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Abstract 
 

We develop and test four alternative logics of attachment – accumulative advan-

tage, homophily, follow-the-trend, and multiconnectivity – to account for both the struc-

ture and dynamics of interorganizational collaboration in the field of biotechnology. The 

commercial field of the life sciences is typified by wide dispersion in the sources of basic 

knowledge and rapid development of the underlying science, fostering collaboration 

among a broad range of institutionally diverse actors. We map the network dynamics of the 

field over the period 1988-99. Using multiple novel methods, including analysis of net-

work degree distributions, network visualizations, and multi-probability models to estimate 

dyadic attachments, we demonstrate how different rules for affiliation shape network evo-

lution. Commercialization strategies pursued by early corporate entrants are supplanted by 

collaborative activities influenced more by universities, research institutes, venture capital, 

and small firms. As organizations increase both the number of activities on which they col-

laborate and the diversity of organizations with whom they are linked, cohesive sub-

networks form that are characterized by multiple, independent pathways. These structural 

components, in turn, condition the choices and opportunities available to members of a 

field, thereby reinforcing an attachment logic based on connections to diverse partners that 

are differently linked. The dual analysis of network and institutional evolution provides an 

explanation for the decentralized structure of this science-based field. 



 

 

 
 

 

Table of Contents 
 
 Abstract 
 Introduction 
 Topology of Large-Scale Networks 
 Field Structuration: Science Meets Commerce 
 Data and Methods 
 Analysis I: Degree Distributions 
 Analysis II: Discrete Time Network Visualization 
 Analysis III: Attachment Bias 
 Conclusion and Implications 

Appendix I: Network Visualization in Pajek 
Endnotes 
Tables 1-7 

 References 
 Appendix II: Tables A1-A3 
 Figures 

 
List of Tables: 
Table 1 Top Ten Biotechnology Drugs, 2001 
Table 2 Patterns of Entry and Exit into the Network  
Table 3 Variables in Statistical Tables  
Table 4 Test of Accumulative Advantage: Odds Ratio from McFadden 

Model 
Table 5 Test of Homophily: Odds Ratio from McFadden Model 
Table 6 Test of Follow-the-Trend: Odds Ratio from McFadden Model 
Table 7 Test of Multiconnectivity: Odds Ratio from McFadden Model 

 
List of Figures:  
Figure 1 DBF and University Patents, 1976-99 
Figure 2 Distribution of Organizational Forms and Activities  
Figure 3 Degree Distributions by Type of Partner 

 
Pajek figures  
4  1988 Main Component, All Ties 
5  1989 Main Component, New Ties 
6  1993 Main Component, All Ties 
7  1994 Main Component, New Ties 
8  1997 Main Component, All Ties 
9  1998 Main Component, New Ties 
10 1997 All Ties, Main Component, Cohesion 
11 1998 New Ties, Main Component, Cohesion 
 



 

 

 
 

4

Introduction 
The images of field and network are 

common in both contemporary physical 
and social science. In the physical sciences, 
fields are organized by information in the 
form of geometric patterns. The study of 
the geometry of fields has attracted consid-
erable interest in the statistical mechanics 
of complex networks. Research by physi-
cists interested in networks has ranged 
widely from the cellular level, a network of 
chemicals connected by pathways of 
chemical reactions, to scientific collabora-
tion networks, linked by coauthorships and 
co-citations, to the world-wide web, an 
immense virtual network of websites con-
nected by hyperlinks (Albert, Jeong, and 
Barabási, 1999; Jeong et al, 2000; New-
man, 2001; Watts and Strogatz, 1998). Al-
bert and Barabási (2002) and Newman 
(2003) provide excellent overviews of this 
burgeoning literature on the network topol-
ogy of different fields, highlighting key 
organizing principles that guide interac-
tions among the component parts. 

In the social sciences, however, analy-
ses of fields and networks have been oddly 
disconnected. We say oddly because the 
study of the macro dynamics of networks 
should be central to the understanding of 
how fields evolve. This lack of connection 
is rooted in several features of contempo-
rary research. There is an abundance of re-
search in network analysis on why ties 
form between two actors and what the con-
sequences are of having a particular posi-
tion in a network. Salancik (1995) ob-
served, however, that most network re-
search has taken an individual-level per-
spective, and missed out on the opportunity 
to illuminate the structure of collective ac-
tion. McPherson et al (2001) note that there 
are few studies that employ longitudinal 
data to analyze networks. Burt (2000) has 
voiced a similar concern that most studies 
of network structure are cross-sectional. In 

the most comprehensive text on network 
methods, there is only a paragraph on net-
work dynamics in a section on future direc-
tions (Wasserman and Faust, 1994). Thus 
while some progress has been made analyz-
ing the dynamics of dyads (e.g., Lincoln et 
al, 1996; Gulati and Gargiulo, 1998; Stuart, 
1998), little attention has been given to the 
evolution of entire networks. 

There are a number of excellent studies 
of the structuring of specific organizational 
fields (DiMaggio, 1991; Thornton, 1995; 
Dezalay and Garth, 1996; Ferguson, 1998; 
Scott et al, 2000; Hoffman, 2001; Morrill 
and Owen-Smith, 2002). An organizational 
field is a community of organizations that 
engage in common activities and are sub-
ject to similar reputational and regulatory 
pressures (DiMaggio and Powell, 1983). 
Such fields have been defined as “a net-
work, or a configuration, of relations be-
tween positions” (Bourdieu, 1992), and as 
“centers of debates in which competing in-
terests negotiate over the interpretation of 
key issues” (Hoffman, 1999:351). Fields 
emerge when social, technological, or eco-
nomic changes exert pressure on existing 
relations, and reconfigure models of action 
and social structures. But despite the rela-
tional focus on how different actors and 
organizations constitute a recognized arena 
of social and economic activity, studies of 
fields have not analyzed the interactions of 
multiple, overlapping networks or the regu-
lated reproduction of network ties through 
time. This linkage between network dy-
namics and the evolving structure of fields 
needs to be made in order to make progress 
in explaining how the behavior of actors or 
organizations of one kind or another influ-
ence the actions of organizations of another 
kind. 

The goal of this paper is to account for 
the development and elaboration of the 
commercial field of biotechnology, show-
ing how the formation, dissolution, and re-
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wiring of network ties over a twelve-year 
period, from 1988 to 1999, has shaped the 
opportunity structure of the field.1 By map-
ping changing network configurations, we 
discern how logics of attachment shift over 
time, and chart multiple influences on the 
varied participants in the field. Our effort is 
part of a more general move in the social 
sciences to analyze momentum, sequences, 
turning points, and path dependencies (see 
Abbott, 2001, for an overview). By linking 
network topology and field dynamics, we 
consider social change not as an invariant 
process affecting all participants equally, 
but as reverberations felt in different ways 
depending on an organization’s institu-
tional status and location in the overall 
network as that structure evolves over time. 
Our aim is to illuminate how patterns of 
interaction emerge, take root, and trans-
form, with ramifications for all of the par-
ticipants. 
We develop arguments concerning how the 
topology of a network and the rules of at-
tachment among its constituents guide the 
choice of partners and shape the trajectory 
of the field. As organizations enter an arena 
and relationships deepen and expand, sig-
nificant structural changes occur. To ana-
lyze and understand these emergent net-
work structures, we use a triangulation of 
methods. We first analyze the expansion of 
the network to see if the process is random 
or uniform. Prior research suggests that as 
new organizations join the network, there is 
an attachment bias of a higher probability 
of being linked to an organization that al-
ready has ties (de Solla Price, 1965, 1980; 
Barabási, 2002a). We go further and assess 
whether other attachment processes are op-
erative as well. We map the development 
of the field by drawing network configura-
tions to create a framework with which to 
view network dynamics. Pajek (de Nooy, 
Mrvar, and Batagelj, forthcoming) is our 
software package of choice for the repre-

sentation of network dynamics. Pajek al-
lows us to analyze the nearly 2,800 nodes 
in our sample, and to identify cohesive 
subsets such as multi-connected compo-
nents (White and Harary 2001: 12-14). We 
present a small selection of these network 
visualizations to highlight both the evolv-
ing topology of the field and the processes 
by which new ties and organizations are 
added. (The full ‘movie’, with year-to-year 
representations of the topology and new 
additions to the network, is available at 
http://www-personal.umich.edu/~jdos/paj_mov.html 
for viewing on the web. We then turn to a 
statistical examination of network forma-
tion and dissolution, and assess the effects 
of alternative mechanisms of attachment. 
Using McFadden’s discrete choice model 
(McFadden 1973; 1981), a variant of the 
conditional logit model, we test to see if the 
basis of attraction is accumulative advan-
tage, similarity, follow-the-trend, or diver-
sity.  

  
The Topology of Large-Scale Networks 

A variety of researchers in physics and 
sociology are studying the structure of 
large-scale networks with the intuition that 
complex adaptive systems evince organiz-
ing principles that are encoded in their to-
pology. Large-scale networks typically 
have characteristic signatures of local 
structure, such as clustering, and a global 
structure, such as average distance between 
nodes. Local and global characteristics of 
networks help to define network topologies 
such as small worlds, which are large net-
works with both local clustering and rela-
tively short global distance. Watts (1999) 
showed that adding only a handful of re-
mote links to a large network where the 
level of local clustering is high (e.g., 
friends of friends are friends) is sufficient 
to create a small-world network. Watts and 
Strogatz (1998) helped to revitalize the ear-
lier line of research introduced by Milgram 
(1967) and developed by White (1970). 

http://www-personal.umich.edu/~jdos/paj_mov.html
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The wide appeal of the small-world idea 
had been portrayed in the arts, in John 
Guare’s play Six Degrees of Separation, 
and in the popular Kevin Bacon game, 
where virtually every Hollywood actor is 
linked through a few steps. Even a small 
proportion of randomly distributed ties can 
knit together diverse clusters of nodes to 
produce the small world phenomenon. Re-
searchers have applied the small-world 
concept to a wide range of activities, in-
cluding scientific collaborations (Newman, 
2001) and corporate board interlocks 
(Kogut and Walker, 2001; Davis, Yoo, and 
Baker, 2003). 

Watts and Strogatz’s (1998) formaliza-
tion of the small-world problem lacked any 
role for network hubs, which are nodes with 
an unusually large number of ties or edges, 
in the language of graph theory. This limita-
tion was also true for early models of ran-
dom networks, in which an equal probability 
of any given pair of nodes being connected 
generated only a mild tendency for nodes to 
differ in their number of edges.2 But re-
search on the degree distributions of citation 
networks, however, has shown highly 
skewed distributions, with most nodes hav-
ing few links, while a handful of nodes have 
an exceedingly large number of ties. Lotka 
(1926) and de Solla Price (1965, 1980) 
showed that for the tails of degree distribu-
tions of citation networks, the proportion of 
nodes with degree k often varies as a func-
tion of 1/kα, that is, by the inverse power law 
P(k) ~ 1/kα, where alpha is the power coeffi-
cient. Barabási and Albert (1999:510) and 
Barabási (2002b:70) popularized the term 
‘scale-free’ for such networks, 3 and con-
firmed that network growth with preferential 
attachment according to degree4 predicts a 
scale-free tail of the degree distribution. The 
well-connected nodes that newcomers attach 
to become hubs that create short paths be-
tween many pairs of nodes in the network.  

Preferential attachment to higher degree 
leads to a dynamic of rich-get-richer and 
power-law tails of degree distributions are 
present in very diverse kinds of networks. 
In the movie actor network, for example, 
new actors tend to start their careers in 
supporting roles accompanying famous ac-
tors, and in science, new publications cite 
well-known papers. Attachment bias in 
network formation bears strong similarity 
to the more general phenomenon of accu-
mulative advantage (Merton, 1973), in 
which those who experience early success 
capture the lion’s share of subsequent re-
wards. We use early-starter accumulative 
advantage and preferential attachments as 
baseline arguments, since they provide po-
tential explanations for growing inequali-
ties in the process of network expansion. 
But not all early entrants turn out to be 
winners, and some latecomers attain 
prominence. As the saying goes, the early 
bird may catch the worm, but it is always 
the second mouse that eats the cheese. 
Similarly, Albert and Barabási’s (2002) 
formalization of a “scale-free” class of 
networks, where the probability that a new 
entrant will choose to link to an incumbent 
node is proportional to the number of links 
it has already, is elegantly simple but quite 
possibly overgeneralized. Other attachment 
processes, or a combination of diverse 
processes, can produce power law degree 
distributions. Our analyses test for multi-
ple, potential probabilistic biases in the 
processes of network growth. 

We enter the discussion of network dy-
namics with data from a field where social, 
political, economic, and scientific factors 
loom large in shaping patterns of attach-
ment among the participants. In earlier 
work on the biotechnology industry, Pow-
ell, Koput, and Smith-Doerr (1996) found a 
liability of disconnectedness, in which 
older, less-linked organizations were the 
most likely to fail. Certainly, early entrants 
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have more time than later arrivals to estab-
lish connections, but Powell et al (1996) 
found that how connections were estab-
lished and what activities were pursued 
was critical. Biotechnology firms had to 
both make news and be in on the news, that 
is, they needed to generate novel contribu-
tions to the evolving science as well as 
have the capability to evaluate what other 
organizations were doing. The pathway to 
centrality in the industry network was 
through research and development collabo-
rations. Other routes were either ineffective 
or much slower in generating centrality. 
Moreover, in a highly competitive world in 
which it is not easy to rest on past accom-
plishments, firms that do not expand or re-
new their networks lose their central posi-
tions. At the same time, resource-rich par-
ticipants are more capable of altering their 
positions, by reconfiguring their networks.  

Biotechnology is characterized by a 
high rate of formation and dissolution of 
linkages. Connections are often forged with 
a specific goal in mind, such as taking a 
company public or selling and distributing 
a new medicine. Once the task is com-
pleted, the relationship is ended, and suc-
cessful collaborators depart gracefully. 
There is a good deal of entry and exit into 
the field, with new entrants joining at par-
ticular times when financing is available 
and novel scientific opportunities can be 
pursued. The rate at which new nodes ap-
pear in the network is, in part, determined 
by the success that existing nodes have in 
making progress on a technological fron-
tier. Moreover, many of the participants in 
the field are ‘multi-vocal’, that is, they are 
capable of performing multiple activities 
with a variety of constituents (Burt, 1992; 
Padgett and Ansell, 1993; White, 1985; 
1992). But multi-vocality is not distributed 
evenly, those organizations that are more 
centrally located in the industry have ac-
cess to more sophisticated and diverse col-

laborators, and have developed richer pro-
tocols for collaboration (Powell et al, 
1996).  

To illustrate the questions we are pur-
suing, consider a contemporary dance club, 
where revelers compete to get inside and 
once inside, may dance in groups or with 
only one partner or many partners during 
an evening. The mix of available partners 
changes as the evening goes on, and di-
verse styles of music are played in different 
rooms. While new partners may be chosen, 
the imprint of past choices often lingers. 
Some dancers may be highly sought after 
and some music may attract more dancers. 
Or, by way of contrast, consider a much 
more formal setting, such as an early 20th 
century Swedish military ball, where the 
young officers would ride in a horse-drawn 
carriage around Stockholm in advance of 
the event with an official dance card, and 
visit the homes of young women to obtain 
permission to dance with them from their 
parents. By the time of the dance, the aspir-
ing young officers had filled their dance 
card and rehearsed their repertoire of con-
versation and dance.5 In such settings, an 
analytically rich set of questions follows: 
who dances which dance with whom and 
when? To address these questions, one 
needs information about the cast of partici-
pants, the repertoire of activities per-
formed, and the sequences linking partners 
and activities. As the combinations of part-
ners and dances unfold, collective dynam-
ics emerge. Individual choices may cumu-
late into a cascade, resulting in everyone 
following similar scripts. Or trends may 
cluster and find coherence only in small 
densely connected groups. Choices made 
early may strongly affect subsequent op-
portunities, but path dependence can be 
offset by a constant flow of new arrivals 
and departures. The challenge to under-
standing any such highly interwoven sys-
tem is to relate the behavior and dynamics 
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of the entire structure with the properties of 
its constituents and their interactions, and 
to discern what types of actors and rela-
tionships are most critical in shaping the 
evolution of the field at particular points in 
time.  

We assess different sources of attach-
ment bias and test to see if these simple 
rules guide the process of partner selection, 
and if so, for which participants and at 
what points in time? We supplement the 
idea of accumulative advantage with alter-
native mechanisms that sociologists have 
repeatedly found to be important in the 
formation of social and economic ties and 
the evolution and replication of social 
structures. The first alternative to early ad-
vantage or rich-get-richer is homophily 
(McPherson and Smith-Lovin, 1987), a 
process of social similarity captured best in 
the phrase, ‘birds of a feather flock to-
gether’. A second alternative is based on 
following the trend, thus the participants 
observe others and attempt to match their 
actions to the dominant behavior of the 
overall population (White, 1981; DiMaggio 
and Powell, 1983). In this context, action is 
triggered by a sense of necessity, by a de-
sire to keep pace with others by acting ap-
propriately (March and Olsen, 1989; 160-
2). This pattern may also arise from par-
ticipants reacting in similar ways to com-
mon exogenous factors.  

We contrast arguments based on either 
rich-get-richer or processes such as homo-
phily, and a logic of appropriateness with a 
model based on multiconnectivity (the mul-
tiple linking of partners both directly and 
through chains of intermediaries) and a 
preference for diversity. To pursue the 
dance imagery, homophily suggests that 
when you select a new partner, he or she is 
someone with attributes similar to those 
with whom you have already danced. A 
rich-get-richer process involves competing 
for the most popular dancer. Following the 

trend entails choosing both a partner and a 
dance that are comparable to the choices of 
most other participants.  

A preference for diversity, however, 
suggests a search for novelty, and the incli-
nation to move in different communities 
and interact with heterogeneous partners. 
Our ideas concerning multiconnectivity 
involve several intuitions. A cohesive net-
work, with plural pathways, means partici-
pants are connected through different link-
ages. Thus many nodes must be removed to 
disconnect such a structure, meaning such 
groupings are more resilient. The more 
pathways for communication and ex-
change, the more rapidly news percolates 
through the network. In turn, when more 
knowledge is exchanged, participants at-
tend to their network partners more inten-
sively (Powell, 1990). The enhanced flow 
of ideas and skills then becomes an attrac-
tion, making the network more appealing to 
join. Rapid transmission and diverse par-
ticipants enhance both the likelihood of 
recombination and the generation of nov-
elty. In the language of organizational 
learning, diversity entails a preference for 
exploration over exploitation (March, 
1991). Of course, we do not necessarily 
expect that one mechanism dominates at all 
time periods and exerts equal gravitational 
pull on every participant. The very essence 
of dynamic systems is that they change 
continually over time. The actors may well 
play by different rules at different points in 
time, depending on the experience of their 
partners and their position in the social 
structure. Moreover, alternative organizing 
principles may be dominant at different 
stages in the formation of the network. 
Framed more formally, the alternative 
mechanisms can be stated as: 

H1: Network expansion occurs 
through a process in which the most-
connected nodes receive a dispropor-
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tionate share of new ties (Accumulative 
Advantage). 

H2: Network expansion follows a 
process in which new partners are cho-
sen on the basis of their similarity to 
previous partners (Homophily). 

H3: Network expansion entails 
herd-like behavior, with participants 
matching their choices with the domi-
nant choices of others, either in mutual 
response to common exogenous pres-
sures or through imitative behavior 
(Follow-the-trend). 

H4: Network expansion reflects a 
choice of partners that connect to one 
another through multiple independent 
paths, which increases reachability and 
the diversity of actors that are reachable 
(Multiconnectivity). 
 

Field Structuration: Science Meets 
Commerce 

Our empirical focus is on the commer-
cial field of biotechnology, which devel-
oped scientifically in university labs in the 
1970s, saw the founding of hundreds of 
small science-based firms in the 1980s, and 
matured in the 1990s with the release of 
dozens of new medicines. This field is no-
table for its scientific and commercial ad-
vances and its diverse cast of organizations, 
including universities, public research insti-
tutes, venture capital firms, large multina-
tional pharmaceutical corporations, and 
smaller dedicated biotech firms (which we 
refer to as DBFs). Because the sources of 
scientific leadership are widely dispersed 
and rapidly developing, and the relevant 
skills and resources needed to produce new 
medicines are broadly distributed, the par-
ticipants in the field have found it neces-
sary to collaborate with one another. The 
evolving structure of these collaborative 
ties are the focus of our network study. 
Concomitant with changes in the network, 
an elaborate system of private governance 

has evolved to orchestrate these interor-
ganizational relationships (Powell, 1996), 
and the internal structure of organizations 
has changed accordingly, co-evolving with 
the collaborative network. 

In the early years of the industry, from 
1975-87, most DBFs were very small start-
ups, and deeply reliant on external support 
out of necessity. No DBF in this period had 
the necessary skills or resources to bring a 
new medicine to market; thus they became 
involved in an elaborate lattice-like struc-
ture of relationships with universities and 
large multinational firms (Powell and 
Brantley, 1992). The large multinational 
firms, with well established internal career 
ladders, lacked closeness to the cutting 
edge of university science. Lacking a 
knowledge base in the new field of molecu-
lar biology, the large companies were 
drawn to the startups, which had more ca-
pability at basic and translational science 
(Gambardella, 1995; Galambos and Stur-
chio, 1996). This asymmetric distribution 
of technological, organizational, and finan-
cial resources was a key factor in driving 
early collaborative arrangements in the in-
dustry (Orsenigo, 1989; McKelvey, 1996; 
Hagedoorn and Roijakkers, 2002). 

Many commentators at the time argued 
that these interdependent linkages were 
fragile and fraught with possibilities of 
“hold-up”, in which one party could oppor-
tunistically hinder the other’s prospects for 
success.6 Some analysts argued that the 
field would undergo a “shakeout,” with 
large pharmaceutical companies asserting 
dominance and the rate of founding of new 
firms slowing to a trickle (Sharpe, 1991; 
Teece, 1986). But as these observers and 
others came to recognize, a shakeout did 
not occur, nor did cherry-picking of the 
most promising firms by larger companies 
prove viable.7 Instead, the ensuing period 
saw the give-and-take, mutual forbearance 
of relational contracting (Macneil, 1978) 
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become institutionalized as a common 
practice in this rapidly developing field. By 
the late 1980s, some of the dedicated bio-
tech firms had become rather large and 
formidable organizations in their own right, 
while many of the big pharmaceuticals cre-
ated in-house molecular biology research 
programs (Henderson and Cockburn, 1996; 
Zucker and Darby, 1997). So even as mu-
tual need declined as a basis for inter-
organizational affiliations, the pattern of 
dense connectivity deepened, suggesting 
the original motivation of exchanging 
complementary resources had changed to a 
broader focus on utilizing innovation net-
works to explore new forms of R&D col-
laboration and product development (Pow-
ell et al, 1996). This is the period we focus 
on with data from 1988-99. Table 1, which 
lists the top-selling biotechnology drugs in 
2001, illustrates the division of innovative 
labor that has typified the field. All ten 
drugs were developed by biotech firms, but 
only five were marketed by biotech firms, 
and just four by their originator. In the 
other five cases, a large pharmaceutical 
company handled or guided the marketing 
in return for a hefty share of the earnings. 
Comparable data from the early 1990s in-
dicate that marketing power and control of 
revenues was dominated overwhelmingly 
by the pharmaceutical giants (Powell and 
Brantley, 1996). A notable feature of drug 
development is that there is no consumer 
loyalty to a company, and limited brand 
loyalty as well. Combine these influences 
with a market structure that has many win-
ner-take-most features, and the outcome is 
a volatile, fast-changing field. 

[TABLE 1 HERE] 
A number of factors undergird the col-

laborative division of labor in the life sci-
ences. No single organization has been able 
to internally master and control all the 
competencies required to develop a new 
medicine. The breakneck pace of technical 

advance has rendered it difficult for any 
organization to stay abreast on so many 
fronts, thus linkages to universities and re-
search institutes at the forefront of basic 
science are necessary (Orsenigo, Pammolli, 
and Riccaboni, 2001). The high rate of 
technical renewal is reflected in patent 
data. Figure 1 shows the brisk rise of life 
science patenting, and highlights the simi-
larities in the technological trajectories of 
universities and biotech firms.8 Note the 
parallel climb of university and DBF pat-
enting in the mid-1980s, a steady ascent for 
the next ten years, and a steep increase in 
the late 1990s. Universities start out ahead 
and then are passed by DBFs in 1997, but 
the more important point is the extent to 
which both become members of a common 
technological community (Owen-Smith 
and Powell, 2001a and b). This joint mem-
bership in a community greatly increases 
the frequency of interaction between uni-
versities and industry. 

[FIGURE 1 HERE] 
The availability of funding has also in-

creased markedly as biomedicine has be-
come a major force in modern society. The 
total budget of the U.S. National Institutes 
of Health, a key funder of basic research 
that allocates approximately 80% of its 
budget to external research grants to uni-
versities and firms, nearly doubled under 
the Clinton administration, going from $8.9 
billion in 1992 to $17.08 billion in 2000. 
The NIH plays a highly significant role in 
fostering exploration and variety on the 
research front. Internal R&D expenditures 
by biotech and pharmaceutical companies 
have also ramped up, from $6.54 billion in 
1988 to $26.03 billion in 2000.9 Venture 
capital disbursements, or seed money to 
biotech startups, have flowed into biotech, 
but more irregularly as the public equity 
markets have windows of opportunity 
when particular technologies are in vogue. 
As Lerner, Shane, and Tsui (2003) note, 
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unexpected events affecting a single firm – 
notably the rejection or delay of a drug 
candidate by the U.S. Food and Drug Ad-
ministration, can have pronounced effects 
on all firms’ stock prices and ability to 
raise capital. Consequently, venture fund-
ing of biotech is rather episodic, reaching 
$395.5 million in 1988, declining over the 
next three years, then jumping to $586.4 
million in 1992, remaining around the half 
billion level for next four years, then 
climbing to $1.1 billion in 1997, and stay-
ing above $1 billion in 1998 and 1999.10 
Biotech financing by venture capital is also 
somewhat countercyclical, thus when there 
was great enthusiasm for internet and tele-
com startups, interest in biotech waned. In 
recent years, with the burst of the internet 
bubble and a precipitous decline in tele-
communications, biomedical support has 
been on the upswing. Biotech firms that are 
well positioned in the network with con-
nections to basic research funding, indus-
trial R&D support, and venture capital fi-
nancing, are not only able to obtain money 
from multiple sources, they also develop 
the capability to interact with varied par-
ticipants. These experiences facilitate or-
ganizational learning and expand the scope 
and depth of an organization’s knowledge 
base. 

The different members of the field have 
varying catalytic abilities and competen-
cies. Some of the participants are quite spe-
cialized, while others have a hand in multi-
ple activities. Figure 2 provides simple 
count data to illustrate the relationship be-
tween functional activity and organiza-
tional form, and suggests how the corre-
spondence of activity and form has shifted 
over time. The top figure emphasizes an 
overall pattern of expansion in number of 
ties, and for three of the forms of organiza-
tion, a branching out in terms of activity. 
Growth and diversity go hand-in-hand for 
DBFs, PROs, and large pharmaceutical 

companies. Venture capital growth is nota-
ble as well, but as the percentage figure on 
the bottom reveals, there is a strong co-
occurrence of some forms and activities: 
government specializes in R&D, venture 
capital in finance. Some organizations, 
however, are able to shift their attention. 
While enlarging the number of ties, both 
dedicated biotech firms and public research 
organizations broadened their range of ac-
tivities as well. The lower figure, which 
reports the percentage of activity by organ-
izational form, illustrates the pattern of 
specialization by government and VCs, and 
the diversification by biotech and pharma-
ceuticals, while PROs display a trend to-
ward a R&D and licensing model. Looking 
at types of activity, VCs come to dominate 
finance, as pharmaceuticals master com-
mercial ties, while licensing and R&D are 
pursued by an array of participants. 

[FIGURE 2 HERE] 
Finally, as the field gained coherence, 

and the pattern of reliance on collaboration 
proliferates, institutions emerged to both 
facilitate and monitor the process. Offices 
were established on university campuses to 
promote university technology transfer 
(Owen-Smith and Powell, 2001a), law 
firms developed expertise in intellectual 
property issues in the life sciences, and 
venture capital firms provided financing, 
along with management oversight and re-
ferrals to a host of related businesses. As 
these relations thickened and a relational 
contracting infrastructure grew (Powell, 
1996), the reputation of a participant came 
to loom larger in shaping others’ percep-
tions. Robinson and Stuart (2002) argue 
persuasively that the network structure of 
the field becomes a “platform for the diffu-
sion of information about the transactional 
integrity” of its participants. Centrality in 
the network increases the visibility of a 
participant’s actions and, they demonstrate, 
reduces the need for more overt, contrac-
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tual forms of control, such as an equity 
stake or dominance on the board of direc-
tors. We turn now to a discussion of the 
database we have developed to map the 
evolving structure of this field. 

 
DATA AND METHODS  

Our starting point in developing a sam-
ple is BioScan, an independent industry 
directory, founded in 1988 and published 
six times a year, which covers a wide range 
of organizations in the life sciences field.11 
Our focus is on dedicated biotech firms 
(DBFs). We include 482 companies that 
are independently operated, profit-seeking 
entities involved in human therapeutic and 
diagnostic applications of biotechnology. 
We omit companies involved in veterinary 
or agricultural biotech, which draw on dif-
ferent scientific capabilities and operate in 
quite different regulatory climates. The 
sample of DBFs covers both privately-held 
and publicly-traded firms. We include pub-
licly held firms that have minority or ma-
jority investments in them by other firms, 
as long as the company’s stock continues to 
be independently traded. We exclude or-
ganizations that might otherwise qualify as 
DBFs, but are wholly-owned subsidiaries 
of pharmaceutical or chemical corpora-
tions. Large pharmaceutical corporations, 
health care companies, hospitals, universi-
ties, or research institutes enter our data-
base as partners that collaborate with dedi-
cated biotech firms. Our rationale for ex-
cluding both small subsidiaries and large, 
diversified chemical, medical, or pharma-
ceutical corporations in the primary (DBF) 
database is that the former do not make de-
cisions autonomously, while biotechnology 
may represent only a minority of the activi-
ties of the latter. Their exclusion from the 
primary sample of DBFs eliminates serious 
data ambiguities.  

The primary sample covers 482 DBFs 
over the 12-year period, 1988-99. In 1988, 

there were 253 firms meeting our sample 
criteria. During the next 12 years, 229 
firms were founded and entered the data-
base; 91 (of the 482) exited, due either to 
failure, departure from the industry, or 
merger. The database, like the industry, is 
heavily centered in the U.S., although in 
recent years there has been considerable 
expansion in Europe. BioScan reports in-
formation on a firm’s ownership, financial 
history, formal contractual linkages to col-
laborators, products, and current research. 
Firm characteristics reported in BioScan 
include founding data, employment levels, 
financial history, and for firms that exit, 
whether they were acquired or failed. The 
data on interorganizational agreements 
cover the time frame and purpose of the 
relationship. Our database draws on Bio-
Scan’s April issue, in which new informa-
tion is added for each calendar year. Hence 
the firm-level and network data are meas-
ured during the first months of each year. 
We define a collaborative tie, or alliance, 
as any contractual arrangement to exchange 
or pool resources between a DBF and one 
or more partner organizations. We treat 
each agreement as a tie, and code each tie 
for its purpose (e.g., licensing, R&D, fi-
nance, commercialization) and duration. 
Some ties involve multiple stages of the 
production process. All such ties include 
commercialization activities, such as manu-
facturing or marketing, hence we code 
complex agreements as commercial ties. 
We say a connection, or link, exists when-
ever a DBF and partner have one or more 
ties between them.  

We seek to explain the processes that 
attract two parties to one another, the 
evolving patterns of tie formation and dis-
solution, and the overall structure of the 
network. We code the dominant forms of 
partner organizations into six categories, 
representing those that populate the field: 
public research organizations (including 
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public and private universities and non-
profit research institutes and research hos-
pitals); large multinational pharmaceutical 
corporations (as well as chemical and di-
versified health care corporations); gov-
ernment institutes (such as the National 
Cancer Institute or the Institut Pasteur); 
financial institutions (principally venture 
capital as well as banks and insurance 
companies); other biomedical companies 
(providers of research tools or laboratory 
equipment); and those DBFs that collabo-
rate with other biotech companies. There 
are more than 2,300 non-DBFs in the part-
ner database.  

The four types of ties involve different 
activities, ranging from basic research to 
finance to licensing intellectual property to 
sales and marketing. Thus, the matrix of 
organizational forms and activities is 6 x 4, 
or 24 possible combinations of partner 
forms and functional activities of ties. 
Some of the cells are quite rare, but there 
are cases in every cell. Some of these ac-
tivities involve the exchange or transfer of 
rights, while others require sustained joint 
activity. The latter obviously entails more 
integration of the two parties to a relation-
ship. This difference is one reason why we 
treat the four types of activities separately 
in most analyses.  

Given the differentiation of organiza-
tional forms and types of ties, our approach 
has some limitations. In some, though not 
all, of our measures, we treat the type of tie 
or the form of the partner as equally impor-
tant. Obviously, this is not altogether real-
istic; indeed, if the analyses were based on 
only a single year of data, this limitation 
would loom large. The benefit of this as-
sumption is that it permits comparisons 
across time periods. There is also heteroge-
neity in the nature of participation of dif-
ferent organizational forms for a particular 
type of activity. At the extreme, an R&D 
partnership between a global pharmaceuti-

cal company and a DBF may reach the 
scale of $1 billion dollars, while a DBF’s 
R&D alliance with a university laboratory 
may involve as little as one or two hundred 
thousand dollars. The salience of these 
limitations recedes as we add more years of 
observations to the data set. The advan-
tages of twelve years of fine-grained data 
reside in capturing the length of relation-
ships, the dissolution of ties to particular 
partners and the forging of ties to others, as 
well as the deepening of some ties. Issues 
of scale are held constant while we exam-
ine duration of ties and the extent to which 
the parties involved in a relationship share 
other partners in common at specific points 
in time. This approach allows us to speak 
to Salancik’s (1995: 348) concern that net-
work analysis should show how adding or 
subtracting a particular interaction in a 
network changes the coordination among 
the participants, and either enables or dis-
courages interactions between parties. 

We do not collect data on the ties 
among the non-DBF partner organizations. 
In some cases, such ties would be very 
sparse or non-existent (e.g., venture capital 
funding of universities or pharmaceutical 
companies); in other cases, they are more 
common (e.g., pharmaceutical support of 
clinical trials conducted at a university 
medical center).12 The practical problem is 
that the data on a network of 2,310 x 2,310 
disparate organizations would be very dif-
ficult to collect. Thus, we analyze the con-
nections that DBFs have to partners, and 
the portfolio of DBFs with whom each 
partner is affiliated. To do this we use k-
components to identify cohesive subsets of 
organizations.13 This measure of multicon-
nectivity does not require complete data on 
relations among non-biotech partners, thus 
allowing us to analyze the total network of 
nearly 2,800 organizations. Our focus, 
then, is on cohesion, mediated exclusively 
by ties with DBFs.  
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Network measures such as the analysis 
of degree distributions, unlike k-
components, require complete data. To this 
end, in the first and third of the analyses 
that follow, we separate our database into 
two parts: the complete one-mode network 
(482 x 482) of ties among DBFs, where we 
also have extensive data on the attributes of 
the 482 biotech firms, and the two-mode 
network that consists of complete data on 
the ties of DBFs to non-DBF organizations.  

Over the past decade, we have also in-
terviewed more than 200 scientists and 
managers in biotech and pharmaceutical 
firms, as well as university professors who 
are actively involved in commercializing 
basic research. Members of our research 
group have done participant observations in 
university technology licensing offices, 
biotech firms, and large pharmaceutical 
companies. Students working on the pro-
ject have developed a large data set on the 
founders of biotech companies, and ana-
lyzed the careers of scientists who joined 
biotech companies. In short, while the 
analyses presented here are based on data 
derived from industry sources, our intuition 
about the questions to address are grounded 
in primary data collection. 

 
Analysis I: Degree Distributions 

Research on networks in the graph 
theoretic and statistical mechanics tradi-
tions often utilizes degree distributions as 
a diagnostic indicator of whether tie-
formation in a network (growth or re-
placement) is equiprobable (simple ran-
dom) for all pairs of nodes or biased pro-
portional to existing ties of potential part-
ners. The degree of each node is meas-
ured as the number of other nodes directly 
connected to the focal node. Preferential 
attachment to already connected nodes is 
referred to as a popularity bias. Unlike the 
tail of a random bell curve whose distri-
bution thins out exponentially as it de-

cays, a distribution generated by a popu-
larity bias has a “fat” tail for the relatively 
greater number of nodes that are highly 
connected. The fat tail contains the hubs 
of the network with unusually high con-
nectivity.  

Different types of degree distributions 
can be distinguished when plotted on a 
log-log scale, with log of degree on the x 
axis and log of the number of nodes with 
this degree on the y axis. The degree 
distribution for a network in which the 
formation of edges is governed by a 
popularity bias, where nodes with more 
connections have a higher probability of 
receiving new attachments, would plot as 
a straight line on the log-log graph, in-
dicative of a power law.14 A power-law 
degree distribution is not sufficient by 
itself, however, to identify the actual 
mechanisms that facilitate tie-formation. 
A power-law degree distribution can 
reflect not only preferential attachment by 
incumbency (degree of attracting node) 
but preferences for attractiveness, legiti-
macy, diversity, or a concatenation of 
mechanisms and still exhibit a power-law 
degree distribution. In our study, we test 
for the existence of a preferential attach-
ment process for each year to the next 
rather than assume its existence. We use 
multivariate analysis to try to discern 
specific mechanisms that govern tie-
formation and the type of degree distribu-
tions that different substantive processes 
generate. Before we begin that analysis, 
however, it is useful to examine the de-
gree distributions. 

In Figure 3, we plot the aggregate de-
gree distributions of DBFs on log-log 
scales for the six types of partners for bio-
tech firms: other DBFs; pharmaceutical, 
chemical, and diversified health-care cor-
porations; universities, non-profit research 
institutes and hospitals; government agen-
cies; venture capital firms and other finan-
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cial entities such as banks; and biomedical 
companies that supply research tools and 
instruments. For each of the six plots, the 
x-axis reflects log-degree (aggregated over 
all time periods) and the y-axis the log of 
the number of partners of the plotted form 
having x degree of attachments to DBFs 
(also aggregated over all time periods). A 
power-law distribution, as noted, would 
plot as a straight line. For a network of 
sufficient density, an exponential-decay 
degree distribution, mimicking the results 
of a simple random process of tie-
formation, would form a convex curve that 
bows to the upper right away from the 
origin in the log-log plot. An exponential 
distribution can be statistically rejected 
from the data presented in Figure 3, along 
with a simple-random attachment process 
that would generate degree distributions 
that decay exponentially.15  

The least-squares fitted linear slopes for 
the log-log plot of the degree distributions 
in Figure 3 are in the expected range for 
power-laws, between 1.1 and 2.7, over four 
decades of variation in degree. Only the left 
or low-degree half of one of the distribu-
tions, that for government agencies, has a 
slope anywhere near 3, as expected from 
pure preferential attachment for large net-
works (Barabási and Albert 1999, Bollobás 
and Riordan 2002). This government de-
gree distribution is interesting because of 
the highly pivotal central role of the Na-
tional Institutes of Health, which is a key 
funder of basic research. The NIH is the 
most active partner in the entire network. 
That the slopes of the five other distribu-
tions are considerably less than 3 may be 
an indication that processes other that pure 
preferential attachment are operative.16  

Although these degree distributions 
are aggregate measures over all time 
periods, they give some hint of growth 
processes in attachment. The shape of the 
distributions mimics what would be ex-

pected for tie-formation in the biotech 
network from a process of preferential 
attachment to degree, but power-law 
slopes that are closer to 1 than to 3 sug-
gest that other substantive processes are 
operating. These static snapshots of the 
degree distributions, however, do indicate 
the importance of different organizational 
forms varies with respect to patterns of 
affiliation. To explore the dynamics of the 
field and the changing impact of different 
organizations, we next present a series of 
force-directed network visualizations, 
followed by a statistical examination of 
the actual attachment processes. 

 
Analysis II: Discrete Time Network 
Visualizations  

We utilize Pajek, a freeware package 
for the analysis and visualization of net-
works, to present a series of discrete-time 
images of the evolution of the biotechnol-
ogy network. Pajek employs two powerful 
minimum energy or ‘spring-embedded’ 
network drawing algorithms to represent 
network data in two-dimensional Euclidian 
space. These algorithms simulate the net-
work of collaborations as a system of inter-
acting particles, in which organizational 
nodes repel one another unless network ties 
act as springs to draw connected nodes 
closer together. Spring-embedded algo-
rithms iteratively locate a representation of 
the network that minimizes the overall en-
ergy of the system, by reducing the dis-
tance between connected nodes and maxi-
mizing the distance between unconnected 
nodes. (For more detail concerning Pajek, 
see the Appendix.) 

 We generate two sets of images for 
the time period covered by our database. 
To simplify the presentations, we include 
only those organizations in the main com-
ponent each year, thereby removing the 
isolates from this large and expanding net-
work.17 The first set of images presents the 
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full collaboration network, while the sec-
ond set represents the new ties added each 
year. Given space constraints, we select a 
subset of these pictures for inclusion in the 
paper, but we urge readers to view  
http://www-personal.umich.edu/~jdos/paj_mov.html 
to see the complete set. The visualizations 
afford a multi-faceted view of network evo-
lution, including growth in the number of 
participants, changes in the purpose of ties, 
and the formation of new ties.  

The Pajek figures are designed to visu-
ally reflect our hypothesized models of at-
tachment. The graphics cannot adjudicate 
between the various models, which we do 
in statistical analyses below, but they do 
provide suggestive evidence, or existence 
proofs, if you will. Consider what the full 
network and new tie visualizations might 
look like if strong versions of our four 
mechanisms were operating. After a sketch 
of these stylized images, we then turn to 
the data and examine a series of images. If 
an accumulative advantage process drives 
attachment, the spring-embedded images 
would display a preponderance of star-
shaped structures attached to large nodes. 
These stars would be positioned at the cen-
ter of the image and continue to grow rap-
idly over time as newcomers (triangles) 
affiliate with the most connected nodes. 
We scale the size of nodes to represent the 
number of ties an organization has. Very 
few small nodes will have numerous new 
partners, nor will many large nodes be situ-
ated on the network’s periphery. In con-
trast, if homophily strongly conditions tie 
formation, then we would anticipate im-
ages differentiated into coherent and 
loosely inter-connected single-color clus-
ters. These homophilous clusters should be 
fairly dense and dominated by characteris-
tic organizational forms without necessitat-
ing a preponderance of stars tethered to 
large central nodes. New entrants (pictured 
as triangles) would move into the 

neighborhoods that most closely matched 
their type and profile. 

Were a follow-the-trend logic domi-
nant, new ties would be overwhelmingly 
uniform in color and the predominant color 
should reproduce the previous year’s pat-
tern of affiliation. If, for instance, R&D 
(red) ties dominated in a prior year, neo-
phytes would generally enter the network 
through this established route and the im-
ages would be fields of red. A preference 
for diversity of partners and pathways im-
plies less visual coherence than the other 
mechanisms. Multiconnectivity coupled 
with heterogeneous activities would show 
clusters in which all four colors would be 
evident in the springs. The nodes at the 
center of the network should be different 
colors, reflecting the array of organiza-
tional types. Some small nodes should be 
noticeable at the center of the field, while 
some large nodes should have few new 
partners. New entrants should be sprinkled 
throughout the network. Empirical reality 
is, of course, more messy than stylized 
models. We use these thought experiments 
to make the detailed visualizations of this 
large database more interpretable to readers 
not familiar with graphical representations 
of network dynamics. 

Figure 4, showing the main component 
in 1988, serves as the starting point. The 
color of the nodes reflects their organiza-
tional form, with light blue a dedicated bio-
tech firm, yellow a large pharmaceutical, 
chemical, or diversified medical corpora-
tion, brown a government institute or 
agency. In subsequent years gray nodes 
become important, reflecting the growing 
imprint of venture capital. The springs are 
colored according to the functional activity 
reflected by a tie, with red a research and 
development partnership, magenta a licens-
ing agreement, green a financial relation-
ship, and dark blue indicating an alliance 
involving one or more stages in the com-

http://www-personal.umich.edu/~jdos/paj_mov.html
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mercialization process, ranging from clini-
cal trials to manufacturing to sales and 
marketing. Node size is scaled to standard-
ized network degree in the total network, 
reflecting variation in the extent of degree-
connectivity among the organizations. To 
return to our earlier metaphor of a dance, 
the representation captures dancers with 
different identities, who may participate in 
different types of dances with one or many 
partners. The size of a node, given the 
power-law tendencies in the degree distri-
butions, reflects, roughly, a rich-get-richer 
process. In the images that follow, particu-
larly the visualizations of new ties, there 
are several large blue DBF nodes that are 
clearly the most attractive stars of the net-
work. In later years, there are nodes that 
have multiple linkages for different activi-
ties, reflecting a preference for diversity. 
Looking at the overall population rather 
than specific nodes, we observe shifts in 
the dominant activities as well as changes 
in the composition of the nodes, which il-
lustrate the overall trends in the field. 

[FIGURE 4 HERE] 
Several key features stand out for 1988 

in Figure 4. The predominant color is blue, 
and the most active participants are biotech 
firms, pharmaceutical companies, and sev-
eral government agencies. The strong im-
pact of commercialization ties is a clear 
indication of the dominant strategy of mu-
tual need that characterized the industry’s 
early years. Biotech firms lacked the capa-
bility to bring novel medicines to market, 
while large firms trailed behind in under-
standing new developments in molecular 
biology (Gambardella, 1995; Powell and 
Brantley, 1996; Henderson, Orsenigo, and 
Pisano, 1999). Finance ties (green) are less 
prevalent and only a few venture capital 
firms (gray) are present, providing further 
evidence that most DBFs supported them-
selves by selling their lead product to large 
corporations, who subsequently marketed 

the medicine and pocketed the lion’s share 
of the revenues. Clustered in the center are 
red (R&D) and magenta (licensing) ties, 
which show that DBFs with significant in-
tellectual property and strong research ca-
pability are highly sought for collaboration. 
The large multi-connected nodes in the 
center of the representation are a small 
group of established, first-generation 
DBFs, major multinational firms, and gov-
ernment institutes (the NIH and the Na-
tional Center Institute). In the pullout to the 
right of the figure, we identify a handful of 
the largest nodes: NIH, which will serve as 
an orienting node in the full network fig-
ures because of its centrality, and NCI; a 
group of first-wave biotechs founded in the 
1970s and early 1980s – Genentech, Cen-
tocor, Amgen, Genzyme, Biogen, and Chi-
ron, which became the largest and most 
visible firms by 1988; and three multina-
tional firms – Kodak, Johnson and John-
son, and Hoffman La Roche. The close 
proximity of the Swiss firm Hoffman La 
Roche to Genentech is interesting because 
in 1990, the Swiss firm became the major-
ity stockholder of Genentech. Kodak and 
J&J reflect the broad interest in biotech by 
a range of large firms in different indus-
tries. Kodak soon drops out of the center of 
the field, as does J&J, but the latter returns 
in the late 1990s by acquiring two compa-
nies, first Centocor and then Alza, both es-
tablished, well-connected DBFs. Kodak’s 
subsequent loss of centrality and J&J’s 
purchase of two incumbent DBFs illus-
trates that a first mover, rich-get-richer ac-
count does not always hold, even for some 
of the early very resource-rich participants. 

In Figure 5, we present the new ties 
added in 1989. To return to the dance 
metaphor, the music has stopped temporar-
ily, while new partners are being chosen. 
We add shape to the presentation, with tri-
angles representing new entrants to the 
network, while circles are the incumbents. 
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Note the very active role of NIH (the larg-
est brown node) in forging R&D ties with 
new entrants, and the appearance of many 
grey triangles, illustrating the growing in-
volvement of venture capital in financing 
DBFs. Node size continues to be scaled for 
network degree in the full network, thus 
graphically representing how network posi-
tion in one year may condition the addition 
of new ties in a subsequent year. The size 
of the node indicates the importance of 
rich-get-richer models of attachment. In the 
initial years, we see visual affirmation of 
the positive effect of number of previous 
ties on new tie formation. Note that several 
large blue DBF nodes are at the center of 
the new tie network. By contrast to the 
1988 picture of the overall network, the 
dominance of commercialization springs 
(blue) in 1988 recedes markedly in the 
1989 new ties picture. R&D and finance 
are the main avenues generating growth in 
the network. Observe that large nodes with 
just a few ties have little diversity in their 
partners, while some of the smaller nodes 
adding many new ties have a wide variety 
of partners. 

[FIGURE 5 HERE] 
We fast forward to 1993, but encourage 

readers to follow the annual changes18 in 
the on-line version. Figure 6 portrays a 
large expansion in activity, with green ties 
(finance) now much more prominent. We 
also observe a shift in the composition of 
the most connected participants. Put collo-
quially, the music has changed – from 
commercialization to finance, and accom-
panying the shift in the predominant col-
laborative activity is both an increase in the 
number of highly connected nodes (there 
are roughly three times as many larger 
nodes as in 1988) and the march-in of gray 
(venture capital) and orange (universities) 
nodes. This shift in the primary locus of 
activity is important on a number of dimen-
sions. Finance, as opposed to commerciali-

zation, has a powerful mobilizing effect, 
enrolling new types of actors (VCs, and 
subsequently investment banks, pension 
funds, university endowments, etc.) in fi-
nancing the expansion of the field. As we 
have shown elsewhere, the locus of venture 
capital-financed biotech startups was ini-
tially the Bay Area and Boston, but by the 
end of the 1990s had spread to a number of 
key regions in the U.S. and Europe (Pow-
ell, Koput, Bowie, and Smith-Doerr, 2002; 
Owen-Smith et al, 2002). Thus growth in 
the number of new firms, new partners, and 
new ideas is enhanced by an increase in 
financial linkages, signaling the important 
role of the public equity markets in foster-
ing growth. In contrast, commercialization 
is a more restrictive activity. The ability to 
manufacture new biomedical products was 
a relatively scarce skill, as was the ability 
to market and distribute a new medicine 
throughout the world. A relatively small 
number of large firms had these capabili-
ties, and it took at least a decade before 
DBFs developed these skills. Conse-
quently, during the first two decades of the 
field, commercialization ties flowed 
through a small set of dominant multina-
tionals and a handful of established biotech 
firms. Thus, not only were the number of 
participants limited, commercialization is a 
‘downstream’ activity; indeed, when it in-
volves the sale of a new medical product, it 
is the ‘last dance’ in the product life cycle. 
Finance, in contrast, is an ‘upstream’ activ-
ity, which, in turn, fuels R&D, licensing, 
and commercialization, and thus enrolls 
more participants in the industry network. 

The organizational composition of the 
center of the field has shifted as well. Two 
research universities, MIT and Harvard, 
along with a handful of leading VC firms 
are now at the center. The composition of 
multinational firms shifts from diversified 
chemical and medical companies to some 
of the giants of the pharmaceutical sector, 
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e.g., Schering-Plough and Merck. The di-
versity of organizational forms at the center 
of the network is notable in that these var-
ied organizations – DBFs, pharmaceuticals, 
VCs, research universities, and government 
institutes – operate in distinct selection en-
vironments, subject to very different pres-
sures and opportunities. Networks an-
chored by diverse organizational forms are 
more robust to both failure and attack (Al-
bert, Jeong, and Barabási, 2000). Such di-
versely anchored, multiconnected networks 
are less likely to unravel than networks re-
liant on a single form of organization for 
their cohesiveness. 

[FIGURES 6 AND 7 HERE] 
The picture of new ties in 1994 (Figure 

7) reflects growing complexity in the activ-
ity sets of the participants. On the right side 
of the network, finance is very pronounced, 
and there are many more gray nodes, which 
are growing in size. But note there are now 
yellow nodes (which are not triangles, so 
these are not new entrant pharmaceutical 
companies) involved in financing smaller 
biotech firms. On the left side of the figure, 
we see blue and green ties linked to well-
connected DBFs. At the center of the net-
work is the NIH, the anchor of R&D activ-
ity and the largest node, linked to both 
small as well as large DBF nodes. The pic-
ture of new ties in 1994 illustrates the 
growing multi-vocality of the industry, 
with both well-connected DBFs and phar-
maceuticals developing the capability to 
finance younger firms, contribute to basic 
and clinical science, and commercialize 
new medicines. The overall picture has 
shifted from one in which commercializa-
tion and rich-get-richer were the dominant 
scripts to one in which finance is generat-
ing much more diversity in activity and 
there is more heterogeneity in the makeup 
of the key participants. With greater num-
bers of new ties added in 1994, the more 
tree-like structure of springs in 1989 has 

now changed to reflect multiconnectivity, 
i.e., a more cohesive structure even among 
the new partnerships. 

The density of the field and the number 
of participants continue to grow throughout 
the 1990s. The picture of all ties in the 
main component in 1997 (Figure 8) and 
1999 (Figure 10) illustrates a growing 
number of large nodes, strong expansion of 
collaborative activity and a reaching out to 
new entrants, and more varied types of or-
ganizations at the center of the figures. In 
1997 (Figure 8), we see a very cohesive 
hub of DBFs, pharmaceuticals, venture 
capital firms, universities, and the NIH 
complex. The colors of the ties are less dis-
cernable, reflecting the fact that the most 
active members of the network are now 
either engaged in multiple activities or 
connected to DBFs who are. The pharma-
ceutical sector underwent a period of con-
solidation in the mid to late 1990s, as 
mergers and acquisitions became common-
place. Novartis, formed out of the merger 
of the two large Swiss firms Sandoz and 
Ciba Geigy, and Glaxo Wellcome, the 
product of the acquisition of Burroughs 
Wellcome by fellow British giant Glaxo, 
are in the center of the network. Outside 
the center there are several ‘specialist’ 
DBFs, one with a very active commerciali-
zation portfolio and another with a licens-
ing cluster. In the new ties image for 1998 
(Figure 9), finance continues to be genera-
tive in pulling in new entrants. For the first 
time, a handful of pharmaceutical giants, 
bolstered by a round of mergers and acqui-
sitions, are central in the new tie network. 
While the NIH remains in the core, it is no 
longer clearly the largest node. Many more 
DBFs are found in the center and on the 
edges of the new tie network, reflecting the 
growing presence of second-generation 
firms who are active in the field. The con-
solidation in the pharmaceutical sector is 
producing a rich-get-richer effect among 
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the largest multinationals, but these ‘survi-
vor’ corporations have learned to do more 
than just commercialize the lead com-
pounds of the smaller DBFs. The big mul-
tinationals have become multi-vocal. 
Meanwhile, a combination of DBFs, uni-
versities, and government institutes are ac-
tive in pulling in new participants.  

[FIGURES 8, 9 AND 10 HERE] 
The full network images for 1997 (Fig-

ure 8) and 1999 (Figure 10) show a notable 
clustering of financial ties on the right side, 
with connections to smaller-size DBF 
nodes. This shift underscores the cyclical 
nature of venture capital, which involves 
taking a firm public, ending that relation-
ship and moving on to finance new firms. 
The number of yellow nodes at the center 
has decreased, as consolidation shrinks the 
number of big pharmaceutical firms. In 
turn, the size of each yellow node in-
creases, as their portfolio of alliances 
grows and diversifies. Several universities, 
notably the UC system19 (primarily UCSF 
and UCSD) and MIT, are at the center in 
the 1999 image, and the NIH and NCI re-
main central. Recall that the NIH’s budget 
for R&D grew markedly throughout the 
1990s, and it remains hugely important as a 
funder of basic research, and as a partici-
pant in licensing the results of intramural 
NIH research done. The new tie network in 
1998 (Figure 9) is the most expansive yet, 
with more than 1,100 new ties added in 
1998. Multi-vocality is the dominant pat-
tern here, as nearly every large node is en-
gaged in multiple types of collaborations. 

Pajek visualizations, which we use to 
show the extent of clusterings by type of 
organizations, type of tie, and network de-
gree, can be considered to provide a visual 
goodness-of-fit test for our hypotheses. As 
a supplement to the graphics, we provide 
count data on patterns of entry and exit into 
the network. We see in Table 2 that the 
number of participants, both DBFs and 

partners, grows every year. But the rate of 
expansion for total number of ties and new 
ties outpaces the entry of organizations, 
suggesting a more connected field. The 
visualizations afford the opportunity to see 
the diverse types of organizations that are 
driving this connectivity. (There is a fall 
off in new ties and partner entry in 1999, 
but this may reflect incomplete reporting in 
1999 annual reports. As we add more years 
of data, we will learn whether this is a 
downturn or undercount.) The rate of tie 
dissolution grows, then wanes, then heads 
up, so there is considerable turnover in in-
terorganizational relations, reflecting both 
successful completion of some projects and 
dissolution due to lack of progress on oth-
ers. The general picture is one of a continu-
ing flow of new entrants into the field, 
alongside the forging of new collabora-
tions, making for an increasingly dense 
network. To test our hypotheses, as well as 
the insights derived from the visualizations, 
we turn to a more fully specified analysis 
in which we take organizational variables, 
network portfolios, and time periods into 
account. 

[TABLE 2 HERE] 
 

Analysis III: Attachment Bias 
We now turn to a statistical analysis of 

attachments between dedicated biotech 
firms (DBFs) and various partner organiza-
tions. For analytic purposes, we distinguish 
between four categories of relationships: 

1. New 1-mode attachments, in which a 
DBF contracts with another DBF as a 
partner, and it is the first tie between 
this dyad.  

2. Repeat 1-mode attachments, in which 
a DBF contracts with a DBF partner 
and it is not the first tie between this 
dyad. 

3. New 2-mode attachments, in which a 
DBF contracts with a non-DBF part-
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ner and it is the first tie between the 
dyad. 

4. Repeat 2-mode attachments, in which 
a DBF contracts with non-DBF part-
ner and it is not the first tie between 
the dyad. 

New attachments expand the structure 
of the network, whereas repeat ties thicken 
relations between existing dyads. One-
mode attachments create a cooperative 
structure among competing biotech firms, 
while two-mode attachments engage differ-
ent organizational forms to access re-
sources and skills. Each relationship in-
volves a focal DBF, a partner to which the 
attachment occurs, and a set of alternative 
partners with whom the DBF might have 
collaborated, but did not. We refer to the 
set of partners to which the focal DBF 
might link for a particular observed at-
tachment, including the partner to which 
the connection occurred, as the risk set for 
that attachment. For new 1-mode attach-
ments, the risk set is other DBFs, excluding 
those to which the focal DBF is currently 
or has previously attached. For repeat 1-
mode attachments, the risk set is, con-
versely, those current or prior partners of 
the attaching DBF. For new 2-mode at-
tachments, the risk set is partners other 
than DBFs, excluding those to which the 
attaching DBF is currently or has previ-
ously been linked. For repeat 2-mode at-
tachments, the risk set is, again conversely, 
all current or prior partners (other than 
DBFs) of the focal DBF.  

 
MEASURES 

We draw upon multiple measures to 
test each hypothesized mechanism across 
four classes of ties. We present and define 
the variables used in our statistical analy-
ses, along with appropriate controls, in Ta-
ble 3. Our dependent variables are binary 
indicators of whether an alliance of each of 
the four types occurs between a DBF and a 

partner, given that the DBF and partner are 
“at risk” of attaching. A DBF may forge 
connections to more than one partner in 
any given window of time, as long as alli-
ances can be ordered such that a partner for 
which a linkage occurs at a specific mo-
ment is removed from (added to) the risk 
set for subsequent new (repeat) attach-
ments. The predictor variables operational-
ize the attachment mechanisms for each of 
the four hypotheses: accumulative advan-
tage, homophily, follow-the-trend, and 
multiconnectivity. For each observed at-
tachment, partner and dyad measures are 
computed for all partners in the risk set.  

Accumulative Advantage is reflected 
in the network Degree and Experience of 
both the attaching DBF and partner, which 
captures both the number of ties and years 
of experience with collaborations. For re-
peat ties, we also include Prior ties and 
Prior experience of the DBF-partner dyad. 
We also use New Partner, an indicator of 
whether a partner has been in the network 
for less than a year, to capture the effect of 
being ‘a new kid on the block.’ 

Homophily is assessed in several ways. 
We measure the Collaborative distance 
between the alliance profiles of the DBF 
and the partner in the attaching dyad. For 
1-mode attachments, we measure the Age 
difference, Size difference, and Governance 
Similarity between the two DBFs forming 
the dyad, as well as measuring Co-location. 
For 2-mode attachments, we lack data to 
measure partner’s age or size difference, 
and governance similarity does not apply 
to non-commercial organizations. We did 
measure homophily, however, between the 
attaching DBF and other DBFs in the part-
ner’s neighborhood, defined as the set of 
DBFs to which that partner has direct ties, 
with the variables Collaborative distance, 
Age difference, Size difference, Governance 
similarity, and Co-location, all considered 
with respect to a partner’s other affiliations. 



 

 

 
 

22

These ‘second order’ measures account for 
the possibility that connections to partner 
organizations are conditioned by the prior 
experience of those partners with other 
DBFs. 

Follow-the-trend is captured by the 
field-level variable Dominant Trend and 
the partner variable Dominant Type. Both 
measures reflect whether firms are engag-
ing in activities that are comparable to 
those of others in the field. Multiconnec-
tivity has two facets: cohesion and diver-
sity. The former captures the extent to 
which firms are connected by multiple in-
dependent pathways, while the latter re-
flects whether firms are engaged in multi-
ple types of activities. Cohesion is calcu-
lated using the maximum level of k-
component for each firm and partner, 
measured separately as Firm Cohesion and 
Partner Cohesion, and jointly as Shared 
Cohesion, which is the maximum level for 
which both parties share a common k-
component, if any.20 For diversity, we use 
Blau’s (1977) heterogeneity measure, as an 
index of both the range of activities and 
multiple types of partners. We measure di-
versity in four ways: for a DBF (Firm Tie 
Diversity), prospectively for a DBF (Pro-
spective Tie Diversity, i.e., the diversity of 
a firm’s collaborative profile if the attach-
ment were to occur), for a partner (Partner 
Tie Diversity) and for the average of a part-
ner’s set of partners (Partner’s Partner Tie 
Diversity). One might think of the last 
measure as an assessment of the heteroge-
neity of the friends of a friend. 

The control variables include firm 
demographics measured at the time of at-
tachment, including Age (in years), Size 
(number of employees), Governance 
(whether publicly held), and Location, 
measured by three digit zip code region, or 
in the case of companies outside the U.S., 
by the telephone prefix for nation and city. 
The key partner control is the variable 

Form, reflecting the form of organization, 
and the key dyad control is Type, reflecting 
the type of activity that is the focus of the 
collaboration. We also include three time 
Period variables, which emerged from the 
discrete-time images as key inflection 
points in the pattern of affiliation, along 
with a linear time trend variable, Timeline.  

[TABLE 3 HERE] 
 

STATISTICAL METHOD 
Our challenge is to model a set of bi-

nary indicator variables, each of which a 
firm can have multiple incidences of, and 
for each incidence we must update the risk 
set of alternative partners and the network 
measures. Consequently, our unit of analy-
sis must be the attachment, rather than ei-
ther the individual firm or the dyad. Our 
choice of a statistical model for analyzing 
attachment bias is based on our unit of 
analysis, as well as empirical and theoreti-
cal considerations. Empirically, the design 
of our sample defined the population of 
DBFs and then identified all the partners 
engaged in alliances with them. Theoreti-
cally, our research question asks what 
mechanisms account for differential (as 
opposed to simple random) patterns of at-
tachment. For these reasons, we use 
McFadden’s estimator for multi-probability 
assessments, which is a variant of a condi-
tional logit model that takes each event as a 
unit of analysis, which in our case are at-
tachments, and distinguishes between a fo-
cal population and a set of alternatives 
(McFadden, 1973; 1981; also see Maddala, 
1986; Ben-Akiva and Lerman, 1989).21 We 
set up the data so that the focal DBFs are 
the population and the partners in the risk 
set for an attachment are the alternatives, 
thus reflecting the one and two mode net-
works in our sample.  

We conducted the analyses in three 
stages. First, we perform overall tests of the 
four hypotheses, on each type of attach-
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ment, by applying McFadden’s estimator 
as follows. For each attachment, the prob-
ability of DBF i attaching to partner j , 
given that DBF i attaches at time t to some 
partner in the set Ji,t, is specified as a func-
tion of partner (X) and dyadic (W) vari-
ables: 
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Some of the partner characteristics, 

such as collaborative diversity, are not de-
fined for partners without ties prior to the 
attachment. We include these characteris-
tics by interacting them with an indicator 
variable for whether the partner has any 
prior ties, and include the main effect of 
this indicator variable in the models. The 
main effect is always negative, showing 
that partners with no ties in the prior year 
are more likely to receive attachments.  

Second, we explore the extent to which 
the mechanisms of differential attachment 
are contingent on various combinations of: 
i.) characteristics of the focal, attaching 
DBF; ii.) the form of a partner; iii.) the type 
of activity involved in each case; and iv.) 
combinations involving a partner’s part-
ners. We do so by interacting variables rep-
resenting each of these categories with 
measures of the attachment bias mecha-
nisms. For instance, to explore how the fo-
cal DBF’s attributes (Z) may alter the 
‘rules’ of attachment, where those rules are 
specified in terms of partner and dyadic 
variables (X,W), we estimate the following 
specification: 

 

 

 
Third, we examine how the sources of 

attachment bias shift over time by interact-

ing our measures of the attachment mecha-
nisms with: i.) period effects, as indicated 
in Table 3; and ii.) a linear time trend. 
These measures give us purchase on how 
the logics of attachment may change as the 
overall structure of the network evolves. 

We estimate conditional models of at-
tachment, continually updating both the 
risk set of alternative partners and the net-
work measures to lessen problems of ob-
servation dependence common in dyad-
level analyses. Although we define DBFs 
as our focal population and partners as al-
ternatives, both DBFs and partners are vy-
ing to connect with one another, and at any 
point in time a DBF or partner may have a 
finite capacity for connections.22  

We estimate all models using Stata 
8/SE. For the 2-mode analyses, two fea-
tures are notable. First, for 2-mode new 
attachments, there are 5,087 events over 
our time period, with up to 1,600 alterna-
tive partners in any given year. Given the 
number of variables we tested, the size of 
the data set needed to analyze the full 
population of new two-mode attachments 
became cumbersome. Thus, we obtained a 
random sample of 1,500 2-mode new at-
tachments to form the data on which esti-
mates were obtained, and for each attach-
ment we took a 25% random sample of al-
ternative partners. We then repeated the 
random sampling process and re-estimated 
the 2-mode new attachment models 10 
times as a test of robustness. The results 
were nearly identical for every sample and 
with no sample did the pattern of signifi-
cance change, thus we present the initial 
results.  

In the 2-mode analyses the comparison 
of organizations from different sectors 
(e.g., for-profit corporations, nonprofits, 
universities, government agencies, and ven-
ture capitalists) requires some comment. A 
nonprofit hospital and a venture capital 
firm are not substitutes for one another be-
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cause they provide different resources. Yet, 
we have included them as alternatives in 
the risk set for the same attachments. From 
a practical standpoint, in this example the 
inclusion assumes that a focal DBF may 
have discretion as to whether its next alli-
ance will be to obtain further funding or to 
seek clinical evidence of efficacy. We 
tested the robustness of this assumption on 
our findings in two ways. First, we strati-
fied the 2-mode risk sets by form, so that 
only organizations of the same form as the 
partner to which the attachment occurred 
were included in the risk set. Second, we 
included interactions of our other variables 
with a set of indicator variables for organ-
izational form. Interestingly, while there 
was some variation in magnitude of coeffi-
cients, the pattern of direction and signifi-
cance of predictor variables was constant 
across partner forms save for two excep-
tions: finance ties to venture capitalists and 
ties of any type to biomedical supply firms. 
These exceptions are not surprising, as ven-
ture capitalists are the most specialized and 
least multi-vocal partners. (Recall Figure 2, 
which illustrates that more than 95% of VC 
collaborations are financial.) Other bio-
medical firms provide equipment and re-
search tools, thus they represent bilateral 
exchange relations, and do not participate 
in the development of new medical prod-
ucts in the same, mutual manner as do 
other participants. Based on these prelimi-
nary analyses, we collapsed the 2-mode 
data across all organizational forms and 
included interactions for finance ties to 
venture capitalists and ties of any type to 
biomedical supply firms when exploring 
contingencies in the mechanisms for at-
tachment bias.  

 
RESULTS 

We organize the presentation of results 
around our four hypothesized rules of at-
tachment: accumulative advantage, homo-

phily, follow-the-trend, and multiconnec-
tivity. Since we utilize a number of vari-
ables to measure each mechanism, to as-
sure the relative strength of a logic of at-
tachment requires an examination of an ag-
gregate pattern of support or falsification. 
For our purposes, social mechanisms are 
more strongly supported when the bulk of 
the effects are in the hypothesized direc-
tions and those effects are consistent across 
all four classes of ties. The full table of re-
sults is both elaborate and complicated; it is 
presented in Appendix II. For the sake of 
exposition, we have excerpted the results 
that are the primary tests of each hypothe-
sis into a series of four more manageable 
tables, Tables 4-7. To facilitate interpreta-
tion, we present the odds ratios, rather than 
the coefficients. The odds ratios are ob-
tained from the coefficients by exponentia-
tion. That is,  

iOdds ratio for X exp( )iβ=  
The odds ratio gives the amount by 

which the odds of an attachment being bi-
ased towards a partner are multiplied for 
each unit increase in the level of the inde-
pendent variable, X, for that partner.  

 
Accumulative Advantage. The odds ra-

tios for our tests of accumulative advan-
tage, hypothesis 1, are presented in Table 4. 
Note that we employ a narrow reading of 
accumulative advantage, focusing on the 
structural feature of popularity bias (partner 
degree) as well as the prior ties and experi-
ence of partners with DBFs. Odds ratios 
greater than one for the variables partner 
degree, partner experience, prior ties and 
prior experience offer support for the ac-
cumulative advantage mechanism. For the 
variable new partner, hypothesis 1 would 
predict an odds ratio lower than 1. Overall, 
the evidence does not favor this hypothesis. 
Only the negative impact of experience is 
consistent across all four categories of ties. 
Whether the relevant experience resides 
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with the partner or dyad, this finding indi-
cates a preference for novelty. This result 
runs sharply counter to an accumulative 
advantage argument. The pattern of results 
for the other measures of accumulative ad-
vantage varies by type of attachment.  

[TABLE 4 HERE] 
For partner degree, we find support for 

accumulative advantage only for 1-mode 
new ties. These linkages have a distinctive 
pattern, as they are biased to partners with 
more ties and less time in the network. This 
result implies that DBFs seek to balance 
novelty and visibility when they form an 
alliance with another DBF. For each addi-
tional tie, the probability that a new at-
tachment will involve a partner with higher 
degree increases, on average, by 4%. The 
contingencies reported in Table A2 indicate 
that the increase is higher if the attaching 
DBF is younger, and declines as the focal 
DBF matures. For each year of a partner’s 
network experience, the differential likeli-
hood of attachment decreases by 5%. These 
findings suggest that as DBFs age, the sali-
ence of partner degree decreases, and the 
importance of partner experience recedes 
as partners spend more time in the field. 
Both results emphasize that prospecting for 
new partners is common, particularly 
among older DBFs who opt for new part-
ners at the expense of more visible ones. In 
sum, preferential attachment by degree op-
erates only for new 1-mode ties among 
DBFs. For all four classes of ties, partners 
that are more recent entrants are preferred.  

Turn your attention to rows three and 
four of Table 4. Prior ties and prior experi-
ence offer dyad-level ways to operational-
ize accumulative advantage that are rele-
vant for repeat ties only. As with partner 
experience, the effects for prior experience 
refute the accumulative advantage hypothe-
sis. A one-year increase in shared partner-
ship experience lowers the probability of a 
repeat tie by 26% and 14% for 1- and 2-

mode attachments, respectively. Prior ties 
at the dyad level do fit the hypothesis, 
however. An increase of one common tie 
ups the likelihood of a repeat connection by 
39% and 26% for 1- and 2-mode attach-
ments. 

Finally, consider the new partner vari-
able. Here an accumulative hypothesis pre-
dicts a negative effect. The results for re-
peat 1-mode ties and new 2-mode ties 
weigh against the hypothesis. A partner’s 
arrival in the network for the first year pro-
duces a strong bias for both subsequent re-
peat 1-mode and new 2-mode attachments, 
increasing the differential attachment prob-
ability 11-fold and by 66%, respectively. 
Repeat one-mode affiliations reflect spon-
sored mobility, where a new DBF is as-
sisted by another firm. New two-mode alli-
ances are less likely to be pursued with an 
already popular partner than with a new 
arrival, suggesting these collaborations fol-
low an exploratory logic. Table A2 shows a 
contingency for this preference for new 2-
mode partners to become particularly 
strong in the mid to late 1990s. The fact 
that this trend becomes more pronounced 
over time suggests that rather than being a 
consequence of a young field, the impor-
tance of novelty in partner selection is an 
enduring feature of an industry character-
ized by rapid technical advance. 

In our dance hall language, when a 
DBF finds a young (i.e., often newly-
entered) DBF dance partner that has cre-
ated a stir on the dance floor, the two part-
ners sustain the relationship. New 2-mode 
partners are also preferred if they are new 
to the dance floor, but the alliance is less 
likely to be renewed. These results suggest 
that well-positioned, veteran DBFs spot up-
and-coming newcomers, and escort them 
into the network. In some cases, these new 
firms are spinoffs from more established 
DBFs, which may account for the very 
strong support for repeat ties with new-
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comers. In sum, we find scant support for 
the hypothesis that repeat attachments are 
influenced by the accumulative advantage 
of the partner.  

Homophily. Table 5 presents the odds 
ratios for our tests of homophily, hypothe-
sis 2. We find evidence for homophily if 
the odds ratios exceed 1 for co-location and 
governance similarity (rows 1-3), and if the 
odds ratios are lower than 1 for the meas-
ures of distance and difference (rows 4-9). 
The results for homophily vary both within 
and across classes of attachment. For the 
similarity measures, co-location and pub-
lic/private governance, four of the odds ra-
tios are significantly supportive, while four 
run contrary to the hypothesis. For the dis-
tance and difference measures, however, 
only three of the odds ratios offer strong 
support for the hypothesis, with seventeen 
contrary. Overall, homophily holds more 
strongly for new attachments. Homophily 
is less prevalent for 1-mode repeat ties, and 
absent in repeat 2-mode attachments. 

[TABLE 5 HERE] 
In the 1-mode case, similarity looms 

large with regard to geographic co-location, 
but not for organizations of similar govern-
ance, age and size. Firms located close to 
one another are twice as likely to collabo-
rate, but similarity in organizational age 
and size decrease the odds of collaboration. 
Thus, DBFs are more likely to attach to 
nearby DBFs that differ in age and size. 
This finding echoes the previous accumula-
tive advantage result, with larger, veteran 
DBFs collaborating with smaller newcom-
ers. The contingencies in Table A2 show 
that the preference for age and size diver-
sity moderates somewhat in later years. 
There is weak evidence for an attachment 
preference based on similar collaborative 
profiles and geographic propinquity in the 
partner’s neighborhood for new 1-mode 
ties. For repeat 1-mode attachments, diver-

sity rather than similarity is the rule with 
respect to collaborative distance. 

Homophily receives some support in 
new 2-mode attachments, where there is a 
tendency to involve partners whose 
neighborhood includes other DBFs with 
collaborative profiles similar to the focal 
DBF. A unit decrease in the average 
Euclidean distance between the collabora-
tive profiles of the attaching DBF and other 
DBFs in the partner’s neighborhood in-
creases the likelihood of attachment by 8%. 
But the pull of diversity is also present, 
particularly with respect to a partner’s own 
collaborative profile. Thus, the logic of 
homophily is attenuated by a preference for 
diversity in new two-mode partners.  

In the tests of homophily as an attach-
ment rule for repeat 2-mode attachments, 
there is a distinct pattern of dissimilarity in 
terms of demography, location, and col-
laborative profile between the attaching 
DBF and the other DBFs attached to a pro-
spective partner. For example, an average 
difference in age of one year increases the 
probability of collaboration by 16%. Re-
peat two-mode attachments are 87% less 
likely to occur when the focal DBF is co-
located with a partner’s other DBF allies. 
As was the case with accumulative advan-
tage, two-mode tests of homophily also 
provide strong support for an attachment 
process driven by novelty and diversity. 

  
Follow-the-trend. The odds ratios pre-

sented in Table 6 test for an attachment 
bias based on a logic of appropriateness. 
Hypothesis 3 is supported if the odds ratios 
exceed 1 for both the dominant trend and 
the dominant type of the partner. Both 
variables are measured in percentage point 
units. To facilitate interpretation, we use a 
change of 10% to assess the effects of 
dominant type and trend For dominant 
type, the odds ratios paint a consistent pic-
ture supporting hypothesis 3 for all classes 
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of alliances. For dominant trend, new and 
repeat attachments offer divergent results, 
with repeat ties following a logic counter to 
the overall trend. 

[TABLE 6 HERE] 
New 1-mode ties manifest a strong ten-

dency for DBFs to follow both the domi-
nant trend and dominant type of activity. A 
ten percentage point rise in the dominant 
type measure increases the differential at-
tachment probability by 30%. The same 
rise in the dominant trend measure in-
creases the differential attachment prob-
ability by 9-fold to 270%. The choice to 
follow the trend is also apparent in new 2-
mode ties, both in terms of the dominant 
trend in the field and the partner’s domi-
nant type. The conditional attachment 
probability is boosted by 30% and 85% for 
each 10% increase in the type and trend 
measures. In both classes of repeat ties, fol-
lowing the trend is apparent for the modal 
type of partner, but there is now a strong 
preference to buck the field’s overall trend. 
With each 10% increase in the trend meas-
ure, repeat 1-mode attachments are nearly 
90% less likely to occur in the same cate-
gory, and repeat 2-mode attachments are 
70% less likely.  

The follow-the-trend results suggest 
that “first dances” are conservative, match-
ing the pattern on the floor, which signals 
that norms of propriety condition the logic 
of attachment. The reverse holds, however, 
for repeat ties where deeper linkages be-
tween already connected dyads offer the 
occasion to flout the dominant logic. This 
reinforces findings from tests of homophily 
where diversity drove repeat ties. The fol-
low-the trend results are the first to show a 
uniform pattern across 1- and 2-mode ties. 

 
Multiconnectivity. Table 7 reports tests 

for the multiconnectivity hypothesis. Hy-
pothesis 4 predicts positive (greater than 1) 
effects for all variables. There is consistent 

support for the cohesion and partner tie di-
versity measures across all four classes of 
ties. Six out of the eight possible effects of 
partner and shared cohesion are significant 
in the predicted direction. Cohesion can be 
regarded as a strategic window where part-
ners evaluate a radar screen of possible fu-
ture partners, as opposed to sampling from 
the entire disparate field. The strength of 
shared cohesion in shaping two-mode at-
tachments illustrates the value of linkages 
to multiple affiliations as a means to vali-
date information. Cohesion entails more 
than access to information, however. Re-
sources, skills, access to personnel, and a 
host of related benefits are also obtained 
through partners. The results indicate that 
as DBFs scan for potential collaborators, a 
partner’s diversity of ties is a valuable 
marker of resources and information.  

 [TABLE 7 HERE] 
Cohesion influences new 1-mode at-

tachments in terms of both partner and 
shared cohesion. For each additional level 
of partner connectivity, the differential 
probability of a new link jumps by 43%. 
Similarly, each new independent pathway 
connecting a dyad (the increment in shared 
cohesion) increases the differential attach-
ment odds by 6%. In addition, new 1-mode 
affiliations evince a preference for partners 
that have more varied ties. A 10% increase 
in partner’s tie diversity raises the differen-
tial probability of attachment by 30%.  

 For repeat 1-mode attachments, 
partner cohesion continues to provide a 
positive influence, increasing the condi-
tional attachment odds 2.6 times for each 
additional level of connectivity. Shared co-
hesion and partner tie diversity, from which 
the DBF already benefits, lose their appeal 
in repeat tie formation. Instead, the coeffi-
cients on prospective tie diversity and part-
ner’s partner tie diversity turn negative. 
Relatively typical increases of 1% and 
10%, respectively, in these tie diversity 
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measures lower the differential probability 
of affiliation by 25% and 45% (see Appen-
dix 2, Table A1, for means and standard 
deviations for these measures.) Thus, re-
peat 1-mode attachments serve to reinforce 
rather than expand prior collaborative ac-
tivities. These results suggest a different 
evaluative metric for repeat ties, in which 
the parties forego increased diversity in fa-
vor of more cohesive (and possibly long-
term, and deeper) relations. We lack de-
tailed data on the content of specific rela-
tions, but one might consider that these 
participants have come to trust one another 
more and now are bound together in a 
common fate with respect to a new medical 
product, or that the information being ex-
changed is tacit or sticky, and thus more 
easily shared in a strong-tie relationship.  

Cohesion and partner’s tie diversity 
positively influence attachment for new 2-
mode linkages. The effects of cohesion are 
quite strong: each increase in the level of 
cohesion of the partner bumps up the prob-
ability that a collaboration will form with 
this partner by 66%, while each additional 
path of connectivity for the dyad increases 
the differential probability of attachment 
more than 5-fold. There is a bias, however, 
against partners whose allies have more 
diverse profiles of collaboration. This pat-
tern seems to indicate that DBFs favor at-
tachments to partners that are better posi-
tioned with more diverse collaborations, 
while, ignoring contingencies, partners pre-
fer attaching to DBFs with more special-
ized collaborative profiles. Hence, com-
parative judgments about partner diversity 
reverberate through the network. The nega-
tive coefficient of prospective tie diversity 
might signal a preference for reinforcing 
the DBF’s prior collaborative profile, rather 
than filling out the DBF’s “dance card” 
with different forms of partners for diverse 
types of activities. A percentage point in-

crease in the index of prospective diversity 
decreases the odds of attachment by 12%.  

The results for multiconnectivity in re-
peat 2-mode ties demonstrate that shared 
cohesion of the dyad and the partner’s tie 
diversity are both sources of positive at-
tachment bias. But for these ties, partner 
cohesion is not a positive bias. The impact 
of an increase of one pathway of connec-
tivity between a DBF and a partner en-
hances the differential probability of at-
tachment by 90%. A 10% increase in a 
partner’s tie diversity boosts the probability 
of a repeat 2-mode tie to the partner by 
20%. The prospective tie diversity of a po-
tential alliance and the partner tie diversity 
are both sources of negative bias, by 4-5% 
for each percentage point increase in the 
respective index.  

The odds ratios for prospective diver-
sity, in contrast, run counter to hypothesis 4 
for three of the four classes of attachments 
(all but new 1-mode ties). These results 
may indicate that diversity does not repre-
sent a goal in and of itself. When interac-
tion effects are added (see columns 2 and 3 
of Tables A2 and A3, for 1- and 2- mode 
results respectively), the main effects of 
prospective tie diversity flips the sign for 
three of the four classes of attachments (all 
but repeat 1-mode ties).23 Hence, the search 
for diversity is most operative among firms 
at low levels of structural cohesion. At 
higher levels of cohesion, the bias towards 
diversity recedes in favor of a preference 
for partnerships with new entrants. Thus, 
including interactions between diversity 
and cohesion measures indicates a modifi-
cation of hypothesis 4. Those DBFs with 
higher cohesion, having obtained diversity 
through indirect k-connectivity, find a di-
minished need to increase diversity in new 
or repeat partners. Cohesion and prospec-
tive tie diversity represent all countervail-
ing forces at higher levels. If cohesion was 
the most powerful force, the radar screen of 
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possible partners would become restricted 
and ossify. The exploration of diversity 
precludes lock-in. 

The process of searching for partners is 
both dynamic and recursive. Preferential 
attachment operates through the attractive-
ness of shared and partner cohesion, with 
firms apparently moving up a ladder in 
terms of the cohesiveness of their net-
works. At the lower rungs of the cohesion 
ladder, there is a preference for expanding 
diversity by linking to well-connected part-
ners. At the higher rungs of the cohesion 
ladder, firms may forego cohesion, opting 
to ally with recent entrants to the field. This 
relationship is suggestive of a systemic 
pumping action, with the most connected 
members pushing out in a diastolic search 
to pull in newcomers, and those less con-
nected being pulled inward, in a systolic 
action, to attach to those with more cohe-
sive linkages. The pumping process oper-
ates upwardly from the bottom, level by 
level.  

We illustrate this dynamic process with 
two figures. We return to Pajek visualiza-
tions, but now we use them to illustrate the 
econometric results with respect to the ef-
fects of cohesion and diversity. Figure 10 
contains all members of the main compo-
nent in 1997, with node size scaled to net-
work degree and color reflecting levels of 
connectivity. The red nodes are members 
of the five component, the cluster with at 
least five ties to five other members of this 
group, which is a remarkably cohesive 
community. The red nodes, not surpris-
ingly, tend to be bunched at the center of 
the figure. Green nodes are members of the 
3 and 4 components, with blue nodes in the 
1 and 2 components. Note the tiny blue 
nodes at the center of the figure. These are 
new entrants to the network, with few con-
nections (reflected in their small size which 
represents low degree), but these nodes 
have “high quality” links to other well-

connected organizations. This pulling in of 
newcomers reflects the process of spon-
sored mobility we referred to above. Figure 
11 portrays new ties in 1998 among mem-
bers of the main component. There were 
1,121 new ties in 1998, of which 1,074 
were forged by members of the main com-
ponent. Again, node size is scaled to degree 
in 1997 and color reflects levels of connec-
tivity. There are but 112 organizations in 
the most cohesive component (red), but 
these organizations are responsible for 59% 
of all ties initiated in 1998. Note also that 
the red nodes are no longer exclusively 
clustered in the center, but are dispersed. 
Both the physical placement of the red and 
green nodes and their links to a large num-
ber of small blue triangles (representing 
new entrants to the network in 1998) reflect 
the generative role of the most connected 
organizations. The exploratory role of the 
“elite” red nodes may well account for the 
strong confirmation of the follow-the-trend 
hypothesis. Taken together, the two figures 
portray the processes of pulling less con-
nected organizations into the network, and 
the very active search undertaken by mem-
bers of the most cohesive component. 

[FIGURES 10 AND 11 HERE] 
The odds ratios for partner’s partner tie 

diversity also appear to run counter to hy-
pothesis 4 for three of the four types of at-
tachments. A plausible account of these 
results is that if a potential partner organi-
zation has collaborations with organiza-
tions that have even more diversity than the 
ostensible target partner, that relationship 
may be foregone in favor of a direct tie 
with the more ‘attractive,’ distant organiza-
tion (i.e., a partner’s partner, or a friend of 
a friend). Such an interpretation is contrary 
to hypothesis 4, but does suggest a persis-
tence of the preference for diversity. Note 
too that such calculations about diversity 
depend on cohesion to facilitate recognition 
of the types of affiliations that are held by 
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various participants. Overall, the results of 
table 7 suggest that structural cohesion 
matters for the formation of multiple 
classes of ties. This relationship has two 
components. First, DBFs attach to organi-
zations that are also members of their own 
component, thereby deepening multicon-
nectivity in those clusters. Second, bio-
technology firms at the top of the cohesion 
hierarchy also reach out to partners located 
in more distant components.  

There are a number of contingencies 
that add to the overall pattern of multicon-
nectivity. First, the older the focal DBF, the 
less the 1-mode preference for shared cohe-
sion surrounding the dyad. Second, among 
DBFs in low-cohesion networks, attach-
ment is tipped towards partners that in-
crease prospective diversity. The higher the 
firm cohesion, the greater the attachment 
bias from the partner’s cohesion, but the 
less the bias from prospective diversity. 
This latter finding suggests that the pattern 
of new attachments among those DBFs in 
high cohesion networks is one of seeking 
out partners with a diverse portfolio of 
linkages rather than allying with other bio-
techs sequentially to complete the stages of 
the drug development process. Put differ-
ently, high cohesion firms are not trying to 
balance their dance card of affiliations by 
having a set of partners for each functional 
activity. In contrast, low cohesion DBFs 
are trying to fill out their dance cards and 
this tendency looms largest in later years. 
Third, the effect of partner cohesion wanes 
over time, while that of partner diversity 
waxes, indicating that the influence of mul-
ticonnectivity is shifting from cohesion to 
diversity. This shift suggests a change in 
the topology of the network, from a power-
law distribution towards a more exponen-
tial distribution, with the latter suggesting 
more distant and random search for new 
partners.  

The results for the multiconnectivity 
hypotheses are generally positive, with 
nine out of twelve relationships supported 
significantly for partner cohesion, shared 
cohesion, and partner tie diversity. The re-
sults turn negative for prospective tie di-
versity and partner’s partner tie diversity. 
Upon examining the contingencies, how-
ever, we were lead to consider that these 
results indicate a more dynamic, reciprocal 
view of cohesion and diversity, in which 
low levels of cohesion trigger a preference 
for more connected partners, and high lev-
els of cohesion permit exploration in the 
form of search for new alliance prospects. 

  
Conclusions  

The tripartite set of analyses we have 
presented highlight a network structure in 
which multiconnectivity expands as the 
cast of participants increases, and, in turn, 
diversity becomes more important with 
time. At this point in the evolution of the 
field, a combinatorial or multi-vocal logic 
has taken root. Neither money nor market 
power, or the sheer force of novel ideas 
dominates the field. Rather, those organiza-
tions with diverse portfolios of well-
connected collaborators are found in the 
most cohesive, central positions and have 
the largest hand in shaping the evolution of 
the field. This is a field in which the 
shadow of the future is long, as much re-
mains to be learned about the functional 
aspects of molecular biology and genom-
ics. The density of the network and the 
open scientific trajectory combine to en-
hance the importance of the reputation. The 
pattern of cross-cutting collaborations often 
results in a partner on one project being a 
rival on another. The frequent rewiring of 
attachments means that participants have to 
learn how to exit from relationships grace-
fully so as not to damage future prospects 
for affiliation. In a system where external 
sources of knowledge and resources are 
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widely differentiated, a preference for di-
versity and affiliation with multi-connected 
partners has mobilizing consequences.  

The three sets of analyses complement 
one another and provide insight into the 
dynamics of affiliation in this field. In the 
simplest terms, over the period 1988-99, 
the primary activities for which organiza-
tions engaged in collaboration shifted from 
commercialization to finance and R&D. 
These two activities reinforce one another, 
as financial support fuels expensive re-
search efforts and research progress attracts 
venture capital. In turn, as a smaller set of 
more diverse participants became skilled at 
pursuing multiple tasks, a more complex 
strategy emerged in which some of the 
most connected participants engaged in all 
four types of activity with a diverse set of 
partners. The force-directed graph draw-
ings show a change in both the composition 
of participants and their activities over 
time. To return to the analogy of the dance 
hall, both the music and the dancers shift 
over time. The early dances are dominated 
by large multinationals and first-generation 
biotech firms, collaborating to the tune of 
commercialization of the lead products of 
the younger firms, with the bigger pharma-
ceutical firms garnering the lion’s share of 
the revenues. Research progress, strongly 
supported by the stable presence of the Na-
tional Institutes of Health, attracts new par-
ticipants to the dance and also enables in-
cumbent biotech firms to deepen their 
product development pipelines and become 
less tethered to the giant pharmaceutical 
companies. Research progress attracts ven-
ture capital funding, excited by research 
possibilities. Thus, the music changes from 
commercialization to R&D partnerships 
and venture financing. Many of the larger 
multinationals are pushed to the periphery, 
and some drop out of the network alto-
gether. 

Recall that this dynamic field is grow-
ing swiftly over this period, adding new 
entrants as progress is made along a broad 
scientific frontier in which no single or-
ganization can develop a full range of sci-
entific, managerial, and organizational 
skills. A diverse set of organizations be-
come cohesive, central players at the dance 
– a handful of research universities, key 
government agencies, a few elite research 
hospitals, a larger number of biotech firms 
and a core of multinational giants. The 
multinationals go through an era of con-
solidation, with mergers and acquisitions 
commonplace, and their numbers are re-
duced considerably. Those that survive this 
period emerge as multi-vocal agents, no 
longer dancing only to the commercializa-
tion beat, but capable of executing R&D 
partnerships and startup financing. Venture 
capital remains at the dance, a critical spe-
cialist, but a somewhat fickle one that is 
easily attracted to other scenes, such as in-
formation and communications technolo-
gies. A small number of first-generation 
biotech firms grow into reasonably large 
organizations in their own right, and they 
do so by having learned how to engage in 
all forms of collaboration with a heteroge-
neous set of partners. Here we see strong 
affirmation of the finding from previous 
research that the organizations did not be-
come ‘players’ by virtue of being larger, 
but grew larger precisely because they be-
came central players in the field (Powell et 
al, 1996). 

When we consider the rules that guide 
attachment in this field, we observe that no 
single rule dominates over all time periods. 
Aside from the venture capital firms and 
biomedical supply companies, all of the 
participants are engaging in multiple activi-
ties and these different pursuits are shaped 
by divergent rules of attachment. The 
multi-probability models tease out the 
mechanisms that undergird preferential at-
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tachment. These results lend the weakest 
support to the accumulative advantage or 
rich-get-richer hypothesis. The visualiza-
tions also highlight the importance of new 
connections, and that growth in the net-
work is often spurred either by new en-
trants or incumbents embarking on new 
activities. But the Pajek-generated figures 
suggest something the logit models cannot 
reveal – a very small core of perhaps one or 
two dozen organizations are routinely 
placed in the center, and their node size 
grows somewhat over the period. These 
organizations are the ones with the most 
diverse array of collaborations, suggesting 
that for this handful of central players, ac-
cumulative advantage is fueled by multi-
connectivity. Thus, we see a combination 
of rich-get-richer and multiconnectivity at 
work for these core participants, and they 
may well set the pace for the dominant 
trend in the field. The new tie visualiza-
tions do not reveal large nodes at the cen-
ter, growing even larger as the field ma-
tures. This suggests an open elite, accessi-
ble to novelty as the field expands. 

The visualizations are somewhat lim-
ited in their ability to capture the mecha-
nisms of homophily, and here the multi-
probability models are much more effective 
at showing a preference for collaborating 
with organizations that are geographically 
proximate. If the unit of analysis is the 
dyad alone, there is little homophily operat-
ing. But when we consider second-order 
networks and ask about similarity of a class 
of possible partners compared to the 
chooser’s existing allies, there are tenden-
cies toward replication. 

Both the visualizations and the multi-
probability models illustrate that as a strat-
egy for attachment spreads, it is quickly 
adopted. Whether this is through learning 
or imitation, or an indissoluble mixture of 
the two, we cannot say. But it is neither 
costless nor easy to follow the trend. Lots 

of ties are broken, and there is considerable 
exit from the field as well as the main 
component. So even if imitation is com-
mon, replication is not easily accom-
plished.  

The most fundamental attachment bi-
ases are to multiconnectivity and diversity, 
to aligning with varied partners who are 
more broadly linked or to new entrants who 
are sponsored by nodes that are well 
placed. This rule is robust in that it created 
a field with multiple, non-redundant path-
ways that pulled in promising newcomers, 
while pushing out incumbents that failed to 
keep pace. This logic of attachment domi-
nated in a period of overall expansion, 
however. One cannot assume these proc-
esses hold in all environments. 

Speculation about whether this network 
will consolidate, and perhaps become an 
obstacle to rather than a catalyst of innova-
tion, generates much discussion among in-
dustry analysts and members of the scien-
tific community. Clearly as long as the 
technological trajectory continues to gener-
ate new discoveries and opportunities, ex-
pansion is possible. Unlike some techno-
logically advanced fields such as comput-
ing or telecommunications, there are few 
advantages for users in terms of common 
standards or brand recognition. As yet, no 
general purpose technology has emerged 
that would speed consolidation. A pro-
longed inability to raise money, due to de-
clining research budgets or inhospitable 
public equity markets, would threaten un-
dercapitalized firms and might spur con-
solidation. The diversity of institutional 
forms – public, private, and nonprofit – that 
are active in the field are located in differ-
ent selection environments. This diversity 
offers some protection against unfavorable 
economic conditions. Preference for cohe-
sion and diversity may well be effective 
search mechanisms for multiple, alternative 
solutions to problems in a field where the 
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progress of human know how has been 
highly uneven. Network cohesion and di-
versity obviously have their limits, though 
these are not topics that have been well re-
searched. We have shown in related work 
that there are declining returns to network 
experience (Powell et al, 1999). Moreover, 
repeated shocks to any system – whether in 
the form of a prolonged downturn in the 
business cycle, rapid inflation in costs such 
as in health care, or highly publicized 
product failures or corporate scandals – can 
destabilize it and result in a tip in the rules 
of affiliation and the resulting combinato-
rial possibilities. We are adding data now 
on the period 2000-2003, so we will soon 
see how stable both the rules of attachment 
are and the structure of the network is in 
the face of a period of economic uncer-
tainty and decline. 

Clearly, some aspects of the life sci-
ences are rather idiosyncratic. There are a 
wide range of diverse forms of organiza-
tions that exert influence on the develop-
ment of the field. In many other techno-
logically advanced industries, universities 
were critical in early stage discovery ef-
forts, but as the technology matured, the 
importance of basic science receded. In 
biotech, universities continue to be conse-
quential, and career mobility back and forth 
between university and industry is now 
commonplace (Owen-Smith and Powell, 
2001b; 2004). While the institutional de-
mography of the life sciences may be un-
usual, the rapid pace of development and 
the wide dispersion of centers of knowl-
edge are more typical of other high-tech 
fields. The key story, in our view, is less 
the issue of the nature and distribution of 
resources and more how these institutional 
features promoted dense webs of connec-
tion that, once in place, influenced both 
subsequent decisions and the trajectory of 
the field. With detailed longitudinal data, 
we show how the topology of a network 

emerged, and generated novelty in an insti-
tutional system that has many conservative 
elements. The logics of attachment strongly 
shaped how both new information and en-
trants were integrated into the field. The 
co-evolution of science and commerce was 
marked by potent micro-macro linkages 
that altered the global properties of the 
field. We have demonstrated how a prefer-
ential bias for collaborating with actors that 
are either more diversely or differently 
linked reshaped the landscape of biotech-
nology.  

 
 
 
 Appendix I: Network Visualization in 

Pajek, by Jason Owen-Smith 
Pajek, a freeware program for the 

analysis of large social networks, offers 
new opportunities for generating meaning-
ful and replicable visualizations of complex 
network data.24 This appendix offers an 
overview of the benefits and limitations of 
the software, while providing a more de-
tailed discussion of the steps used to de-
velop the images we presented. 

Pajek's strengths and limitations both 
arise from its emphasis on visualizing and 
manipulating very large networks.25 The 
most obvious benefit is the significant sim-
plification of the analysis of large-scale 
network structures. As the algorithms are 
optimized for speed, computationally sim-
ple but powerful structural and ego net-
work measures are also implemented.26 
More important for our purposes than such 
descriptive measures are Pajek's capacities 
to generate replicable images of complex 
networks. When turned to the analysis of 
discrete time 'pictures' of the evolution of a 
network, Pajek offers the best approxima-
tion of dynamic visualization currently 
available.  

Visualization. Pajek includes a set of 
network drawing algorithms based on both 
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graph theoretic conceptions of distance in a 
network and the physical theory of random 
fields (Palmer, 1985; Guyon 1994). These 
minimum energy or ‘spring-embedded’ 
network-drawing algorithms permit a ro-
bust representation of social network data 
in two-dimensional Euclidean space.27 We 
draw first on the Fruchterman-Reingold 
(FR) algorithm (1991), which optimizes 
network images without reference to the 
graph theoretic distance among nodes, to 
develop initial positions for all organiza-
tions (connected and unconnected). We 
then turn to a second algorithm, the 
Kamada-Kawai (KK) (1989), to reposition 
the connected nodes in the network. Where 
the FR algorithm positions all nodes by 
analogy to a physical system, the KK algo-
rithm locates connected nodes adjacent to 
one another and makes Euclidean distances 
among nodes proportional to graph theo-
retic distances. Put differently, the KK al-
gorithm visually represents a system where 
the distance between nodes is a function of 
the shortest network path between them. 
Taken together, these two algorithms gen-
erate substantively interpretable visual rep-
resentations of networks, which place iso-
lated organizations on the periphery of the 
image, while capturing the pattern and den-
sity of collaborative activity and reflecting 
the extent to which these linkages generate 
meaningful clusters of organizations.28 

We find that the two optimization pro-
cedures are most effective when used se-
quentially. Such a strategy takes advantage 
of the best features of both algorithms. 
Fruchterman-Reingold's capacity to reposi-
tion isolated nodes and to separate densely 
connected clusters from one another pro-
vides a useful first step for visualization.29 
As it is based on a mathematical analogy to 
a physical system, the FR algorithm posi-
tions nodes without reference to the graph 
theoretic properties of networks that under-
lie most common network methods. One 

consequence of this style of optimization is 
a tendency to visually overlay unconnected 
nodes that share ties to a common partner. 
The FR algorithm, for instance, does not 
effectively represent the 'star' configura-
tions that are commonplace in growing 
network structures. Because the KK algo-
rithm adapts force-directed drawing 
mechanisms to take graph theoretic dis-
tances into account, visualizations gener-
ated using it are potentially of greater sub-
stantive interest to social network theorists. 
We generate the images presented in this 
paper using three one-minute-long optimi-
zations. An FR optimization from random 
starts is used first and taken as a starting 
point for a pair of KK optimizations.  

A lexicon for Pajek visualizations. Pa-
jek's visual flexibility offers several options 
to convey complex information through 
images. Consider our figures, which draw 
upon a simple 'lexicon' of four parameters; 
position, color, size, and shape. We use po-
sition (the outcome of FR and KK optimi-
zations) to discuss the clustering of organi-
zations in the macro-network. We use color 
to distinguish among forms of organiza-
tions and the types of activities they are 
involved in. We turn to node size, scaled to 
reflect standardized network degree, to 
communicate variations in connectedness 
across organizational forms and to suggest 
the effect of prior network degree on the 
propensity to form new ties. In principle, 
node size can be scaled to reflect variation 
on any real number variable and need not 
be limited to information generated by Pa-
jek. For coordinating statistical analyses 
with the visualization, it is useful to scale 
node size to reflect differential levels of 
network measures of node attributes that 
provide explanatory purchase.  

In Figures 5, 7, and 9, shape expresses 
the distinction between incumbent (circle) 
and entrant (triangle) organizations, while 
maintaining the same color variations 
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across organizational form. The shape dis-
tinction, then, along with tie and node color 
and node position, visually suggests differ-
ences in the attachment profiles of entrants 
and incumbents across organizational 
forms. Taken together, these four parame-
ters offer a wide range of possibilities for 
exploring data and conveying complex re-
sults in network visualizations. 

Limitations. Despite the many novel 
and useful features of Pajek, there are also 
limitations. Pajek cannot perform most sta-
tistical tests of significance, and cannot be 
used to calculate some commonly used 
network measures. More importantly, fea-
tures of the KK and FR optimization pro-
cedures bear upon the interpretation of 
node position, the comparability, and repli-
cability of images. The key difficulty lies 
in the algorithm's probabilistic optimization 
procedures. The danger of such procedures 
is that they may, in repeated trials, con-
verge on different local minima rather than 
finding a global minimum energy by which 
to position nodes. As a result the position 
of extreme outlying nodes can shift from 
optimization to optimization. This variabil-
ity occurs most commonly in the location 
of isolates and nodes with single connec-
tions.30 The relative position of nodes to-
ward the center of a given network are 
vastly more stable and reliable. Likewise, 
the relative position of different compo-
nents as positioned in the FR algorithm 
may vary. 

This limitation has several substantive 
implications. First, standards for the ro-
bustness of optimizations cannot be 
couched in terms of the exact Euclidean 
position of nodes. We rely instead on the 
aggregate features of the network and the 
position of core organizations (note, for 
instance, our use of the National Institutes 
of Health, a very well connected node, as a 
touchstone in the pull out presented in Fig-
ure 4). More importantly, the position of 

nodes cannot be understood in absolute 
terms. Instead node position must be inter-
preted relative to the position of other 
nodes in the network. The emphasis on 
relative position does make it meaningful 
to consider the coincidence of nodes in 
close proximity across images.31  
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FOOTNOTES
                                                 
1 We use the term field rather than industry or popu-
lation intentionally.  Biotechnology is not a separate 
industrial sector with well-defined boundaries.  
Universities, government labs, and nonprofit hospi-
tals and research institutes are a critical part of the 
field; while on the commercial side, both estab-
lished pharmaceutical firms and dedicated biotech-
nology companies are involved in bringing new 
medicines to market.  Thus, field captures the diver-
sity of organizations more aptly than any other term. 
2 Even when edges form with equal probability for 
all pairs of nodes in a network, there is considerable 
inequality in the distribution of the number of edges 
for different nodes.  The tail of the degree distribu-
tion of a simple random process of tie-formation 
will be truncated, however, by exponential decay in 
the number of nodes at successively higher degree.  
The degree distribution of nodes in a highway net-
work, for example, tends to be exponential, more 
like a random network than the degree distribution 
of nodes in today’s U.S. airlines network, with hubs 
that jump over many of the nodes connected by 
spokes.  Note that these differences are, in part, a 
matter of intentional design and not solely a func-
tion of geography; there was a time when the airline 
network was more like a highway network. 
3 The meaning of scale-invariant or scale-free for a 
power law is that the coefficient does not vary from 
scale to scale as magnitude varies from 1 to 10 to 
100,etc.  Put differently, for a network with a 
power-law tail to the degree distribution, there is no 
characteristic number of edges per node, as in a bell 
curve-shaped distribution or exponential decay.  
Barabási’s (2002a) organizing motif is that net-
works with power-law degree distributions have a 
characteristic scale-free signature of self-organizing 
systems.  Analogy is made to the scaling of the fre-
quency of earthquakes in relation to their energetic 
intensity, for example, which tends to follow a 
power-law.  This would imply that there is no typi-
cal scale for earthquakes and suggests that the 
physical mechanism for large earthquakes is the 
same as that for the small ones.  The theme of “the 
same mechanism” has not been established for so-
cial networks, however.  
4 Here the actual attachment probability of new 
nodes with incumbents is P(k) = 1/kα, where alpha 
is a constant power coefficient. The preferential 
attachment probability generates a degree distribu-
tion in which the frequency of nodes with a given 
degree d is a function f(d) of 1/dª, where a is the 
power-law coefficient and can be calculated from 

                                                                        
slope of the linear regression line on a log-log plot 
of d and f(d). 
5 We thank Orjan Solvell, Stockholm School of 
Economics, for the detailed description of the social 
world of his grandfather, Otto Hammar, and for a 
photocopy of his grandfather’s 1911 dance card. 
6 See Holmstrom and Roberts, 1998, for a useful 
review of the hold-up problem and discussion of 
various alternatives to vertical integration as a solu-
tion. 
7 Hybritech was one of the better known DBFs of 
the mid-1980s.  This San Diego-based firm was 
purchased in 1986 by the large pharmaceutical 
company Eli Lilly for $300 million.  Within a year, 
no Hybritech employees remained with Lilly; 
meanwhile more than 40 firms have been founded 
by former Hybritech employees (Walcott, 2002). 
8 The data are drawn from the NBER patent data-
base, using our sample of biotech firms and Owen-
Smith’s (2003) sample of U.S. Research 1 universi-
ties. 
9 Sources: NIH budget, www.nih.gov, 2001; Phar-
maceutical R&D spending, Pharmaceutical Manu-
facturers of America annual surveys, 
www.pharma.org. 
10 Source: National Science Foundation, Science 
and Engineering Indicators, 2002.  Appendix Table 
6-19, p. A6-64. 
11 The first volume of BioScan was released in 1987 
by the biotech firm Cetus, but coverage was limited 
as many firms were reluctant to share data with a 
competitor.  Oryx Press issued the first independent 
directory in 1988.  To supplement BioScan, we con-
sulted Recombinant Capital as well as including 
various editions of Genetic Engineering and Bio-
technology Related Firms Worldwide, Dun and 
Bradstreet’s Who Owns Whom?, and Standard and 
Poor’s.  In addition, we utilized annual reports, Se-
curities and Exchange Commission filings and, 
when necessary, made phone calls to companies. 
12 Our collaborators Fabio Pammolli and Massimo 
Riccaboni at the University of Florence have con-
structed a large data base on R&D projects in the 
biomedical field that covers more than 10,000 ex-
ternal collaborations among participants in the life 
sciences throughout the decade of the 1990s.  The 
most frequent type of partnership (approximately 
45%) was between a biotech firm and a pharmaceu-
tical company.  The least common affiliation was 
between a pharmaceutical company and a public 
research organization (.05%). 
13 We are indebted to James Moody who applied 
our network data to his algorithm for k-components 
(Moody and White 2003) as our measure of cohe-
sion.  A k-component is a potent measure of cohe-
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sion because such a structure cannot be discon-
nected except by removal of k or more nodes.  In 
contrast, a maximal subgraph (known as a k-core) in 
which all nodes have k degree or higher may be a 
disconnected graph (White and Harary 2001).  The 
computation of k-components as units of cohesion 
showed a perfect (1.0) correlation for each time 
period between k-components and maximal k-core 
subgraphs.  This result points to a highly cohesive 
network, with a well-connected core at the center.  
Save for a few small bicomponents on the periph-
ery, there were singular rather than multiple over-
lapping k-components at each level (e.g., at each 
level of 8,7,6,5,4, and 3), and each  unique k-
component was embedded in a k-component at the 
next lower level of cohesion.  Organizations in the 
8-component for each time period, for example, 
were embedded in the 7-component, and so on 
down the stack.  K-components are necessarily em-
bedded, but they need not form a single hierarchy.  
Distinct hierarchies of k-components may form with 
as many as k-1overlapping nodes in common.  Such 
was not the case for the cohesive biotech network. 
14 A power law is a mathematical expression for a 
distribution that is unlike a normal bell curve with a 
peak in the middle, where most nodes have a similar 
number of ties.  A scatterplot or histogram plotting 
power law decay is a continually decreasing curve 
where values on the Y axis approximate a linear 
function of those on the X axis raised to a fixed 
power α, hence log y = C + α log x where C is the 
intercept constant.  
15 The exponent in this function is not fixed, but 
varies with values on the X axis. Hence, the expo-
nential y = b + Cx is linear in log y and x log C, but 
is bowed outward in a log-log plot. Inequality re-
sulting from a simple random process of tie-
formation is accidental, or in the case of network 
growth, may be due to early entry. Networks with 
exponential degree distributions do not have hubs 
that are extreme outliers in terms of very high con-
nectivity. 
16 Whether there are attachment processes in the 
extremes of several of the graphs that go beyond 
power-law attachment biases cannot be determined 
due to the very small numbers of organizations with 
high degree.  A degree distribution that plots as a 
concave curve, bent in toward the origin on a log-
log scale, might indicate a super-power-law process 
in which more complex rules of attachment are op-
erating and power-law inequality is accelerated. 
With one small exception, hardly systematic, there 
is no evidence in Figure 3 for a super-power-law 
process. 

                                                                        
17 The main component is the largest connected 
cluster in the network.  It eliminates both isolates 
and small disconnected clusters.  Most network 
measures are based on the main component, which 
is a connected graph for which measures can be 
generated.  In substantive terms, the main compo-
nent is the largest subset of organizations that can 
reach each other through indirect paths of finite 
length.  The percentage of organizations connected 
to the main component is 85.4% in 1988, dips 
slightly to 80.3% in 1992, and rises to 98.6% by 
1999. 
18 We use annual changes as a matter of convention 
as publicly-traded firms routinely provide accounts 
of their activities on a yearly basis and various data 
sources are organized in this manner.  We have 
spent a good deal of energy studying the sequences 
of partners and activities, and have analyzed the 
time in monthly intervals to key events, e.g., first 
tie, first R&D collaboration, going public, etc.  Be-
cause the data are more reliably reported annually, 
we use year to year changes in the visualizations. 
19 Collaborations with individual UC campuses are 
reported as formal agreements with the Regents of 
the University of California, hence we must treat the 
nine campuses as one university system. 
20  More precisely (White and Harary, 2001:12-14), 
“The (node-) connectivity κ(G) is defined as the 
smallest number of nodes that when removed from a 
graph G leave a disconnected subgraph or a single 
node…. A maximal connected subgraph of G with 
connectivity k > 0 is called a k-component of G, 
with synonyms component for 1-component, bi-
component for 2-component, tricomponent for 3-
component, etc..  A cohesive block of a graph G is a 
k-component of G where the associated value of 
connectivity defines the cohesion of the block.” A 
graph G is k-connected if κ(G) > k, hence we use 
the term multi-connected. A fundamental theorem 
of graphs is that a  multi-connected k-component is 
also equivalent to a maximal graph with k or more 
node-independent paths between every pair of its 
nodes, which adds significantly to the power of the 
concept of multiconnectivity as a measure of cohe-
sion.   
21 Although McFadden’s conditional logit is com-
monly known as the Discrete Choice model, this 
label describes a theoretical orientation and not an 
analytical approach.  The model of multi-probability 
assessment is agnostic as to whether the process of 
attachment is calculative, a form of following the 
herd, conditioned by social structure, or random.  
The model is equally applicable to circumstances 
where DBFs are choosing partners, the partners 
select DBFs, the social structure of affiliation 
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matches DBFs and partners, or any combination 
thereof.  McFadden (2001) initially dubbed his es-
timator a conditional logit, but has since indicated 
he prefers the term multinomial logit.   His model is 
more flexible than other conditional “fixed effects” 
estimators, and more general than standard multi-
nomial estimators, converging to each with correct 
specification of dependent and independent vari-
ables.  Hence, we refer to it more generally as a 
multi-probability model. 
22 This limitation introduces a form of competitive 
interdependence in our observations.  That is, as-
suming that organizations have some finite need or 
capacity for partners, not all firms may be able to 
attach to all partners they might otherwise have cho-
sen.  This interdependence is substantive, rather 
than statistical, in that it could, in theory, be speci-
fied and modeled.  Such specification would involve 
many of the variables we have measured, such as 
prior degree and experience, but would also require 
some variables such as financial resources or mana-
gerial skill that are not easily available.  This form 
of interdependence is, to varying degrees, present in 
many applications of McFadden’s estimator.  For 
instance, in the transportation studies (McFadden, 
1984), each mode (car, bus, train) was vying for 
commuters, and not all individuals could choose the 
same mode, as doing so would crowd buses or jam 
highways.  As a result, we do not believe that our 
results are compromised by this limitation.  Further 
research into the statistical properties of McFad-
den’s estimator in the face of such interdependence 
does, nevertheless, seem warranted. 
23 For this pattern to obtain, it is sufficient to add 
interaction terms for cohesion (shared cohesion x 
firm age, firm cohesion x partner cohesion, firm 
cohesion x prospective diversity).  The change in 
signs is stable with period and timeline effects 
added to the conditional logit model. Change in the 
signs of the coefficients do not occur in Tables A2 
and A3 for any of the other variables listed in Table 
7, with one minor exception. The contingency of 
combined firm cohesion x prospective diversity, for 
example, predicts lower attachment, but shifts the 
prediction for prospective diversity to higher at-
tachment. 
24 Pajek was developed by Vladimir Batagelj and 
Andrej Mrvar and is available online at 
http://vlado.fmf.uni-lj.si/pub/networks/pajek/ . Pajek 
has been used in a number of disciplines to repre-
sent complex network data (Albert, Jeong, & Bara-
basi 2000; Batagelj & Mrvar 2000; Moody, 2001; 
Owen-Smith et. al. 2002; White & Harary 2001).  
We thank Andrej Mrvar for comments on this Ap-
pendix. 

                                                                        
25 The program will handle networks of up to 
1,000,000 nodes.  Due to limitations imposed by the 
computational capacities of our machines, we have 
never analyzed a network larger than 250,000 
nodes. 
26 Consider simple centrality measures.  Pajek cal-
culates degree, closeness and betweenness measures 
for large nets, but does not implement more com-
plex measures such as information or power central-
ity. 
 
27 One algorithm also offers the option to visualize a 
network as a three dimensional sphere. While such 
representations are valuable for some analyses, they 
raise difficulties for two dimensional presentation. 
Thus, we emphasize two dimensional optimizations 
here. 
28 While the repelling forces of nodes are deter-
mined by a constant (though manipulable) factor, 
the attractive strength of ties can vary with the ob-
served value of ties.  In this paper, our images are 
created with constant tie strengths. 
29 As implemented in Pajek, the Kamada-Kawai 
algorithm only alters the position of connected 
nodes as network distances among unconnected 
portions of a graph are undefined. By the same to-
ken, KK tends to overlap unconnected components, 
making the visual analysis of network evolution 
difficult. 
30 To test this variation we optimized the same net-
work multiple (30) times from random starting 
points and took the mean and variance of node co-
ordinates, finding the least variation in the position 
of well connected (high degree) nodes. 
31 It is possible to generate more strictly comparable 
images by fixing the position of nodes across visu-
alizations. Nevertheless, choosing an analytically 
appropriate constant position raises a new set of 
issues and such a strategy limits the package's visual 
flexibility by fixing one of the four parameters that 
can convey information. 
 
 

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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TABLES 
 
 
 
 
 
 
 
  Table 1   
  Top Ten Biotechnology Drugs   
     

PRODUCT INDICATED USE 2001 SALES IN  DEVELOPER MARKETER 
    MILLIONS     
          
  Red blood cell  3,430 Amgen Johnson & 

Procrit enhancement     Johnson 
  Red blood cell        

Epogen enhancement 2,109 Amgen Amgen 
          

Intron  Hepatitis C, certain       
A/Rebetron forms of cancer 1,447 Biogen, ICN Schering-Plough

  Restoration of white       
Neupogen blood cells 1,346 Amgen Amgen 

          
Humulin Diabetes mellitus 1,061 Genentech Lilly 

  Relapsing multiple        
Avonex sclerosis 972 Biogen Biogen 

          
  B-cell non-Hodgkin's       

Rituxan lymphoma 819 IDEC Genentech, IDEC
          
        Immunex, 

Enbrel Rheumatoid arthritis 762 Immunex American Home 
        Products 

  Rheumatoid arthritis,     Johnson & 
Remicade Chron's disease 721 MedImmune Johnson 

  Enzyme replacement       
Cerezyme therapy 570 Genzyme Genzyme 

     
Source: Standard & Poor's "Biotechnology," May 2002.   
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Table 2: Patterns of Entry and Exit into the Network 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Thirty two biotech firms never have any ties. We include these firms in subsequent analyses as part of the pool of potential partners. In addi-
tion, we exclude forty five organizations from the non-DBF partner list because we cannot determine their precise year of entry. 
 
 
 

 DBFs Non-DBF Partners Ties 

YEAR 
In Net-
work  

New En-
trants 

In Net-
work 

New En-
trants Total  Initiated New Repeat Discontinued

          
1988 155 - 579 - 1565 - - - - 
1989 181 29 672 156 1780 459 362 97 244 
1990 199 28 747 146 1954 472 379 93 298 
1991 210 18 792 119 2056 473 379 94 371 
1992 233 31 800 123 2162 544 429 115 438 
1993 265 35 873 149 2474 643 520 123 321 
1994 297 35 938 119 2783 634 508 126 325 
1995 316 24 985 141 3057 700 543 157 426 
1996 340 34 1058 165 3373 912 737 175 596 
1997 351 14 1172 201 3737 877 696 181 513 
1998 360 13 1313 251 4295 1121 957 164 563 
1999 363 12 1332 122 4176 479 422 57 598 

All years 450 273 2265 1692 8818 7314 5932 1382 4703 
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Table 3. Variables in Statistical Tables  
Variable Label Unit of Observation Description 
Dependent variables:   
new attachment  computed as a binary indicator of whether an attachment occurs between a DBF and a partner for the first 

time 
repeat attachment  computed as a binary indicator of whether an attachment occurs between a DBF and a partner, other than 

for the first time 
Independent variables:   
Accumulative Advantage   
 Firm Degree DBF  the number of ties of the DBF just prior to the attachment 
 Partner Degree Partner  the number of ties of the partner just prior to the attachment 
    
 Firm Experience DBF  number of years since inception of DBF’s first tie 
 New Partner Partner indicates whether this is the partner’s first year in the network 
 Partner Experience Partner number of years since inception of partner’s first tie 
 Prior ties Dyad  number of prior ties connecting the DBF-partner dyad 
 Prior Experience Dyad duration since first tie connecting the DBF-partner dyad 
Homophily   
 Collaborative distance Dyad 

 
1-mode: Euclidean distance between the activity-type-by-partner-form profiles of the attaching DBF and 
partner, just prior to the attachment 

 Dyad 
 

2-mode: Euclidean distance between the activity-type profiles of the attaching DBF and partner, just prior 
to the attachment 

 Age difference Dyad 1-mode: absolute difference in age between the attaching DBF and the partner, at time of attachment 
 Size difference Dyad 1-mode: absolute difference in number of employees between attaching DBF and the partner, at time of 

attachment 
 Governance Similarity Dyad 1-mode: dummy variable capturing whether both firms are publicly traded or privately held, at time of at-

tachment 
 Co-location Dyad 1-mode: indicator of whether the attaching DBF and partner are in the same region, at time of attachment. 
 Partner’s Partner Collaborative Distance Partner’s neighbor-

hood 
average Euclidean distance between activity-type-by-partner-form profiles of attaching DBF and other 
DBFs attached to the partner 

 Partner’s Partner Age Difference Partner’s neighbor-
hood 

average absolute difference in age between the attaching DBF and other DBFs attached to the partner 

 Partner’s Partner Size Difference Partner’s neighbor-
hood 

average absolute difference in number of employees between the attaching DBF and other DBFs attached 
to the partner 

 Partner’s Partner Governance Similarity Partner’s neighbor-
hood 

average absolute difference in whether publicly-held between the attaching DBF and other DBFs attached 
to the partner 

 Partner’s Partner Co-Location Partner’s neighbor-
hood 

average of indicator of whether the attaching DBF and other DBFs attached to the partner are in the same 
three digit zip-code region 

Follow-the-trend   
 Dominant Trend 
 

Field percentage of other attachments up to the time of the attachment that are in same activity-type-by-partner-
form category 

 Dominant Type Partner percentage of a partner’s ties that fall into the same activity-type category as the activity type of the at-
tachment 



 

 47 

Multiconnectivity   
 Firm Cohesion DBF the DBF’s maximum value of k for which the DBF is in a k-component, just prior to the attachment 
 Partner Cohesion Partner 

 
the partner’s maximum value of k for which the partner is in a k-component, just prior to the attachment 

 Shared Cohesion Dyad  maximum value k of k-components occupied by both partner and DBF, just prior to attachment 
 Firm Tie Diversity DBF Blau heterogeneity index over DBF’s activity-type-by-partner-form portfolio, just prior to the attachment 
 Partner Tie Diversity Partner  1-mode: Blau heterogeneity index over partner’s activity-type-by-partner-form portfolio, just prior to the 

attachment 
  2-mode: Blau heterogeneity index over the partner’s activity-type portfolio, just prior to the attachment 
 Prospective diversity Dyad  change in DBF tie diversity resulting from attachment 
 Partner’s Partner Collaborative Diversity Partner’s neighbor-

hood  
average tie diversity of other DBFs attached to the partner in terms of activity-type-by-partner-form cate-
gories, at time of attachment 

Controls   
 Period Field Period= 1: 1989-1993, Period= 2: 1994-1996; Period= 3: 1997-1999 
 Timeline Field linear time trend, computed as year of observation - 1987 
 Age DBF  duration in years since DBF’s founding or first entry into biotech 
 Size DBF  number of employees of DBF 
 Governance DBF  indicates whether DBF is publicly or privately held 
 Form Partner  2-mode: indicates form of partner organization, e.g. biomedical corp, university, non-profit, government, 

pharmaceutical or other for-profit 
 Type Dyad indicates type of activity or exchange involved in collaboration, e.g. research, financing, licensing, com-

mercialization. 
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Table 4: Test of Accumulative Advantage: Odds Ratios from McFadden’s Model 
  1-mode  2-mode  
  New Repeat New Repeat 
 Hypothesis     
Partner Degree >1  1.042** 

  
.996 
  

.917** 
  

1.007 
  

Partner Experience  >1 .947** 
  

.867** 
  

.807** 
  

.865** 
  

Prior Ties  >1  n.a. 1.389** 
  

n.a. 1.262** 
  

Prior Experience  >1  n.a. .742** 
  

n.a. .862** 
  

New Partner <1  1.169 
  

10.953** 
  

1.662** 
  

.788 
  

      
The two-tailed significance levels are *=pvalue<.05; **=pvalue<.01. Controls for homophily, follow-
the-trend, and multi-connectivity were also included in these models; odds ratios for these mechanisms 
are presented in subsequent tables. All models include fixed effects for firm, year, and type, as well as 
main effects for form. The complete models are presented in Appendix II. n.a.: not applicable for new 
ties. 
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Table 5: Test of Homophily: Odds Ratios from McFadden’s Model 
  1-mode  2-mode  
  New Repeat New Repeat 
 Hypothesis     
Co-location >1 1.95** 

  
2.091* 
  

n.a. n.a. 

Partner’s Partner 
Co-Location 

>1 1.294~ 
  

.460 
 

1.098 
  

.129** 
  

Governance Simi-
larity  

>1 .864 
  

2.037~ 
  

n.a. n.a. 

Collaborative dis-
tance 
 

<1  .973~ 
  

1.053~ 
  

1.196** 
  

1.017~ 
  

Partner’s Partner 
Collaborative Dis-
tance 

<1  .997 
  

1.689** 
  

.920** 
  

1.319** 
  

Size difference <1 1.018**  
  

1.001 
  

n.a. n.a. 

Partner’s Partner 
Size Difference 

<1  .991 
  

.995** 
  

1.003* 
  

.991 
  

Age difference <1 1.036** 
  

1.137** 
  

n.a. n.a. 

Partner’s Partner 
Age Difference 

<1 .980 
  

1.063 
  

1.005 
  

1.161** 
  

      
The two-tailed significance levels are ~=pvalue<.10; *=pvalue<.05; **=pvalue<.01. Con-
trols for accumulative advantage, follow-the-trend, and multi-connectivity were also in-
cluded in these models; odds ratios for these mechanisms are presented in prior and subse-
quent tables. All models include fixed effects for firm, year, and type, as well as main ef-
fects for form. The complete models are presented in Appendix II. Size is divided by 100. 
n.a.: 2-mode data were not available for computation. 
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Table 6: Test of Follow-the-trend: Odds Ratios from McFadden’s Model 
  1-mode  2-mode  
  New Repeat New Repeat 
 Hypothesis     
Dominant 
Type 
 

>1  1.027** 
  

1.039** 
  

1.025** 
  

1.029** 
  

Dominant 
Trend  

>1  1.251** 
  

.805* 
  

1.064** 
  

.884** 
  

      
The two-tailed significance levels are *=pvalue<.05; **=pvalue<.01. Controls for accumulative ad-
vantage, homophily, and multi-connectivity were also included in these models; odds ratios for these 
mechanisms are presented in prior and subsequent tables. All models include fixed effects for firm, 
year, and type, as well as main effects for form. The complete models are presented in Appendix II.  
 
 
 
 
Table 7: Test of Multi-connectivity: Odds Ratios from McFadden’s Model 
  1-mode  2-mode  
  New Repeat New Repeat 

 Hypothesis     
Partner Cohesion >1  1.432** 

  
2.589** 
  

1.667** 
  

1.080 
  

Shared Cohesion >1  1.058* 
  

1.103 
  

5.272** 
  

1.905** 
  

Partner Tie Diversity >1  1.025** 
  

1.016 
  

1.037** 
  

1.020** 
  

Prospective Tie Diver-
sity 

>1  .972 
 

.738** 
 

.883** 
 

.952** 
 

Partner’s Partner Tie 
Diversity 

>1 1.042 
  

.944** 
  

.986** 
  

.959** 
  

      
The two-tailed significance levels are *=pvalue<.05; **=pvalue<.01. Con-
trols for accumulative advantage, homophily, and follow-the-trend were 
also included in these models; odds ratios for these mechanisms are pre-
sented in prior tables. All models include fixed effects for firm, year, and 
type, as well as main effects for form. The complete models are presented in 
Appendix II.  
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Appendix II, Table A1: Descriptive Statistics 
 

 1-mode attachments 2-mode attachments 
 new repeat new repeat 
Variable Mean Std. Mean Std. Mean Std. Mean Std. 
Accumulative Advantage  
Firm degree 18.36 14.66 41.10 18.69 14.46 10.80 23.23 15.79
Partner degree 7.01 7.94 17.05 13.93 0.99 2.49 7.41 11.20
Firm experience 7.80 4.38 12.24 3.98 6.22 3.76 9.36 3.96
New partner 0.57 0.50 0.10 0.30 0.37 0.48 0.06 0.24
Partner experience 5.69 4.49 8.57 4.05 3.36 3.51 5.62 3.26
Prior ties   6.10 4.18   5.81 4.33
Prior experience   4.84 2.79   4.95 3.56
Homophily  
Collaborative distance 8.74 5.87 15.72 7.05 8.83 7.47 14.80 11.07
Age difference 6.32 5.23 6.99 5.21  
Size difference 580.76 1214.86 2437.48 2100.24  
Governance Similarity 0.51 0.50 0.77 0.42  
Co-location 0.11 0.32 0.27 0.44  
Partner’s Partner collaborative distance 4.38 6.58 9.27 6.95 4.47 6.45 6.92 6.14
Partner’s Partner age difference 2.49 4.39 3.76 4.15 2.46 4.02 2.59 3.50
Partner’s Partner size difference 406.71 1131.12 1424.59 1793.60 151.59 630.57 398.83 1174.72
Partner’s Partner governance similarity 0.86 0.31 0.85 0.23 0.82 0.37 0.83 0.24
Partner’s Partner co-location 0.21 0.38 0.56 0.38 0.24 0.41 0.59 0.38
Follow-the-trend  
Dominant trend 0.04 0.02 0.04 0.02 0.07 0.09 0.10 0.11
Dominant type 0.20 0.27 0.27 0.22 0.13 0.32 0.17 0.55
Multiconnectivity  
Firm cohesion 4.24 1.11 4.85 0.74 3.88 1.22 4.49 1.00
Partner cohesion 2.42 1.86 4.11 1.20 0.74 1.11 2.78 1.84
Shared cohesion 1.24 1.67 2.86 2.06 0.69 1.01 2.67 1.76
Firm tie diversity 0.73 0.18 0.85 0.07 0.66 0.21 0.77 0.12
Partner tie diversity 0.47 0.34 0.75 0.14 0.05 0.16 0.27 0.30
Prospective diversity 0.77 0.12 0.85 0.06 0.71 0.15 0.77 0.12
Partner’s Partner tie diversity 0.32 0.41 0.79 0.26 0.34 0.39 0.73 0.28
  
Controls  
Type= research 0.31 0.46 0.21 0.41 0.22 0.42 0.33 0.47
 finance 0.16 0.37 0.28 0.45 0.47 0.50 0.27 0.44
 commercialization 0.27 0.44 0.25 0.43 0.18 0.38 0.24 0.43
 licensing 0.26 0.44 0.25 0.44 0.13 0.34 0.16 0.37
Form= biomedical 0.25 0.43 0.10 0.29
 University/Non-profit 0.15 0.36 0.15 0.35
 government 0.04 0.20 0.10 0.30
 Venture Capital 0.33 0.47 0.25 0.44
 Pharmaceutical 0.23 0.42 0.40 0.49
Age 9.71 5.61 14.93 5.38 7.67 4.57 11.10 5.14
Size 568.72 1200.38 2588.15 2164.92 191.70 584.00 681.33 1449.18
Governance 0.77 0.42 0.95 0.21 0.68 0.47 0.88 0.33
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 Appendix II, Table A2: 1-mode attachments: McFadden Multi-probability Model estimates* 
 
 new attachments repeat attachments 

 (1) (2) (3) (4) (5) 
Independent variables:      
Accumulative Advantage      
 Partner Degree .0412** 

(.0058) 
.0618** 
(.0085) 

.0603** 
(.0086) 

-.0037 
(.0107) 

.0014 
(.0151) 

 New Partner .1558 
(.1177) 

.1463 
(.1172) 

.1550 
(.1172) 

2.3936** 
(.5917) 

2.4770** 
(.6080) 

 Partner Experience -.0537** 
(.0128) 

-.0474** 
(.0128) 

-.0477** 
(.0130) 

-.1429** 
(.0420) 

-.1529** 
(.0447) 

 Prior Ties    .3286** 
(.0556) 

.3799** 
(.0602) 

 Prior Experience    -.2984** 
(.0947) 

-.3632** 
(.1027) 

Homophily      
 Collaborative distance -.0270~ 

(.0142)  
-.0297* 
(.0149) 

-.0262~ 
(.0153) 

.0513~ 
(.0293) 

.0684* 
(.0311) 

 Age difference .0353** 
(.0088) 

.0336** 
(.0097) 

.0492** 
(.0115) 

.1288** 
(.0337) 

.1117** 
(.0344) 

 Size difference** .0182**  
(.0045) 

.0163** 
(.0046) 

.0303** 
(.0062) 

.0011 
(.0011) 

.0012 
(.0012) 

 Governance Similarity -.1458 
(.0892) 

-.1238 
(.0901) 

-.1323 
(.0906) 

.7119~ 
(.3909) 

.4917 
(.4140) 

 Co-location .6681** 
(.0947) 

.6576** 
(.0952) 

.6566** 
(.0954) 

.7379* 
(.2891) 

.8580** 
(.2960) 

 Partner’s Partner Collaborative Distance -.0027 
(.0144) 

-.0023 
(.0145) 

-.0021 
(.0146) 

.5245** 
(.0584) 

.5079** 
(.0601) 

 Partner’s Partner Age Difference -.0192 
(.0118) 

-.0116 
(.0119) 

.0830* 
(.0331) 

.0612 
(.0409) 

.0893* 
(.0437) 

 Partner’s Partner Size Difference -.0089 
(.0056) 

-.0083 
(.0056) 

-.0504* 
(.0247) 

-.0052** 
(.0018) 

-.0425* 
(.0188) 

 Partner’s Partner Governance Similarity -.0237 
(.1429) 

-.0143 
(.1443) 

-.0160 
(.1450) 

.6094 

.5605 
1.0179~ 
(.5770) 

 Partner’s Partner Co-Location .2579~ 
(.1334) 

-.2374~ 
(.1340) 

.2210~ 
(.1343) 

-.7763 
(.4950) 

-.9146~ 
(.5146) 

Follow-the-trend      
 Dominant Trend 
 

22.4007** 
(2.4351) 

16.4288** 
(3.3135) 

15.3775** 
(3.3216) 

-21.5871* 
(10.0363) 

-25.0997** 
(10.3612) 

 Dominant Type 2.7150** 
(.1515) 

2.1221** 
(.1617) 

2.1213** 
(.1632) 

3.8823** 
(.6569) 

3.9045** 
(.6931) 
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Multiconnectivity      
 Partner Cohesion .3594** 

(.0457) 
.0419 
(.1481) 

.0543 
(.1466) 

.9512** 
(.1919) 

1.0824** 
(.2093) 

 Shared Cohesion .0566* 
(.0271) 

.1518** 
(.0535) 

.1458** 
(.0535) 

.0978 
(.0799) 

.0783 
(.0824) 

 Partner Tie Diversity 2.0492** 
(.2785) 

2.8440** 
(.9773) 

2.1283* 
(1.0408) 

1.5821 
(1.4550) 

1.9676 
(1.4345) 

 Prospective Tie diversity -2.7991 
(1.5170) 

20.2502** 
(5.6211) 

82.7609** 
(21.4090) 

-30.3778** 
(10.6104) 

-29.5611** 
(10.5284) 

 Partner’s Partner Tie Diversity .4118 
(.4286) 

1.0324~ 
(.6031) 

.8897 
(.6018) 

-5.8047** 
(1.4601) 

-6.8265** 
(1.6196) 

Contingencies***      
 Firm age x Partner degree   -.0021** 

(.0005) 
-.0021** 
(.0006) 

  

 Firm age x Shared cohesion  -.0107* 
(.0048) 

-.0103* 
(.0048) 

  

 Firm cohesion x Partner cohesion  .0975** 
(.0346) 

.1275** 
(.0357) 

  

 Firm cohesion x Prospective diversity  -8.9460** 
(2.0969) 

-27.6005** 
(6.4403) 

  

Period & Timeline Effects      
 Period3 x age difference   -.0423* 

(.0186) 
  

 Period3 x size difference   -.0184** 
(.0068) 

  

 Period3 x Partner cohesion   -.2068* 
(.0835) 

  

 Period3 x Partner diversity   4.0306* 
(1.9870) 

  

 Period3 x Prospective diversity   -69.9582** 
(22.3349) 

  

 Period3 x Firm cohesion x Prospective diversity   21.4625** 
(6.9130) 

  

 Timeline x Partner’s Partner age difference   -.0106** 
(.0037) 

  

 Timeline x Partner’s Partner size difference   .0044~ 
(.0024) 

  

LR chi-sq (df) 1498 (21) 1692 (27) 1767 (35) 498 (23) 522 (25) 
Pseudo-R2 .17 .19 .21 .60 .64 
N 966   373  
*The significance levels are ~=pvalue<.10, *=pvalue<.05, **=pvalue<.01. All models include fixed effects for firm, year, and type.  
**Size is divided by 100. 
***Contingencies for activity type were included in models 2 and 3. They are available from Kenneth Koput.
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Appendix II, Table A3: 2-mode attachments: McFadden Multi-probability Model estimates* 
 

 new attachments repeat attachments 
 (1) (2) (3) (4) (5) (6) 
Independent variables:       
Accumulative Advantage       
 Partner Degree -.0859** 

(.0100) 
.0128 
(.0100) 

.0142 
(.0106) 

.0072 
(.0079) 

.0122 
(.0081) 

.0062 
(.0082) 

 New Partner .5081** 
(.1167) 

.7974** 
(.1350) 

.6150** 
(.1669) 

-.2385 
(.5891) 

-.2313 
(.5772) 

-.2323 
(.5799) 

 Partner Experience -.2140** 
(.0150) 

-.1535** 
(.0173) 

-.1381** 
(.0179) 

-.1453** 
(.0366) 

-.15276** 
(.0369) 

-.1819** 
(.0379) 

 Prior Ties    .2327** 
(.0162) 

.2448** 
(.0168) 

.2470** 
(.0168) 

 Prior Experience    -.1480** 
(.0265) 

.0921 
(.0717) 

.1108 
(.0726) 

Homophily       
 Collaborative distance .1794** 

(.0124) 
.0386** 
(.0126) 

.0449** 
(.0127) 

.0168~ 
(.0100) 

.0120 
(.0102) 

.0188~ 
(.0104) 

 Partner’s Partner Tie Distance -.0836** 
(.0124) 

-.0089 
(.0124) 

-.0083 
(.0124) 

.2766** 
(.0221) 

.2806** 
(.0234) 

.3077** 
(.0248) 

 Partner’s Partner Age Difference .0048 
(.0133) 

.0435** 
(.0163) 

.0430** 
(.0162) 

.1497** 
(.0229) 

.1525** 
(.0235) 

.1498** 
(.0237) 

 Partner’s Partner Size Difference .0033* 
(.0013) 

.0441** 
(.0122) 

.0415** 
(.0123) 

-.0088 
(.0157) 

-.0048 
(.0157) 

-.0139 
(.0162) 

 Partner’s Partner Governance Simi-
larity 

.2690* 
(.1232) 

.2316 
(.1898) 

.2685 
(.1903) 

-.6362** 
(.2451) 

-.6019* 
(.2536) 

-.6873** 
(.2550) 

 Partner’s Partner Co-Location .0938 
(.1327) 

-.0934 
(.1763) 

-.1475 
(.1765) 

-2.0462** 
(.2758) 

-2.1407** 
(.2857) 

-2.1807** 
(.2870) 

Follow-the-trend       
 Dominant Trend 
 

6.2637** 
(.4811) 

3.8608** 
(1.0541) 

-3.7647** 
(1.0656) 

-12.2855** 
(1.1006) 

-12.1924** 
(1.3070) 

-12.3164** 
(1.3330) 

 Dominant Type 2.5418** 
(.1288) 

1.5736** 
(.1533) 

1.5962** 
(.1541) 

2.9147** 
(.2070) 

3.0110** 
(.2136) 

3.0718** 
(.2169) 

Multiconnectivity       
 Partner Cohesion .5114** 

(.0622) 
2.1824** 
(.1907) 

3.29161** 
(.5708) 

.0771 
(.1064) 

.3877* 
(.1871) 

1.5000* 
(.7250) 

 Shared Cohesion 1.6624** 
(.0701) 

4.3605** 
(.2038) 

4.423** 
(.2183) 

.6444** 
(.1239) 

1.0000** 
(.1889) 

2.1678** 
(.5974) 

 Partner Tie Diversity 3.6399** 
(.2189) 

1.0723 
(.7584) 

2.9030** 
(.2002) 

1.9538** 
(.3255) 

1.8883** 
(.3400) 

-1.303~ 
(.7559) 

 Prospective tie diversity -12.4229** 
(.6607) 

4.8200** 
(1.6773) 

1.1967 
(1.8764) 

-4.8813** 
(1.6806) 

7.8716~ 
(4.2148) 

9.9173* 
(4.6065) 

 Partner’s Partner Tie Diversity -1.3459** 
(.3385) 

-8.0500** 
(.7161) 

-8.3912** 
(.7372) 

-4.1571** 
(.8235) 

-.9626 
(2.3109) 

-5.2848~ 
(2.7551) 

Contingencies***        
 Firm cohesion x Prior experience     -.0607** 

(.0162) 
-.0641** 
(.0163) 

 Firm cohesion x Partner cohesion  -.6429** 
(.0654) 

-1.1419** 
(.2234) 

 -.1186* 
(.0572) 

-.4833* 
(.2400) 

 Firm cohesion x Shared cohesion  -.1650** 
(.0624) 

-.1655* 
(.0648) 

   

 Firm cohesion x Partner tie diversity  -.1523 
(.1834) 

-.9175** 
(.2418) 

   

 Firm cohesion x Prospective diversity  -5.1134** 
(.8105) 

-3.3183** 
(.9022) 

   

 Firm cohesion x Partner’s Partner tie 
diversity 

 .9610** 
(.1631) 

1.0233** 
(.1673) 

   

 Firm tie diversity x Partner tie diversity  -2.4258** 
(.9173) 

-1.5786~ 
(.9318) 

   

 Firm tie diversity x Prospective diver-
sity 

 -13.3864** 
(2.6567) 

-17.1266** 
(2.9355) 

 -22.3118** 
(7.7478) 

-26.5231** 
(8.3263) 

 Firm tie diversity x Partner’s Partner 
tie diversity 

 -1.9205** 
(.7013) 

-1.7864* 
(.7050) 

 -7.0456* 
(3.1050) 

-7.5804* 
(3.2204) 
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Period & Timeline Effects       
 Period3 x New Partner   .5656* 

(.2230) 
   

 Period3 x Prospective diversity   11.7024** 
(4.0933) 

   

 Period3 x Firm cohesion x Partner 
diversity 

  1.2202** 
(.3217) 

   

 Period3 x Firm cohesion x Prospective 
diversity 

  -6.0453** 
(1.8644) 

   

 Period3 x Firm diversity x Prospective 
diversity 

  14.2706* 
(6.9727) 

   

 Timeline x Partner cohesion    -.1365* 
(.0610) 

  -.1247~ 
(.0748) 

 Timeline x Firm cohesion x Partner 
cohesion 

  .0573* 
(.0231) 

  .0398~ 
(.0241) 

 Timeline x Shared cohesion      -.1336* 
(.0666) 

 Timeline x Partner tie diversity      .4078** 
(.0895) 

 Timeline x Partner’s Partner tie di-
versity 

     .6417** 
(.2020) 

LR chi-square (df) 5970 (17) 8893 (40) 9059 (48) 2231 (18) 2289 (24) 2347 (29) 
Pseudo-R2 .32 .49 .51 .47 .49 .51 
N 1500   1068   

*Significance levels are *=pvalue<.05; **=pvalue<.01. All models include fixed effects for firm, year, and type, as well as 
main effects for form.  
**Size is divided by 100. 
***Form and type contingencies were also included in the model. They are available from Kenneth Koput. 
 

 
FIGURES 

Figure 1: Life Science Patents Assigned to Biotechnology Firms and 
Research Universities, 1979-1999
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Activity Volume by Organizational Form 1988, 1993, 1997
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Percentage of Activity by Organzational Form 1988, 1993, 1997
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Figure 2. Distribution of Organizational Forms and Activities, 1988, 1993, 1997 



 

 57 

Figure 3. Degree Distributions by Type of Partner



 

 58 
 

Figure 4. 1988 Main component, all ties Key For All Figures 
CYAN NODE = DBF 
ORANGE  = PRO 
BROWN  = Gov’t 
YELLOW   = Pharma 
GRAY = VC 
WHITE = Other 
Triangle =  New Entrant 
Circle = Incumbent 
Node size = standardized 
network degree, constant 
within figures 
RED TIE= R&D 
GREEN = FINANCE 
BLUE = COMMERCIAL 
. . 
MAGENTA = LICENS-
ING 
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Figure 5. 1989 Main Component, New Ties 
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Figure 6. 1993 Main Component, All Ties 
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Figure 7, 1994 Main Component, New Ties 
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Figure 8. 1997 Main Component, All Ties 
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Figure 9. 1998 Main Component, New Ties 
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Figure 10. 1997 All Ties, Main Component, Nodes Colored by Cohesion 

Node Key 
Size scaled to cohesion 
Red = five component 
Green = 3 or 4 component 
Blue = 1 or 2 component 
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Figure 11. 1998 New Ties, Main Component, Colored by Cohesion 

N 

Blue  

Green 

Red 

 # Ties  # Nodes 

1074 749 

136 477 

304 160 

634 112 

Size scaled to 1997 cohesion  
Triangles =  New Entrants (e.g. 0 
component in 1997) 


