA of rule 30,
among them, is used as a pseudorandom number generator in the software of
Mathematica, and there are many discussion about the behaviors of ECA of
rules 60 and 90. The ECA of rule 106 contains the leftshift ECA of rule 170 as
its factor system, but is much more complex than it.

Summary. Although there exist many results and discussion about the limit
set and limit language of CA, but no universal method or result have been
found. Computer experiment method is useful for one-dimensional CA, but
its result need careful exploration and theoretical research.

The classification problem of CA has drawn much attention after Wolfram’s
scheme, and several rigorous classification schemes are obtained [30, 31]. But
there are often drawbacks in these schemes that (1) most complex CA are clas-
sified into one class, and not much help is provided for their analysis; (2) there
is no effective criteria to determine which class a given CA belongs to.

It seems that there are still many open problems in the area of CA. It is also
true even of ECA, the simplest class of CA.

18 1 Factorizable Language: From Dynamics to Biology

1.4.3
Evolution Complexity of Cellular Automata

From the content of Subsection 1.4.2 it seems that the approach of limit lan-
guage of CA has its restriction, and is especially unsatisfactory for the surjec-
tive CA.

Many examples, which include the above-mentioned surjective CA, show
that there exist no direct relationship between the limit set (or limit language)
and the space-time behavior of CA. It is not surprising about it if recalling the
fact that the limit set is just the largest invariant set of the dynamical system
of CA.

Another approach for analyzing the complexity of CA using formal lan-
guages is proposed by Gilman [32]. The complexity analyzed by this approach
will be called the Evolution Complexity of CA hereafter.

The evolution complexity consider the evolution of one cell, ai, or some
cells, ai, ai+1, . . . , ai+k−1, in which case we say its width is k. From the space
homogeneous feature of CA, the index i can be fixed as 0 or other number.
Therefore, this approach is very similar to look at the computer screen for
CA’s evolution with a fixed width of cells, that is a fixed width of window,
and it can be expected that the evolution complexity of CA should have more
direct relationship with the space-time behavior of CA obtained by computer
experiment.

Considering that the configuration of CA is a bisequence, which is infinite
in both directions, it is natural that people can only see its finite part and take
the evolution of this finite strip as the basis for analyzing its complexity. This
idea is another example of coarse-graining mentioned before.

Assuming the width of observing window is k, then the object of our study
can be seen as a sequence over the alphabet set Sk. Taking all possible finite
sequences together gives the evolution language of width k of the CA, which will
be denoted by the notation Ek. For the case of k = 1 the name of time series of
CA is also used to describe the sequence over S, which is a record of one cell’s
evolution over some time interval.

For a given CA and a given sequence s over Sk, it can be determined
whether s belonging to Ek by using the local rule (1.4) for a fixed number of
cells of CA, and this number is a linear function of k. Therefore, this is a prob-
lem which can be solved by a restricted kind of Turing machines, namely, the
linear bounded automata. Using the relation between automata and Chomsky
hierarchy a theorem is obtained that the grammatical complexity of evolution
language will not beyond the context-sensitive languages [4, 32, 33].

An example of CA is given by Gilman, in which the number of states is
k = 2, and the radius of neighborhood is r = 2, hence it is not an ECA. The

1.4 Sequences Generated from Cellular Automata 19

local rule of this CA is given by

at+1
i = f (at

i−2at
i−1at

i a
t
i+1at

i+2) = at
i+1at

i+2 ∀ i ∈ Z, (1.10)

where the right-hand side is the multiplication of states at
i+1 and at

i+2 which

are binary numbers as well as symbols3.
The space-time behavior of Gilman’s CA is shown in Figure 1.6:

Fig. 1.6 The space-time behavior of Gilman’s CA

It has been proved that the evolution language E1 of Gilman’s CA is a
context-sensitive language, but not a context-free language (see [32, p.99]
and [33, p.429]).

The time series also appears in [34, 35], in which the problem of periodicity
of time series of ECA is discussed, in which f (000) = 0 is satisfied and there
exist only finite symbol 1 in the starting configurations.

For the ECA of rule 18, the complexity of its evolution languages of each
width has been completely solved. In [36] it is proved that for this ECA the
language E1 is regular, and all Ek (k ≥ 2) are context-sensitive, but not context-
free. Similar results are obtained recently for the ECA of rule 146 [37].

For the ECA of rule 22, it is proved that all Ek (k ≥ 2) are not regular [38],
but it is open for E1.

Comparing the limit complexity and the evolution complexity of the same
CA, there exists no direct relationship between them. For example, the evo-
lution complexity of Gilman’s CA is the highest level possible in Chomsky
hierarchy, but its limit language is very simple, since it can be proved that for
Gilman’s CA, L(Λ(F)) = 0∗1∗0∗, the same language as that of ECA of rule
128 mentioned before.

Another example in this aspect is the ECA of rule 90. As pointed out above
that it is a surjective CA, which has been studied extensively before. We know
that its limit language is {0, 1}∗, its regular language complexity is 1, and
cannot reflect its rather complex space-time behavior as shown in Figure 1.5.
Generally, the ECA of rule 90 is considered a typical CA in class 3 of Wolfram’s
classification scheme.

It is easy to show that for the ECA of rule 90, each Ek (k ≥ 1) is regular. Let
their regular language complexity be C(Ek), then it can be verified that

C(E1) = C(E2) = 1, C(Ek) = 2k−2 + 2 ∀ k ≥ 3, (1.11)

3) Although the CA of Gilman has the radius of neighborhood r = 2,
but its at+1

i is determined only by at
i+1 and at

i+2, and, therefore, this
CA can be obtained by the composition of the ECA of rule 136 and
rule of 170, the left-shift operator.

20 1 Factorizable Language: From Dynamics to Biology

in which the first two results are equivalent to say that

E1 = {0, 1}∗, E2 = {00, 01, 10, 11}∗.

As an example of the results in (1.11), the minDFA accepting the evolution
language C(E3) of the ECA of rule 90 will be constructed below.

In Figure 1.7 it is shown a DFA which contains 3 accepting states q0, q1, q2,
and 1 non-accepting state q3.

1, 4 2, 7
start

q0

q1

q2

q3

0, 2, 5, 7

1, 3, 4, 6

2, 3, 6, 7

0, 1, 4, 5

0 ∼ 7

0, 5

3, 6

Fig. 1.7 A minDFA accepting the evolution language of width 3 of the
ECA of rule 90

The alphabet set of the language C(E3) is the set of all words of length 3,
namely,

S = {000, 001, 010, 011, 100, 101, 110, 111},

and its elements are denoted by 0 ∼ 7 in Figure 1.7. The local mapping of
ECA of rule 90 is

f (a−1, a0, a1) ≡ a−1 + a1 (mod 2),

and it is a straightforward verification that the automaton in Figure 1.7 is the
required one accepting C(E3).

In the sequel a recent work is reviewed in which the evolution complexity
of width 1 for all 256 EAC are explored and some interesting results obtained
[39, 40].

Since the evolution language E1 is factorizable, hence it can be characterized
by its forbidden words [5, 26]. Using a C++ program as a searching tool, we
can use computer to find all forbidden words whose length are not beyond
a certain limitation, then a theoretical analysis is followed to see whether the
whole set of forbidden words can be determined.

Since the complexity of space-time behavior is not influenced by the ex-
change of 0, 1 and the mirror image of the neighborhood, the 256 of ECA can
be reduced to the 88 classes of ECA, and each class thus formed is represented

1.4 Sequences Generated from Cellular Automata 21

by the ECA in the class with the minimal rule number [18]. Hence we need
only to consider 88 ECA.

The result is shown in Table 1.4, in which all 88 ECA are classified into 4
classes according the complexity of E1 for each ECA4.

Tab. 1.4 The classification of ECA on the basis of complexity of evolution languages E1

Class No. Rule number of ECA No. of FW Complexity

I.1 10 15, 30, 45, 60, 90, 105, 106, 150, 154, 170 none {0, 1}∗

I.2 4 94, 122, 126, 184 none {0, 1}∗

II 53 0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 18, 19 ≤ 5 FCR
23, 24, 29, 32, 34, 35, 36, 38, 40, 42, 43, 44
46, 50, 51, 57, 58, 72, 76, 77, 108, 128, 130
132, 136, 138, 140, 142, 146, 152, 160, 162
168, 172, 178, 200, 204, 232

III 8 27, 28, 33, 78, 104, 134, 156, 164 infinite ICR

IV 13 7, 9, 22, 25, 26, 37, 41, 54, 56, 62, 73, 74, 110 infinite nonRGL

Class I includes all ECA whose E1 has no forbidden words at all, namely,
their E1 = S∗, and the above-mentioned ECA of rule 90 belongs to this class.
Moreover, Class I is divided into two subClass I.1 and I.2, the difference is that
every ECA in I.1 is surjective, but the ECA in I.2 is not.

The ECA in Class II has only finite forbidden words, and the number of
them is in the range of 1 ∼ 5. Hence their evolution language E1 is finite
complement regular, and it can be pointed that the symbolic flow associated
with them is of the subshift of finite type (SFT) [5, p.23].

In Class III the evolution language of each ECA has infinite forbidden
words, but still is regular, and, therefore, their E1 is infinite complement regu-
lar. The associated symbolic flow is the so-called sofic system [5, p.25].

Finally, the theoretical study of the ECA in Class IV has not been finished
yet, for some of them the evolution language E1 is proved to be context-free,
but not regular, and for others we have only some feeling that their evolution
languages E1 are non-regular, and maybe much more complex than those ECA
which are known already.

This conjecture is supported by the data in Table 1.5, in which the numbers
of forbidden words whose length are not beyond 17 are listed there.

Finally, a theorem about the evolution language of the ECA of rule 56 in
Class IV is cited below, which shows that an interesting structure appears in
the time series generated by this ECA [40].

4) The meaning of some abbreviations in Table 1.4 are as follows. FW,
forbidden words; FCR, finite complement regular language; ICR, in-
finite complement regular language; nonRGL, non-regular language.

22 1 Factorizable Language: From Dynamics to Biology

Tab. 1.5 The numbers of forbidden words of length K = 2 ∼ 17 for ECA in Class IV

Rule 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Sum

7 0 0 3 2 0 2 0 2 0 2 0 2 0 2 0 2 17

9 0 1 1 2 0 2 3 3 3 3 3 4 7 6 14 10 62

22 0 0 1 1 0 0 1 1 2 5 1 7 26 54 78 153 330

25 0 1 1 1 0 3 2 3 2 2 4 3 5 2 14 15 58

26 0 1 0 0 1 0 0 0 2 2 4 7 16 19 35 44 131

37 0 0 0 3 4 5 3 10 9 23 20 22 32 36 37 66 270

41 0 1 0 0 0 1 1 1 6 2 14 30 51 90 146 253 596

54 0 1 1 0 0 1 4 2 0 4 6 15 18 34 32 62 180

56 0 1 1 0 0 1 0 0 2 0 0 5 0 0 14 0 24

62 0 1 0 1 2 4 4 3 6 5 6 6 10 3 16 12 79

73 0 0 2 2 1 2 2 1 2 3 3 8 11 13 18 27 95

74 0 0 3 0 1 2 1 0 0 0 1 2 4 7 11 16 48

110 0 0 0 1 3 3 5 6 12 16 17 38 42 73 112 198 526

Theorem 1.5 Let E1 be the evolution language of width 1 of the ECA of rule 56, then
(1) the languages E1 and E ′′

1 , the set of its forbidden words, are both context-free, but
not regular; (2) the set E ′′

1 can be expressed explicitly by

E ′′
1 = {111} ∪ 0D01,

in which D is the Dyck language generated by the strings 0 and 01; (3) the number
of forbidden words whose length is 3n + 1 (n ≥ 2) is Cn−1, the n − 1-th Catalan
number 5.

1.5
Avoidance Signature of Bacterial Complete Genomes

DNAs are one-dimensional, directed, non-branching heteropolymers made of
four kinds of monomers – the nucleotides adenine (a), cytosine (c), guanine
(g), and thymine (t). In 1995 the first two complete genomes of free living
bacteria were published. By the end of 2006 more than 430 bacterial genomes
were available in public databases. Having a genome at one’s disposal many
global questions may be asked. A biochemist would wish to infer all possible

5) The Dyck language is one of the most important context-free lan-
guages [4, p.142], and the Catalan numbers appear in many interest-
ing problems of combinatorics, their expression is given by

Cn =
1

n + 1

(

2n

n

)

, n ≥ 1.

The first Catalan numbers are 1, 2, 5, 14, 42, 132, 429, · · · [41].

1.5 Avoidance Signature of Bacterial Complete Genomes 23

metabolic pathways underlying the life of a particular bacterium. A physicist
without sound biological knowledge might ask the simplest global question
concerns the distribution of short nucleotide strings of a fixed length K, in
particular, whether some strings are absent at a given K.

1.5.1
Visualization of Long DNA Sequences

The length of a typical bacteria genome is of a few millions nucleotides. In
order to visualize the K-string composition of a genome we apply a simple
counting algorithm. To count the number of K-strings we allocate the 4K coun-
ters on the computer screen as a direct product of K copies of 2 × 2 matrix M:

M ⊗ M ⊗ · · · ⊗ M,

where

M =

(

g c
a t

)

.

We use 16 colors to represent the counts. If a string is absent the corresponding
cell is shown in white. The bright colors are assigned to small counts. If the
counts are greater than a certain threshold, say, 40, the cell is shown in black.
This is also a kind of coarse-graining. A program entitled SEEDNA has been
put in the public domain [42]. We call the output of this program a "portrait"
of the bacterium.

1.5.2
Avoided K-Strings in Complete Genomes

A portrait of the harmless laboratory strain K12 of E. coli is shown in Fig. 1.8
for K = 8. The almost regular pattern seen in Fig. 1.8 tells the under-
representation of strings containing ctag as substring. In fact, closely related
species have similar pattern of under-represented strings and bacteria from
different taxa show some characteristic “avoidance signature”. For more dis-
cussion see [43]. A portrait is nothing but a two-dimensional histogram of the
string counts. The string counts may be visualized by using one-dimensional
histogram as well. The latter may show some peculiar fine structure for a
few randomized genomes. The explanation requires combination of simple
combinatorics with statistics [44].

1.5.3
True and Redundant Avoided Strings

By inspection of Fig. 1.8 or, to be more precise, by direct counting, we see that
at K = 8 there are 173 string types missing in the E. coli K12 genome. At K = 7

24 1 Factorizable Language: From Dynamics to Biology

Escherichia coli strain K12 (K=8)

Fig. 1.8 A “portrait” of E. coli strain K12 at K = 8.

there is only one missing string, namely, gcctagg. This simple fact raises a
question. Among the 173 missing strings at K = 8 eight strings must be the
consequence of the string gcctagg being absent at K = 7, because one may add
a letter in front or at the end of the string to get 8 strings that cannot appear
at K = 8. We say that at K = 8 there are 8 redundant and 165 true missing
strings in the genome. Given that at length K there is one missing string, one
would like to know how many redundant missing strings it produces at K + i.
By mathematical induction one gets a simple formula as the answer:

Ni = 4i(i + 1), i = 0, 1, · · · (1.12)

However, this formula only gives an approximate answer to the question as
it has not taken into account the fact that the first and the last letter in the string
gcctagg happens to be the same. In this particular case the above formula
works for all i < 13, but at i ≥ 13 it fails because the 13-string gcctaggcctagg

1.5 Avoidance Signature of Bacterial Complete Genomes 25

contains the missing 7-string twice, a fact not reflected in the inductive deriva-
tion of Eq. (1.12).

The situation becomes more formidable when at certain K there are several
true missing strings and among the missing ones there exist overlaps among
their prefixes and suffixes. A prominent example is provided by the hyper-
thermophilic bacterium Aquifex aeolicus genome [45]. In this 1 551 335 letter
sequence four true missing strings are identified at K = 7:

B = {gcgcgcg, gcgcgca, cgcgcgc, tgcgcgc}. (1.13)

The overlapping among these forbidden words is apparent. Denote by aK the
number of words of length K within Σ∗ that do not contain any element of the
subset B and define a generating function

f (s) =
∞

∑
K=0

aKsK, (1.14)

where s is an auxiliary variable. An explicit expression of f (s) may be ob-
tained [46, 47] by invoking the Goulden-Jackson cluster method [48] in com-
binatorics. The Goulden-Jackson method is capable to determine the number
of strings including or excluding designated substrings with overlapping pre-
fixes and suffixes among the later. It works even for letters with non-equal
probabilities of appearance [49]. Not going into the details of the combina-
torics, we turn to the language theory solution of the same problem.

1.5.4
Factorizable Language Defined by a Genome

Given a complete genome G one may define a language as follows. Take
enough copies of the same genome G and cut them in all possible ways, from
single nucleotides, dinucleotides, trinucleotides, up to the uncut sequences
themselves in G. The collection of all these strings plus an empty string ε de-
fines a language L(G) ⊂ Σ∗ over the alphabet Σ = {a, c, g, t}. Clearly, the
language L(G) is factorizable by construction.

Now we show how formal language theory may provide a framework to
yield concrete solution to an appropriate problem in numbers. First of all, any
language L ⊂ Σ∗ introduces an Equivalence Relation RL in Σ∗ with respect to L:
any two elements x, y ∈ Σ∗ are equivalent and denoted as xRLy if and only if
for every z ∈ Σ∗ both xz and yz either belong to L or not belong to L. As usual,
the index of RL is the number of equivalent classes in Σ∗ with respect to L. An
equivalent class may be represented by any element x ∈ L of that class and
we will denote this equivalent class by [x]. The importance of the equivalent
relation RL comes from the Myhill-Nerode Theorem in language theory, see,
for example, reference [4]: L is regular if and only if the index of RL is finite
and the number of states in the minDFA that accepts L is given by the index.

26 1 Factorizable Language: From Dynamics to Biology

Tab. 1.6 The transfer function for the minDFA accepting the A. aeolicus genome.

Class a c g t

[ε] [ε] [c] [g] [c]
[g] [ε] [gc] [g] [c]
[gc] [ε] [c] [gcg] [c]
[gcg] [ε] [gcgc] [g] [c]
[gcgc] [ε] [c] [gcgcg] [c]
[gcgcg] [ε] [gcgcgc] [g] [c]
[gcgcgc] [L′] [c] [L′] [c]
[c] [ε] [c] [cg] [c]
[cg] [ε] [cgc] [g] [c]
[cgc] [ε] [c] [cgcg] [c]
[cgcg] [ε] [cgcgc] [g] [c]
[cgcgc] [ε] [c] [cgcgcg] [c]
[cgcgcg] [ε] [L′] [g] [c]

Taking the four true missing strings in the A. aeolicus genome as forbidden
words, that is, let L′′ = B , we undertake to construct a finite state automaton
that accepts L(G). We define a set V:

V = {v|v is a proper prefix of some y ∈ L′′}.

Then for each word x ∈ L there exists a string v ∈ V such that it is equivalent
to x, or using our notations xRLv. In other words, all equivalent classes of Σ∗

with respect to L are represented in V. Therefore, in order to find all equivalent
classes of Σ∗ with respect to L it is enough to work with L′′. By the way, [ε]
and L′ are always two equivalent classes among others.

Collecting all proper suffixes of the avoided strings in B, we get

V = {g, gc, gcg, gcgc, gcgcg, gcgcgc, c, cg, cgc, cgcg,
cgcgc, cgcgcg, t, tg, tgc, tgcg, tgcgc, tgcgcg}.

By checking the equivalence relations, 13 out of 18 elements in V are kept as
representatives of the equivalent classes. Adding the class [L′] ⊂ Σ∗ we get all
14 equivalent classes of Σ∗:

[ε] [g] [gc] [gcg] [gcgc] [gcgcg] [gcgcgc] [c] [cg] [cgc] [cgcg] [cgcgc] [cgcgcg] [L′].

At first glance the requirement of checking the equivalence relations for ev-
ery z ∈ Σ∗ may seem formidable as it deals with an infinite set. However, a
little practice shows that this may be done effectively without too much work.

Treating each class as a state, we define the discrete transfer function by

δ([xi], s) = [xis] for xi ∈ V and s ∈ Σ.

The result is shown in Table 1.6. The special class [L′] is a “dead end”, that is,
an unacceptable state. The minDFA defined by the transfer function is drawn
in Fig. 1.9.

1.5 Avoidance Signature of Bacterial Complete Genomes 27

gcgc gcg gc g e c cg cgc cgcg

L’

g
t

ct
g
t

ct

g
ct
t
g
ct
t
g

t
ct

a a a a a ag a a a a c
g

a

ct

c g c g c c g c g
g

a

ct

a

g

t
gcgcgc gcgcg cgcgc cgcgcg

Fig. 1.9 A minDFA accepting the A. aeolicus genome with the four
forbidden 7-strings given in (1.13).

Counting the number of lines leading from a node (state) to another, we
write down the following incidence matrix:

M =









































1 1 0 0 0 0 0 2 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 2 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 2 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0
1 0 0 0 0 0 0 2 1 0 0 0 0
1 1 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 2 0 0 1 0 0
1 1 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 2 0 0 0 0 1
1 1 0 0 0 0 0 1 0 0 0 0 0









































, (1.15)

To make connection with the generating function (1.14) we note that the char-
acteristic polynomial of M is related to f (1

λ):

det(λI − M) = λ13 f (
1

λ
).

Moreover, the sum of elements in the first row of the K-th power of M is noth-
ing but aK [9]:

aK =
13

∑
j=1

(MK)1j.

In order not to cause any confusion we note that many true avoided strings
longer than 7 may be identified in the A. aeolicus genome, we have only used

28 1 Factorizable Language: From Dynamics to Biology

the K = 7 ones to construct the minDFA shown in Fig. 1.9. In fact, this DFA
accepts a greater language of which L(G) is a subset. In principle, one may
invoke more forbidden words to construct a more complex DFA that accepts
a smaller language still having L(G) as a subset. Since our goal consists in
calculating the number of redundant avoided strings of longer length caused
by a given set of true avoided strings, it is enough to restrict the forbidden set
to the true avoided strings up to a certain length.

1.6
Decomposition and Reconstruction of Protein Sequences

In recent years we developed a composition vector tree (CVTree) approach
[50–53] to infer phylogenetic relationships of bacteria from their complete
genomes without making sequence alignment. The justification of CVTree
method has led to, among other things, the problem of uniqueness of recon-
struction of a protein sequence from its constituent K-peptides. This prob-
lem has a natural relation to the number of Eulerian loops in a graph, a well-
developed chapter of graph theory (see, for example, [54]). It turns out that in
order to tell whether a given sequence has a unique reconstruction at a fixed K
the notion of factorizable languages again comes to our help.

1.6.1
A Few Notions of Graph Theory

We need a few notions from graph theory. Look at a connected directed graph
with a certain number of labeled nodes. If node i is connected to node j by one
directed arc, then we say aij = 1, and so forth. From a beginning node vb we
go through a number of arcs to an ending node v f in such a way that each arc
has been traversed once and only once; such a path is called an Eulerian path.
If vb = v f the path becomes an Eulerian loop. A graph in which an Eulerian
loop exists is called an Euler graph. An Eulerian path may be transformed into
an Eulerian loop by drawing an auxiliary arc from v f back to vb.

From a given node, there may be dout arcs going out to other nodes; dout is
called the outdegree of the node. Likewise, there may be din arcs coming into
a node, din defines the indegree of the node. The condition for an undirected
graph to be Eulerian was indicated by Euler in 1736, the year that has been
considered the beginning of graph theory. In our case of directed graph it
may be formulated as

din(i) = dout(i) = di

1.6 Decomposition and Reconstruction of Protein Sequences 29

for all nodes numbered in a certain way from i = 1 to m. The numbers di are
simply called degrees. We define a diagonal matrix

M = diag(d1, d2, · · · , dm).

The connectivity of the nodes is described by an adjacent matrix A = {aij},
where aij is the number of arcs leading from node i to j. From the matrices M
and A we form the Kirchhoff matrix

C = M − A.

The Kirchhoff matrix has the peculiar property that its elements along any
row or column sum to zero. Furthermore, for any m × m Kirchhoff matrix all
(m − 1) × (m − 1) minors are equal and this common minor is denoted by ∆.

A graph is called simple if (1) there are no parallel arcs between nodes, that
is, aij = 0 or 1 ∀i, j; and (2) there are no rings at any node, that is, aii = 0 ∀i.
The number R of Eulerian loops in a simple Euler graph is given by the BEST
formula (BEST stands for N. G. de Bruijn, T. van Aardenne-Ehrenfest, C. A. B.
Smith, and W. T. Tutte) [54]:

R = ∆ ∏
i

(di − 1)!.

This formula gives the number of Eulerian loops in an Euler graph without
specifying a starting node. If a node k is specified as the beginning (hence
ending) of the loop, then the number of loops starting from k is [55]

R = ∆dk ∏
i

(di − 1)!, (1.16)

where dk is the degree of the node k.
In a general Euler graph there may be parallel arcs between certain pairs of

nodes (aij > 1) and rings at some nodes (aii *= 0). One may put auxiliary nodes
on these arcs and rings to make the graph simple. By applying elementary
operations to the larger Kirchhoff matrix thus obtained, one can reduce it to
the original size with some aii *= 0 and aij > 1. Since the parallel arcs and
rings are unlabeled we must eliminate the redundancy in the counting result.
Therefore, the BEST formula is modified to

R =
∆dk ∏i(di − 1)!

∏ij aij!
. (1.17)

As 0! = 1! = 1 this formula reduces to the previous one in case of simple
graphs. The modified BEST formula (1.17) first appeared in [56] where Eule-
rian loops from a fixed starting node were considered.

30 1 Factorizable Language: From Dynamics to Biology

1.6.2
The K-peptide Representation of Proteins

In the CVTree method, instead of using a primary protein sequence made
of M amino acid letters, we decompose the protein into M − K + 1 over-
lapping K-peptides. Take, for example, the human centromere protein B
(CENB_HUMAN in the SwissProt database), consisting of 599 amino acids:

MGPKRRQLTF REKSRIIQEV EENPDLRKGE IARRFNIPPS TLSTILKNKR AILASERKYG
VASTCRKTNK LSPYDKLEGL LIAWFQQIRA AGLPVKGIIL KEKALRIAEE LGMDDFTASN
GWLDRFRRRH GVVSCSGVAR ARARNAAPRT PAAPASPAAV PSEGSGGSTT GWRAREEQPP
SVAEGYASQD VFSATETSLW YDFLPDQAAG LCGGDGRPRQ ATQRLSVLLC ANADGSEKLP
PLVAGKSAKP RAGQAGLPCD YTANSKGGVT TQALAKYLKA LDTRMAAESR RVLLLAGRLA
AQSLDTSGLR HVQLAFFPPG TVHPLERGVV QQVKGHYRQA MLLKAMAALE GQDPSGLQLG
LTEALHFVAA AWQAVEPSDI AACFREAGFG GGPNATITTS LKSEGEEEEE EEEEEEEEEG
EGEEEEEEGE EEEEEGGEGE ELGEEEEVEE EGDVDSDEEE EEDEESSSEG LEAEDWAQGV
VEAGGSFGAY GAQEEAQCPT LHFLEGGEDS DSDSEEEDDE EEDDEDEDDD DDEEDGDEVP
VPSFGEAMAY FAMVKRYLTS FPIDDRVQSH ILHLEHDLVH VTRKNHARQA GVRGLGHQS

Decomposing the above sequence into a collection of overlapping 5-peptides
MGPKR, GPKRR, and so forth., and considering each 5-peptide as a transition
from its 4-letter prefix to the 4-letter suffix, one easily transforms the sequence
to an Eulerian path, using the 4-strings as node labels. Since we are interested
in the number of Eulerian loops, we can replace a node with degree 1 by an
arc without affecting the number of loops. Thus, only nodes with di > 1
matter. Finally, by drawing an auxiliary arc from the last node to the first we
get an Eulerian loop and this loop defines an Euler graph, see Fig. 1.10. Since
we are interested only in the number of different Eulerian loops in the graph,
we can add a degree 1 node v0 on the auxiliary arc and count the number of
loops starting from this node. Therefore, in practical calculations we always
take dk = 1 in Eqs. (1.16) and (1.17).

From Fig. 1.10 we infer the diagonal matrix

M = diag(1, 2, 2, 2, 2, 2, 4, 4, 20, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2)

1.6 Decomposition and Reconstruction of Protein Sequences 31

EGGE

GEGE

EEGE

EEEG

EEEE

GEEE

EGEE

ARAR

EELG

AGLP

AAGL

EVEE

DSDS

EEED

DEEE

EEDD

EDDE

DDEE

DDDD

1

2

3

4

5

6

7

8

9

10

11

12

19

18

17

16

13

14

15

x 15

Fig. 1.10 An Euler graph generated by the protein sequence
CENB_HUMAN with 599 amino acids.

and the adjacent matrix

A =



































































0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 15 3 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



































































.

32 1 Factorizable Language: From Dynamics to Biology

(1.18)

The common minor of the Kirchhoff matrix C = M − A is ∆ = 168 960. De-
noting by R(K) the number of reconstructions at K, we get from the modified
BEST formula R(5) = 491 166 720. We see that the protein CENB_HUMAN
belongs to the few sequences that have a huge number of reconstructions at
moderate value of K. Most of the naturally occurring proteins have unique
reconstruction at K = 5 ∼ 6 [57], a fact speaking in favor of the composition
vector approach.

In principle, one can write a program to generate all distinct reconstruc-
tions from a given set of K-tuples obtained by decomposing an original pro-
tein sequence. In so doing a cut-off reconstruction number must be set because
there might be proteins with a huge number of reconstructions as shown by
the above example. Alternatively, by implementing the modified BEST for-
mula (1.17) one may get the number of reconstructions without producing all
the sequences. It is curious to note that equipped with these programs one can
fish out a set of proteins that have a huge number of reconstructions without
any biological knowledge as prerequisite [58].

However, if we are only interested in whether a given symbolic sequence
over a finite alphabet Σ has a unique reconstruction at a given K or not, fac-
torizable language may help us to construct finite state automata to yield an
YES/NO answer.

1.6.3
Uniquely Reconstructible Sequences and Factorizable Language

We put the sequence decomposition and reconstruction problem in a more
general setting and ask a more specific question. Consider a finite alphabet Σ

and an arbitrary sequence s ∈ Σ∗ of length N. Decompose the sequence s
into N − K + 1 overlapping K-tuples and then reconstruct sequences by us-
ing each of the K-tuples once and only once. Collect all the sequences that
have an unique reconstruction into a subset L ⊂ Σ∗. The subset L defines the
language of uniquely reconstructible sequences. The language L is a factoriz-
able language by definition, because any substring in a word s ∈ L must be
uniquely reconstructible otherwise the whole word s cannot be in L. To the
contrary, the language L′ = Σ∗ − L consists of sequences that must have two
or more reconstructions. Among words in L′ there is a set L′′ of forbidden
words.

Question: given a sequence s ∈ Σ∗, judge whether s is in L or not; if not, s
must be in L′. A deterministic finite state automaton may be built to answer
this YES/NO question.

It was first conjectured in [59] and then proved in [60] that the non-
uniqueness in sequences reconstruction comes from two kinds of transfor-

1.6 Decomposition and Reconstruction of Protein Sequences 33

mations. Applied to our problem of loops with starting and ending nodes
connected by an auxiliary arc, we can take all the (K − 1)-tuples that label the
nodes as symbols in a new alphabet. Then it is sufficient to consider only the
case of K = 2. The two types of transformations are: Transposition

· · · xwz · · · xuz · · · ⇐⇒ · · · xuz · · · xwz · · · ,
· · · xwxux · · · ⇐⇒ · · · xuxwx · · · ,

and Rotation
xwzux ⇐⇒ zuxwz,

where x, z ∈ Σ and w, u ∈ Σ∗. These conditions are necessary but not sufficient
for non-uniqueness of reconstruction. Since the starting and ending symbols
are fixed in our construction the rotation drops out of consideration.

A recent paper [61] discussed the reconstruction problem in an entirely dif-
ferent context and obtained the necessary and sufficient conditions for an Eu-
lerian loop to be unique in an Euler graph. In particular, Kontorovich [61]
proved

Theorem 1.6 The set of all uniquely reconstructible sequences is a regular language.

Unfortunately, the abstract proof of the theorem did not provide a way to
build a finite state automaton that would accept an uniquely reconstructible
language.

By invoking the notion of factorizable language and using the set of for-
bidden words we construct such an automaton explicitly and thus provide a
constructive proof of the theorem.

We begin with

Theorem 1.7 Under the condition that K = 2 and the starting and ending symbols
are identical, an uniquely reconstructible language L ⊂ Σ∗ only possesses two types
of forbidden words:

(i) xαyγxβy,
(ii) xαxβx,

(1.19)

where x, y ∈ Σ and x *= y, α, β, γ ∈ L, and they satisfy the following conditions

1. In (i): at least one of α and β is not empty, all α, β and γ do not contain neither
the symbols x, y nor identical symbols;

2. In (ii): at least one of α and β is not empty, they do not contain neither the
symbol x nor identical symbols.

We skip the simple but somewhat lengthy proof and go directly to the con-
struction of the finite state automaton.

34 1 Factorizable Language: From Dynamics to Biology

1.6.4
Automaton that Accepts an Uniquely Reconstructible Language

We first describe a deterministic finite state automaton M that accepts an
uniquely reconstructible language L [62]. The automaton M consists of five
elements:

M = {Q, Σ, δ, q0, F}, (1.20)

where Σ is the finite alphabet, Q = {q} is the set of states, q0 ∈ Q is the
initial state, F ∈ Q are the states that accept L, and δ is the transfer function
from Q × Σ to Q. The automaton M reads in symbols in a sequence s ∈ Σ∗

from the left to right, one symbol a at a time, and changes its state from q to a
new state q′ according to the transfer function δ(q, a) = q′. We explain these
elements one by one.

1. Σ is an alphabet of m symbols {a1, a2, · · · , am} which may be denoted
by {1, 2, · · · , m} as well. The language L ⊂ Σ∗ is defined over Σ and the
automaton M reads a sequence s ∈ Σ∗.

2. Each state in Q consists of three components (p; n; c): Q = P × N × C =
{(p; n; c)}, where

• p records the most recently read symbol ap ∈ Σ. For the initial
state q0 when no input symbol has been read yet we introduce a
symbol a0 (or 0) which does not belong to Σ. Thus we may write
P = Σ

⋃

0.

• n is a list of m + 1 symbols (n0, n1, n2, · · · , nm) that updates the next
symbol read after p. For the initial state n = (ε, ε, ε, · · · , ε) ≡ εm+1,
where ε means empty or non-existence. Thus N = (Σ

⋃

ε)m+1.

• c is a list of m toggle switches: c = (c1, · · · , cm). We denote the two
states of a toggle as WHITE and BLACK. Initially c = WHITEm.
Whenever a forbidden word in the sequence s has been read c be-
comes BLACKm. As long as c is not all-black the state q is accept-
able. Once c becomes all-black it remains so for ever and the au-
tomaton recognizes s as a non-uniquely reconstructible sequence.

3. The initial state q0 = (0; εm+1; WHITEm).

4. The acceptable states

F = (p; n; c *= BLACKm). (1.21)

5. The key element of M is the transfer function δ(q, a). A program to im-
plement δ is written down below using a simple meta-language (i is a
working variable in the program):

1.6 Decomposition and Reconstruction of Protein Sequences 35

1 procedure δ((p, n, c), a)
2 if (np *= ε) & (np *= a) then
3 i ← p
4 repeat
5 ci ← BLACK
6 i ← ni

7 until i = p
8 endif
9 if ca = BLACK then
10 c ← BLACKm

11 endif
12 p ← np ← a
13 end procedure

All technical terms involved in describing the automaton may be found in [4].
A C++ implementation of the transfer function δ is available upon request to
the authors of [62]. As usual, the best way to understand the workings of this
program is to take a couple of uniquely and non-uniquely reconstructible se-
quences over some alphabet and follow the transitions among states according
to the program.

The proof of the following theorem may help to grasp the essence of the
transfer function δ.

Theorem 1.8 The language L(M) accepted by the finite state automaton M defined
in Eq. (1.20) is the uniquely reconstructible language L ⊂ Σ∗ over an alphabet Σ of m
symbols.

Proof. The proof of L(M) = L goes in two parts.
First part. We prove L(M) ⊂ L by showing that all sequences in the com-

plementary language L′ cannot be accepted by the automaton M.
Suppose t /∈ L then t contains forbidden words. Consider the first forbid-

den word encountered when feeding t to M. If this forbidden word belongs
to type (i) in Theorem 1.7, that is, it is of type xαyγxβy, where x, y ∈ Σ, x *= y,
α, β, γ ∈ L, α and β are not empty at the same time, α, β and γ do not contain
neither x, y nor identical symbols. Now look at Lines 2 ∼ 8 in procedure δ.
Suppose that M has reached a state where p equals the second x, then its next
symbol is the a in δ(q, a). (If β is not empty then a is the first symbol in β,
otherwise a is the last y.) Since the symbol after the first x cannot be a, the con-
dition in Line 2 of the procedure holds. Therefore, Line 5 makes cx = BLACK.
Now the loop from Line 4 to Line 7 makes every toggle ci corresponding to
symbols in xαyγ becomes BLACK, including cy = BLACK. As blackened tog-
gles cannot become WHITE again, when reading in the last y the execution of
Line 9 and 10 turns c to all-BLACK, that is, M enters a non-acceptable state.

36 1 Factorizable Language: From Dynamics to Biology

When the first forbidden word in t belong to type (ii) in Theorem 1.7, that
is, it is of type xαxβx, the situation is simpler and we ignore the discussion.

Second part. In order to prove L ⊂ L(M) it is enough to show that af-
ter reading in the sequence t ∈ L the state (p; n; c) belongs to the acceptable
states F given in Eq. (1.21), namely, the toggles c are not all-BLACK.

We prove this by mathematical induction with respect to the length |t| = N
of the sequence t ∈ L. From the definition of the automaton M we know that
when N = 0 the initial state q0 ∈ F, the statement holds true. Now suppose
the statement holds for N − 1 and discuss the situation of |t| = N.

Since L is a factorizable language, we denote by a the last symbol of t ∈ L
and write t as t = sa, the prefix s of t is uniquely reconstructible and it is of
length N − 1. Therefore, c is not all-BLACK after reading in s.

Now we prove that upon reading a the toggles c do not become all-BLACK
by reduction to absurdity. Suppose the opposite is true, that is, upon reading
in a the toggles c become all BLACK. An inspection of the procedure δ shows
that this may happen in two cases:

(1). The toggle ca has become BLACK before reading in a. Therefore, af-
ter reading a the Line 10 in procedure δ is executed that makes c all-BLACK.
However, in order to enable Line 4 to be executed the two conditions in Line 1
must be satisfied. This means the sequence s must have a suffix like bαbβ
where the symbols following the two symbols b must be different and at the
same time a ∈ bα. Then t = sa must contain a forbidden word as suffix no
matter whether a equals b or not. Therefore, t /∈ L, a contradiction.

(2). The toggle ca was WHITE and it turns BLACK only after reading a.
Now we must consider the last symbol in s. Denote it by p. The fact that
changing ca to BLACK takes place in Line 2 to Line 7 shows that t must have
a suffix pαpa with non-empty α; the first symbol of α is not a but a appears
in pα. Therefore, pαpa is a forbidden word independent on whether p equals a
or not, a contradiction to t ∈ L.

Thus we have proved L ⊂ L(M). Combination of the two parts completes
the proof.

Clearly, M is a deterministic finite state automaton. Although how to build
the corresponding minDFA from the above DFA is known in principle [4], the
explicit construction remains lacking for the time being. In particular, we do
not know the size of the minDFA which is given by the index of the equiva-
lence relation RL generated by L in Σ∗.

In principle, one can build an automaton that accepts the complementary L′

of the language L. The right-linear grammar to implement such an NDFA may
be found in [62].

1.6 Decomposition and Reconstruction of Protein Sequences 37

1.6.5
Other Applications of the Sequence Reconstruction Problem

The sequence unique reconstruction problem occurred in so-called sequencing
by hybridization (SBH), one of the earliest proposed application of DNA arrays.
It has been analyzed from the viewpoint of the number of Eulerian loops,
see [60] and references therein. However, no connection with language theory
was mentioned in these studies.

Another possible application is associated with sequence randomization
under constraints. In order to tell the statistical significance of certain “sig-
nals” revealed in some symbolic sequences one must compare them with what
might be observed in a background model [44]. A frequent choice of the
background model is full randomization of the original sequence that only
keeps the number of single letters unchanged. However, under certain cir-
cumstances it is more appropriate to perform the randomization under some
further constraints, for example, keeping a designated number of short strings
fixed and having the rest of the sequence “randomized”. In this setting we
encounter the opposite of the unique reconstruction problem, namely, only
when there exists a huge number of reconstructions under the given con-
straints it makes sense to speak about “randomization”, otherwise it is just
a choice among a finite number of shufflings. This problem has been studied
before [63], again no reference to factorizable language was made.

We expect more applications of factorizable languages, especially the
method of forbidden words, in various problems of dynamics and biology.

38 References

References

1 Hao, B.-L., in On Self-Organization — An In-
terdisciplinary Search for a Unifying Principle,
Springer Series in Synergetics 61, Springer
Verlag, 1994, p. 197

2 Hao, B.-L., Zheng, W.-M., Applied Symbolic
Dynamics, World Scientific, Singapore, 1998

3 Shannon, C. E., A mathematical theory of
communication, Bell Systems Tech. J., 27
(1948), p. 379 and p. 623

4 Hopcroft, J and Ullman, J., Introduction to
Automata Theory, Languages and Computa-
tion, Addison-Wesley, Reading, 1979

5 Xie, H.-M., Grammatical Complexity and
One-Dimensional Dynamical Systems, World
Scientific, Singapore, 1996

6 Rozenberg, G., Salomma, A., eds., Hand-
book of Formal Languages, vols. 1-3, Springer,
1997

7 Shyr, H. J., Free Monoids and Languages, Hon
Min Book Company, Taichung, 1991

8 Rozenberg, G., Salomaa, A., The Mathemat-
ical Theory of L-Systems, Academic Press,
1980

9 Wolfram, S., Computation theory of cel-
lular automata. Commun. Math. Phys. 96
(1984), p. 15

10 Morse, M., Hedlund, G. A., Symbolic dy-
namics, Am. J. Math. 60 (1938), p. 815;
reprinted in Collected Papers of M. Morse,
vol. 2, World Scientific, 1986

11 Hao, B.-L., Xie, H.-M., Yu, Z.-G., Chen, G.-
Y., Factorisable language: From dynamics
to complete genomes, Physica A288 (2000)
p. 10

12 Xie, H.-M., On formal languages of one-
dimensional dynamical systems, Nonlinear-
ity, 6, (1993), p. 997

13 Hao, B.-L., Symboic dynamics and charac-
terization of complexity, Physica D51 (1991),
p. 161

14 Crutchfield, J. P., Young, K., Computation
at the onset of chaos, in Complexity, Entropy,
and Physics of Information, ed. W. Zurek,
Addison-Wesley, 1990, p. 223

15 Wang, Y., Yang, L., Xie, H.-M., Complexity
of unimodal maps with aperiodic kneading
sequences, Nonliearity, 12 (1999), p. 1151

16 von Neumann, J., Theory of Self-Reproducing
Automata, edited by Burks, A. W., Univ of
Illinois Press, Champaign, 1966

17 Berlekamp, E., Conway, J. H. and Guy, R.,
Winning Ways, vol 2, Academic Press, New
York, 1982

18 Wolfram, S., Theory and Applications of Cel-
lular Automata, Singapore: World Scientific,
1986

19 Wolfram, S., Cellular Automata and Complex-
ity, Addison-Wesley, New York, 1994

20 Wolfram, S., A New Kind of Science, Wol-
fram Media Inc, Champaign, 2002

21 Cook, M., Universality of elementary cel-
lular automata. Complex Systems 15 (2004),
p. 1

22 Hurd, L. P., Recursive cellular automata
invariant sets. Complex Systems 4 (1990),
p. 119

23 Hurd, L. P., Nonrecursive cellular automata
invariant sets. Complex Systems 4 (1990),
p. 131

24 Culik, II K., Hurd, L. P. and Yu, S., Com-
putation theoretic aspects of cellular au-
tomata. Physica D45 (1990), p. 357

25 Kari, J., The nilpotency problem of one-
dimensional cellular automata. SIAM J
Comp 21 (1992), p. 571

26 Xie, H. M., Distinct excluded blocks and
grammatical complexity of dynamical sys-
tems, Complex Systems 9 (1995), p. 73

27 Xie, H.-M., The complexity of limit lan-
guages of cellular automaton: an example.
J. of Systems Science & Complexity 14 (2001),
p. 17

28 Jiang, Z.-S. and Wang, Y., Complexity of
limit language of the elementary cellular
automaton of rule 22. Appl. Math. J. Chinese
Univ, ser.B 20 (2005), p. 268

29 Jiang, Z.-S., A complexity analysis of the
elementary cellular automaton of rule 122.
Chinese Science Bulletin 46(7) (2001), p. 600

30 Cattaneo, G., Dennunzio, A. and Mar-
gara, L., Chaotic subshifts and re-
lated languages—applications to one-
dimensional cellular automata. Fund Inform
52 (2002), p. 39

31 Hurley, M., Attractors in restricted cellular
automata. Proc Amer Math Soc 115 (1990),
p. 563

References 39

32 Blanchard, F., Kůrka, P. and Maass, A.,
Topological and measure-theoretic proper-
ties of one-dimensional cellular automata.
Physica D103 (1997), p. 86

33 Kůrka, P., Languages, equicontinuity and
attractors in cellular automata. Ergodic The-
ory & Dynamic Systems 17 (1997), p. 417

34 Jen, E., Aperiodicity in one-dimensional
cellular automata. Physica D45 (1990), p. 9

35 Jen, E., Exact solvability and quasiperiod-
icity of one-dimensional cellular automata.
Nonlinearity 4 (1990), p. 251

36 Jiang, Z.-S. and Xie, H.-M., Evolution com-
plexity of the elementary cellular automa-
ton rule 18. Complex Systems 13 (2001),
p. 271

37 Wang, Y. and Kenichi, M., Complexity of
evolution languages of the elementary cel-
lular automaton of rule 146. Appl Math J
Chinese Univ, Ser B 21 (2006), p. 418

38 Wang, Y. and Jiang, Z.-S., Evolution com-
plexity of the elementary cellular automa-
ton of rule 22. Appl Math J Chinese Univ, Ser
B 17 (2002), p. 404

39 Qin, D.-K. and Xie, H.-M., Complexity
analysis of time series generated by ele-
mentary cellular automata. App Math J
Chinese Univ, Series B 20 (2005), p. 253

40 Qin, D.-K. and Xie, H.-M., Catalan num-
bers, Dyck language and time series of
elementary cellular automaton of rule 56.
J. of Systems Science & Complexity 18 (2005),
p. 404

41 Sloane, N. J., Sequence A000108
in The On-Line Version of the En-
cyclopedia of Integer Sequences:
http://www.research.att.com/∼njas/
sequences/eisonline.html

42 Shen, J.-J., Zhang, S.-Y., Lee, H.-C., Hao,
B.-L., SeeDNA: Visualization of K-string
content of long DNA sequences and their
randomized counterparts, Genomics, Pro-
teomics & Bioinformatics 2 (2004), p. 192

43 Hao, B.-L., Lee, H.-C., Zhang, S.-U., Frac-
tals related to long DNA sequences and
bacterial complete genomes, Chaos, Solitons
& Fractals, 11 (2000) p. 825

44 Xie, H.-M., Hao, B.-L. Visualization of k-
tuples distribution in prokaryote complete

genomes and their randomized counter-
parts, in Bioinformatics. CBS2002 Proceed-
ings, , IEEE Computer Society, Los Alami-
tos, California 2002, p. 31

45 Deckert,G. et al., The complete genome of
the hyperthermophilic bacterium Aquifex
aeolicus, Nature 392 (1998), p. 353

46 Hao, B.-L., Xie, H.-M., Yu, Z.-G., Chen,
G.-Y., A combinatorical problem related
to avoided strings in bacterial complete
genomes, Ann. Combin. 4 (2000), p. 247

47 Hao, B.-L., Fractals from genomes: exact
solutions of a biology-inspired problem,
Physica A282 (2000) p. 225

48 Goulden, I., Jackson, D. M., Combinatorial
Enumeration, John Wiley & Sons, New York,
1983

49 Zhou, C., Xie, H.-M., Exact distribution of
the occurrence number for K-tuples over
an alphabet of non-equal probability let-
ters, Ann. Combinatorics 8 (2004) p. 499

50 Qi, J., Wang, B., Hao, B.-L., Whole genome
prokaryote phylogeny without sequence
alignment: a K-string composition ap-
proach, J. Mol. Evol., 58 (2004), p. 1

51 Qi, J., Luo, H., Hao, B.-L., CVTree: a phy-
logenetic tree reconstruction tool based on
whole genomes, Nucl. Acids Res., 32 (2004),
Web Server Issue, p. W45

52 Hao, B.-L., Qi, J., Prokaryote phylogeny
without sequence alignment: from avoid-
ance signature to composition distance, J.
Bioinformatics & Computational Biology, 2
(2004), p. 1

53 Gao, L., Qi, J., Sun, J.-D., Hao, B.-L.,
Prokaryote phylogeny meets taxonomy: an
exhaustive comparison of the composition
vector tree with the biologist’s systematic
bacteriology, Science in China Series C Life
Sciences, to appear, (2007)

54 Fleischner, H., Eulerian Graphs and Related
Topics, Part 1, vol. 2, 1991, p. IX80

55 Bollobás, B., Modern Graph Theory,
Springer-Verlag, New York, 1998

56 Hutchinson, J. P., On words with pre-
scribed overlapping subsequences, Utilitas
Mathematica, 7, (1975), p. 241

57 Xia, L., Zhou, C., Phase transitions in se-
quence unique reconstruction, J. Syst. Sci.
& Complexity 20 (2007), p. 18

40 References

58 Shi, X.-L., Xie, H.-M., Zhang, S.-Y., Hao,
B.-L., Decomposition and reconstruction of
protein sequences: the problem of unique-
ness and factorizable language, J. Korean
Phys. Soc. 58 (2007), p. 118

59 Ukkonen, E., Approximate string matching
with q-grams and maximal matches, Theor.
Comput. Sci., 92, (1992), p. 191

60 Pevzner, P. A., Computational Molecular Bi-
ology: An Algorithmic Approach, The MIT
Press, Cambridge, MA, 2000

61 Kontorovich, L., Uniquely decodable n-
gram embeddings, Theor. Computer Sci., 329
(2004), p. 271

62 Li, Q., Xie, H.-M., Finite automata for test-
ing uniqueness of Eulerian trails, 2005, arX-
ive: cs.CC/0507052 (20 July 2005); Finite
automata for testing composition-based
reconstructibility of sequences, submitted
to J. Computer & Systems Sci., in April 2007

63 Kandel, D., Matias, Y., Unger, R., Winkler,
P., Shuffling biological sequences, Discrete
Appl. Math., 71 (1996), p. 171

