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Abstract

In bagging �Bre	�a� one uses bootstrap replicates of the training set
�Efr	� ET	�� to try to improve a learning algorithm�s performance�
The computational requirements for estimating the resultant gen�
eralization error on a test set by means of cross�validation are often
prohibitive� for leave�one�out cross�validation one needs to train the
underlying algorithm on the order of m� times� where m is the size
of the training set and � is the number of replicates� This paper
presents several techniques for exploiting the bias�variance decom�
position �GBD	�� Wol	�� to estimate the generalization error of a
bagged learning algorithm without invoking yet more training of
the underlying learning algorithm� The best of our estimators ex�
ploits stacking �Wol	��� In a set of experiments reported here� it
was found to be more accurate than both the alternative cross�
validation�based estimator of the bagged algorithm�s error and the
cross�validation�based estimator of the underlying algorithm�s er�
ror� This improvement was particularly pronounced for small test
sets� This suggests a novel justi�cation for using bagging� im�
proved estimation of generalization error�

� Introduction

Let X be an input space and Y an output space� Let d be a training set of m input�
output pairs� fxi� yig� formed by sampling a �target� input�output distribution
P �y � Y jx � X�� indicated by Pf � or just f for short� Unless explicitly noted



otherwise� �y � Y � will always refer to an output value formed by sampling the
target�

Let h indicate a hypothesis input�output distribution P �y � Y jx � X�� generated
by a learning algorithm G in response to a training set� All hypotheses considered in
this paper �e�g�� in the experiments� will be single�valued functions fromX to Y �i�e��
the hypothesis probability distributions will be x�parameterized delta functions over
Y �� though the ideas naturally extend to non�single�valued hypotheses� Similarly�
we will only explicitly discuss deterministic learning algorithms that always guess
the same h in response to the same d� although the ideas extend to algorithms with
a stochastic component� When the training set must be indicated but G can be
assumed� we will write hd�

In Breiman�s �bagging� �Bootstrap Aggregating� procedure �Bre	�a�� rather than
use the hypothesis G creates after training on d� one uses the average of the hy�
potheses G creates by training on the � sets d�i� The d

�

i are created in some manner
from d� When used directly to generalize from d� we will refer to G as the �under�
lying algorithm�� When instead one averages the hypotheses G creates from the
d�i� we will refer to the resultant mapping from d to hd as the �bagged algorithm��
In Breiman�s work the d�i are �bootstrap replicates� of d� i�e�� each d

�

i is created by
sampling the pairs in d uniformly with replacement m times �Efr	� ET	��� In gen�
eral� one would expect that bagging improves generalization for �unstable� learning
algorithms but not for �stable� learning algorithms �Bre	�b��

Since the bagged algorithm itself employs many retrainings of the underlying al�
gorithm� the computational requirements for using cross�validation to estimate the
generalization error when one is using bagging are often prohibitive� For example�
for leave�one�out cross�validation one needs to train the underlying algorithm m�
times� Even for J�fold cross�validation� you have to train the underlying algorithm
on the order of J� times� Such onerous computational requirements for estimating
the associated generalization error are a major impediment to the real�world use of
bagging�

This paper presents several techniques for circumventing this problem� and thereby
facilitating the real�world use of bagging� In particular� it is shown how the bias�
variance formula �GBD	�� Wol	�� can be exploited to estimate the generalization
error of a bagged learning algorithm without additional training of the underlying
learning algorithm� only the original � training runs used to create the bagged
algorithm�s hypothesis are needed�

In a set of experiments� the accuracy of several such estimators based on the bias�
variance formula are compared to both the accuracy of using cross�validation to
estimate the generalization error of the bagged algorithm� and to the accuracy of
using cross�validation to estimate the generalization error of the underlying learning
algorithm� The best of our estimators exploits the technique of stacking �Wol	���
It estimates the bagged algorithm�s generalization error both more accurately than
the alternative cross�validation�based estimator of the bagged algorithm�s error�
and more accurately than the cross�validation�based estimator of the underlying
algorithm�s error� This error becomes more pronounced as one moves to smaller
test sets� �Note that in the real world� one is often only presented with a single test
set element at a time�� This suggest a novel justi�cation for bagging � improved
estimation of generalization error�



In Section � we review bagging and the bias�variance formula� and Section � presents
several ways to exploit that formula to estimate bagging�s error� In Section � we
present the results of our experiments comparing the accuracy of this estimator
to the accuracy of cross�validation�based estimators� In Section � we discuss our
results� and in Section � we present future work�

� Bagging

We are interested in the �generalization error� C measuring the disparity between
f and hd on a test set X value q� For this paper� for a provided Y �sample of f
at q �i�e�� a random sample of Pf ��jq��� let the generalization error be the square
of the di�erence between h�q� and that sample� Next de�ne the expectation value
h��q� � E�h�q�jf�m� �

P
d P �djf�m�hd�q�� this is the guess at q made by the

average hd� formed by G in response to training sets d of size m sampled from f
according to the likelihood given by P �djf�m�� In this paper� we will implicitly
assume the IID likelihood� P �xi� yijf�m� �

Qm

i�� Pf �y
ijxi���xi�� where ����� the

unconditioned distribution over X � is called the �sampling distribution��

Next de�ne the average Y value of the target at q as f��q� �
P

y yPf �yjq�� Then
up to an overall additive constant that is independent of the learning algorithm�
the expected value of C given f � the training set size m� and q� is given by

E�Cjf�m� q� �
X
d

P �djf�m�
�
hd�q�� f��q�

��

�
�
h��q�� f��q�

��
�
X
d

P �djf�m�
�
hd�q�� h��q�

��
� �
�

This is the famous bias�variance formula �GBD	�� Wol	��� The �rst term on the
right�hand side is the �square of the� bias� It measures how well the average h
matches f � The second term is the variance� It measures how much hd �bounces
around� as d�s sampled from f change�

A learning algorithm is de�ned to be unstable if hd is a sensitive function of d
�Bre	�b�� For such a learning algorithm� the variance contributes substantially to
the expected error� As an example� Breiman argues that due to the existence of
many local minima in the energy surface� the learning algorithm of backprop�trained
neural nets is unstable�

Now �x G and therefore h��q�� A d�independent learning algorithm that responds
with the same hypothesis h��q� for any d it is �trained� on has the same bias as
G� However since that algorithm�s hypothesis does not vary with d� its variance
is zero� Accordingly� if G is unstable� the expected error for that algorithm that
always guesses h��q� regardless of d is signi�cantly less than that of G�

The di�culty with exploiting this e�ect to aid real�world generalization� of course�
is the fact that we can not evaluate h��q� in practice� since we only have access
to a single training set d� whereas h��q� is de�ned in terms of an in�nite number
of training sets� Breiman�s insight was that one can produce a �mimic� for h��q��
Intuitively� one starts with d� and then uses density estimation techniques to esti�
mate f from d� One then samples that estimate repeatedly and runs the learning
algorithm on those samples� and in this way produces a mimic of h��q��



To the degree that one�s mimic of h��q� approximates the true h��q�� guessing with
h��q� rather than hd will result in lower expected generalization error� Breiman
argues that one should similarly expect that bagging improves average misclassi��
cation generalization error �as opposed to the quadratic error discussed above��

The density estimation technique Breiman used also directly provided his samples
of that density estimate� it was the bootstrap procedure� �Efr	� ET	��� This is
both the maximum�likelihood density estimator and an unbiased density estimator�
The samples of the bootstrap�estimated f are called �replicates�� See �WM	�� for
a discussion of some caveats behind the utility of bagging�

� Estimating Bagging�s Error

��� Overview

Under the hypothesis of bagging� the mimic of h��q� is a close approximation to
h��q�� i�e�� h��q� closely approximates the bagged algorithm�s guess� Therefore� up
to a learning�algorithm�independent constant� the bagged algorithm�s generaliza�

tion error is closely approximated by
�
h��q��f��q�

��
� i�e�� it is given by the square

of the underlying algorithm�s bias� Accordingly� by Equation �
�� under these as�
sumptions one could �nd the error of the bagged algorithm at q by subtracting
the underlying algorithm�s variance at q from the underlying algorithm�s expected
error there� �The �learning�algorithm�independent constant� ends up canceling the
similar constant in the bias�plus�variance formula�� To then �nd the average of the
bagged algorithm�s error over all q in a test set� one simply averages the expected
error of the underlying algorithm over all such q and subtracts from it the q�average
of the underlying algorithm�s variance�

Both that underlying algorithm�s variance and expected error can be estimated
in many di�erent ways �e�g�� via cross�validation�� For our purpose though� since
we want to avoid additional retraining of our underlying algorithm� the natural
thing to do is estimate that variance and expected error by using some variant
of the bootstrap procedure � in forming the bagged algorithm we have already
formed the hd�

i
�q� needed by that procedure� and therefore with such an approach

no retraining is needed to perform our estimations�

��� Estimation Schemes Based on the Bias�Variance Decomposition

Our task is to use the bootstrap replicates at hand to estimate both the variance and
the expected error of the underlying algorithm� In this paper we initially consider
the following three estimators V �q� for the variance at point q�

V�� In the �rst variant� we start by calculating the variance at a training set
point xi as one varies the replicates� With � the number of replicates�

V��x
i� �

P
j

�
hd�

j
�xi��

�P
j hd�

j
�xi���

���

� � 

�

We then take the average of the variance over the elements of the test set
�which is what we�re ultimately interested in� to equal the average of V��x

i�
over the xi�



V�� In the second variant� one is careful to avoid the over��tting problems that
can accompany V��x

i�� So one uses a modi�cation of V��x
i� where the two

sums occurring in V��x
i� each only run over those replicates that do not

contain the point xi �with ��� implicitly rede�ned to be the number of such
replicates��

V�� The �nal variant is also almost identical to V��q�� Here the di�erence is
that one does not calculate the V �xi� for all xi and then assume that the
variance at all other points q is given by the average �over xi� of V �xi��
Rather one directly estimates the variance at the points q in the test set
that one is interested in�

V��q� �

P
j

�
hd�

j
�q��

�P
j h

�

dj
�q���

���

� � 

�

The average of the variance over the q in the test set is then simply taken
to be the average of V��q� over those q�

For the expected error of the underlying algorithm we started with the following
two estimators�

E�� E��q� is like V��q�� For each x
i�

E��x
i� �

P
j

�
hd�

j
�xi�� yi

��
�

�

E��q �� fxig� is unde�ned� and we take the average of E��q� over the ele�
ments of the test set �which is what we�re interested in�� E�� to equal the
average of E��x

i� over the xi�

E�� E��q� is identical to E��q�� except that to avoid over��tting problems the
sum only goes over those replicates that do not contain xi� and � is implic�
itly rede�ned to the number of such replicates�

Since there are no yi provided to us for the q in the test set� there is no analogue
of V� for the expected error of the underlying algorithm�

Now for large enough �� for both i � 
 and i � � the di�erenceEi�x��Vi�x� is almost

never strongly negative� since it is closely approximated by
�
�
P

j hdj �x���� � y
��

�where the sum implicitly only runs over the replicates appropriate for the choice
of i�� This is proper behavior� since by de�nition the bagged algorithm�s error is
non�negative� Unfortunately though� unless one is using V� together with E�� or
V� together with E�� it is common for the estimate of the bagged algorithm�s error
to be substantially negative� �I�e�� for i �� j� Ei � Vj is often very negative�� The
simplest way to address such problems is to replace all such negative estimates with
an estimate of zero �so our estimator becomes �Ei � Vj �

��� or perhaps just refuse
to use the o�ending combination of Vj and Ei for the situation at hand�

��� A More Nuanced Decomposition

There are several assumptions that lie behind the use of the bias�variance formula
to estimate the bagged algorithm�s error� not least of which is that the bagged



algorithm�s hypothesis is a good mimic of h��q�� Most of those assumptions can be
circumvented if one instead uses the following decomposition�

In actuality� we are not interested in an average error over many training sets� rather
we are directly interested in the expected quadratic loss of the bagged algorithm
given the replicates and the test set input values at hand� I�e�� we are interested in
the expectation value

Err�q� � E
��X

j

hd�

j
�q�

�
� y

�����f� fd�ig� q
�

where q is a test set input value� Note that since q and the fd�ig are �xed in
this expectation value �as they are whenever we use bagging in practice�� the only
varying quantity is the value of y� formed by sampling f at q�

Simple algebra veri�es that we can write Err�q� � Ec�q�� Vc�q�� where

Ec�q� � E
�X

j

�hd�

j
�q�� y��

�

���f� fd�ig� q
�
�

and

Vc�q� �



�

X
j

h
hd�

j
�q��

�X
i

h�di�q���
�i�

�

Note that Vc�q� is identical to V��q�� except that we divide by � rather than � � 
�
In addition� we can measure Vc�q� exactly for all q in the test set� it is not an
estimate of a quantity� as V��q� is� Accordingly� to calculate what we want to know
�namely Err�q��� the only quantity we must estimate � the only possible source
of approximation error � is Ec�q�� This contrasts with the schemes de�ned above�
for which two quantities must be estimated�

An obvious way to try to exploit our knowing Vc exactly is to estimate Ec with
one of the Ei �E� or E�� introduced above� and then estimate bagging�s error by
subtracting Vc from that Ei� However if we simply use Ei�q��Vc�q� as our estimator
with one of the Ei�q� introduced above� we do not get an improvement over using
Ei�q� � Vi�q� as our estimator �see experimental results below�� This despite the
fact that that Vc�q� is an �in�nitely� more accurate estimate of the quantity we wish
to subtract from Ec than is Vi�q��

Part of the reason for this is that whereas �usually� �Ei�q� � Vi�q�� � � �as is
Err�q�� the quantity �Ei�q� � Vc�q�� is often substantially negative� If one com�
pensates for this by forcing non�negativity on the Ei�q� � Vc�q� estimator �by re�
placing it with �Ei�q�� Vc�q��

� � see above�� performance improves� However the
performance still is no better than that associated with the best of the Ei�q��Vi�q�
estimators� the E��q�� V��q� estimator �see experimental results below��

To understand why the �E��q��Vc�q��
� estimator does not outperform the E��q��

V��q� estimator� note that the inaccuracy accompanying the replacement of Ec�q�
with Ei�q� � an inaccuracy both the Ei�q��Vi�q� estimator and the �Ei�q��Vc�q��

�

estimator must make � can be aligned in sign with the inaccuracy accompanying
the replacement of Vc�q� with Vi�q�� In such cases� replacing Vc�q� with Vi�q� in our



estimator may actually result in a smaller absolute value of the inaccuracy in our
estimate of Ec�q�� Vc�q��

This aligned signs behavior is not a su�cient condition for the superiority of the
Ei�q� � Vi�q� estimator� �Ei�q� � Vc�q��

� may still be superior if jVc�q� � Vi�q�j
is large compared to jEc�q� � Ei�q�j� In fact� if for some particular i the random
variable �iV �q� � Vc�q��Vi were uncorrelated �as one varies over q� with the random
variable �iE�q� � Ec�q��Ei� then even the naive Ei�q��Vc�q� estimator �which has
no positivity constraint� would be more correlated with Errc�q� � Ec�q� � Vc�q�
than would be the Ei�Vi estimator� Intuitively speaking� if one takes two random
steps in a random walk where the steps are uncorrelated with one another �and
both have mean zero�� then one must� on average� have traveled further than if one
had only taken a single random step�

The fact that this is not the case �see experiments below� means that �iE�q� and
�iV �q� are correlated� This is not unexpected� for example for �xed Ei and Vi� if
�iE�q� is quite small� then �iV �q� cannot be too large� since Err�q� � Ei � Vi �
�iE�q�� �iV �q� is always strictly non�negative�

In the limit where �iE�q� and �
i
V �q� are perfectly correlated� Ei�Vi � Ec�q��Vc�q�

exactly� and you can do no better than use the Ei � Vi estimator� However we
would never expect to have such perfect correlation� �In our experiments� they
were quite strongly correlated � correlation coe�cients were on the order of ��	 for
i � � � but not perfectly correlated�� Accordingly there is room to try to improve
upon the Ei � Vi estimator� One way to do this would be a Bayesian approach�
where one uses the data D provided by the o��replicate points in the training
set to estimate E�Ec�q� � Vc�q� j D� Vc�q�� Ec�q� � Vc�q�� E�� V��� An alternative
approach� somewhat akin to empirical Bayesian analysis� is described in the next
section�

��� Using Stacking to Exploit Exact Knowledge of Vc�q�

To exploit the fact that we know Vc�q� exactly� rather than use something as com�
plicated as a full Bayesian approach� we can directly modify our estimate of Ec�q�
based on its observed relationship with Vc�q�� In particular� one can use the boot�
strap information the replicates provide to estimate the relation between Vc�q� and
Ec�q�� with the estimation constrained to enforce the condition Ec�q� � Vc�q�� One
would then use the resultant probability distribution over possible values of Ec�q�
to estimate Ec�q� based on the observed value of Vc�q��

More directly� one can use the bootstrap information to directly estimate Err�q�
from Vc�q�� and then combine that estimate �conservatively� with the E� � V� es�
timate �say by averaging�� This in essence amounts to single�generalizer stacking
with a bootstrap partition set �Wol	��� where rather than try to improve the gen�
eralization� one is trying to improve one�s estimate of its accuracy� �See �WM	��
for discussion of how instead one can successfully use this same basic idea of com�
bining bagging and stacking to get lower generalization error than that given by
conventional bagging��

To implement this idea we used a simple linear model� Err�q� � aVc�q� � b� to
approximate the mapping from Vc�q� to Err�q�� The slope a and intercept b were
estimated by minimizing the summed squared error between the line Err�q� �



aVc�q� � b and the m pairs fVc�x
i�� Err�xi�g provided by the replicates and the

training set� As stacking advises� for each xi� to avoid over�tting we calculated
Vc�x

i� and Err�xi� by only using those replicates d�j that do not contain the point

xi� �So in particular the value of � for these calculations varied from one �xi� yi�
pair to the next� in general��

Given such a �t� one might simply estimate the accuracy of the bagged algorithm at
point q as aVc�q� � b� However again following the advice of stacking �see �Wol	����
we chose to be �conservative�� The accuracy of the linear �t can be estimated by
looking at its �� residual error� If that error is large� we should be wary of our
stacking�based estimate of Err�q�� and might prefer to instead use an estimator
like E��V�� As one implementation of this idea we de�ned a threshold c� If �

� 	 c
�i�e�� if we had a poor linear �t� we estimated the error as E� � V� while if �

� 
 c
�i�e�� a good �t� we estimated the average Err�q� over the test set as

Err �



jtest setj

X
q�test set

aVc�q� � b

By setting the size of c we can tune how conservative we are in our estimate�

We have also investigated a �weighted� scheme combining both guesses rather than
switching between them based on a threshold� In this scheme our estimate of the
bagged algorithm�s error is given by

Err �



jtest setj

X
q�test set

�����
�
aVc�q� � b

�
� �����

�
E� � V�

�

where ����� � 
��
 � ��� and ����� � ����
 � ����

Note that both of these schemes ignore many issues� For example� the bagged
algorithm�s guess is based on the full � replicates� However the number of replicates
going into the calculations of each �Vc�x

i�� Err�xi�� pair varies� When that number
of replicates is small� one would expect the values of the associated �Vc�x

i�� Err�xi��
pair to be a relatively poor indicator of the relationship between Vc�q� and Errc�q�
for the full �based on all � replicates� bagged algorithm� There are a number of
ways to take this account into e�ect in estimating the values of the coe�cients a
and b� we plan to explore some of them in the near future�

� Experiments

��� Experimental setup

Again following the lead of Breiman� the experiments reported in this paper in�
volved simple linear models� Because measuring the cross�validation error estimate
for a bagged learning algorithm is so time�intensive� we used rather simple ex�
periments in this paper� There was noise and �unlike in Breiman�s experiments�
model�misspeci�cation� but the input space was only one�dimensional� Future work
involves extending these experiments to more elaborate domains�

As in the �rst set of experiments in �WM	��� our input and output space were R��
The target function was a third�order polynomial with two Gaussians superimposed�
The coe�cients of the polynomial were randomly chosen from ��
� 
�� The centers of



the two Gaussians were randomly chosen from ��
� 
�� and the widths were randomly
chosen from ���
� ����� The coe�cient of the Gaussians was always 
� Given such a
randomly generated target function Gaussian noise of width ���� was superimposed
to create training sets� The X�components of training sets were chosen randomly
from ��
��� 
���� Test sets consisted of 
�� points chosen the same way as training
sets� with the same amount of noise added�

To understand our learning algorithm� �rst consider the following four di�erent
learning algorithms� These learning algorithms all work by forming the linear com�
bination of six basis functions with the least�squared�error �t to the training set�
�No regularization was used�� Each learning algorithm�s set of six basis functions
consisted of the cosines and sines of three wavelengths� The di�erence between
the learning algorithms was simply in the choice of those wavelengths� All of the
learning algorithms used wavelengths from the set f���� 
� �� �g� since there are four
sets of triples in that set� we had four learning algorithms all told�

All four of these learning algorithms are stable� Accordingly� for them� the bagged
learning algorithm does not outperform the underlying learning algorithm� �It per�
forms slightly worse � see �WM	���� Accordingly� a single unstable learning algo�
rithm is created from these four stable ones� This unstable learning algorithm again
works by forming a least�squared�error �t to the training set� using a set of three
cosines and associated sines� However to create instability� the choice of the three
wavelengths from the set f���� 
� �� �g depends sensitively on the training set� The
choice was made by forming the sum of the input and output components of the
training set� multiplying it by 
�� and then evaluating the result modulo �� The
resultant number was either �� 
� �� or �� Which it was �xed which triple from the
set of four possible wavelengths to use�

Note there is no compelling reason to use such a learning algorithm in the real world
� it was simply a convenient way of introducing instability� which is something that
in the real world you will usually want in order for bagging to be of interest� In
particular� each of the the four stable baggers gives results �concerning the schemes
we investigated for predicted the generalization error of the bagged algorithm� that
are very similar to the experimental results described below for the unstable bagger�

��� Results of the Experiments

The bagged generalizer was formed by combining � � �� bootstrap replicates with
m � ��� To obtain our results we generated ����� target functions as described
above� For each of these one training set was generated with noise� as described
above� Then the test set error was estimated using one of the schemes described
above and this estimate was compared with the actual error on a randomly gener�
ated test set�

Of the six simple �Vi� Ej� estimators� �V�� E�� was found to be the most e�ective�

The summary statistics of some of the variants are presented in Table 
�a�� For
those variants for which Ej � Vi can be negative we replace the negative estimate
with the value ��

For comparison we have also looked at the correlations in the error estimated by
leave�one�out cross�validation for both the underlying learning algorithm G and the



�a�

statistic �V�� E�� �V�� E�� �V�� E�� �V�� E��
Estimated error ��
�� ����
 ���� ���	�

Actual test set error ���	� ���	� ���	� ���	�
j errorj ��
�� ��

 ���� ���	�

Correlation coe�cient ���� ��� ��
�� ��
	�
Best �t slope ����� ����
 ���� ��	�

Best �t intercept ����� ��
�� ���
 ��

�

�b�

statistic x�val G x�val bag
Estimated error ���� ����


Actual test set error ���	 ���		
j errorj ����� ��



Correlation coe�cient ���	� ���		
Best �t slope �� 
�

�
Best �t intercept ��
�� ������

Table 
� Summary statistics for �a� some of the �Vi� Ej� variants� and �b� leave�
one�out cross�validation schemes� Any uncertainties in the results are in the last
signi�cant digit� �j errorj� is the average� over the ����� targets� of the absolute
di�erence between estimated and true errors for each such target� �Correlation
coe�cient� also is between those two errors� The �slope� and the �intercept� values
refer to an least mean squares linear �t between those two errors�

bagged learning algorithm� These results are presented in Table 
�b��

Unsurprisingly� the �V�� E�� estimator performs rather poorly� Because E� is mea�
sured on points in the training set this estimation procedure consistently underes�
timates the true error on the training set� �Although interestingly� the correlation
between its guess and the true error is comparable to that of the �V�� E�� estimator��

However the results from the �V�� E�� estimator are very encouraging� In particular�
for this technique j errorj is no worse than that of the �far more expensive� leave�
one�out cross�validation estimator of the bagged algorithm�s error� In addition there
is almost as much correlation between true and estimated errors as for the leave�one�
out cross�validation estimator� Moreover� the correlation seems to improve further
with larger training sets��

In Table � we present the results of the stacked estimates of the error� We �nd that
both the conservative scheme with c � 
 and the weighted scheme where � and
� are determined by �� improve upon the E� � V� estimate and perform as well
as or better than cross�validation� Of the two stacking algorithms� the weighted
one appears to be the better performing� �We have not explored other stacking
algorithms � we have not even investigated other values of c� so further gains
are possible�� For smaller test sets we found even greater gains in using stacked

�We came to this conclusion based on an additional set of experiments for the �V�� E��
estimator that kept all parameters the same but increased the training set size to ���
Doing this resulted in the correlation coe�cient increasing to ���	
� �The means of the
estimated and true errors for those experiments are ���	� and ����� respectively��



�a�
statistic �conservative� c � 
 �weighted�

Estimated error ���	
 ���	�
Actual test set error ���	� ���	�

j errorj ��

� ��



Correlation coe�cient ���	
 ����

Best �t slope ���� �����
Best �t intercept ��

� ��

�

�b�
statistic E� � V� x�val �weighted�

Estimated error ����� ���	� ���	�
Actual test set error ���	� ���	� ���	�

j errorj ���
� ����� ���	�
Correlation coe�cient ����
 ���� �����

Best �t slope ���� ��
� ��
�
Best �t intercept ���� ��� ����

Table �� Summary statistics for �a� the �conservative� and �weighted� stacking�
based estimation scheme described above for test sets of size 
�� and �b� E� � V��
cross�validation and �weighted estimates� for error on test sets of size 
� See the
caption for Table 
 for de�nitions of the quantities reported�

estimates rather than simply E� � V�� For test sets of size 
 we gained almost ��!
in correlation between our estimate of error and actual error by using stacking�

In summary� for the problems investigated here� we have found that the �V�� E��
estimator works almost as well as cross�validation in estimating error� The more
sophisticated stacking�based schemes actually lead to estimates as accurate� and in
some cases� more accurate than cross�validation�

� Discussion

These results indicate that it is indeed possible to accurately estimate a bagged
algorithm�s generalization error without extra training of the underlying algorithm�
This removes one of the major obstacles to real�world use of bagging� In fact�
based on the results in this paper� one might argue that one reason to use bagging
is that when its generalization error is estimated using the techniques described
in this paper� the resultant estimate is often more accurate than the estimate of
the generalization error of the underlying algorithm given by conventional cross�
validation� �The details of this comparison where one tries di�erent kinds of cross�
validation besides leave�one�out � including in particular bootstrap�based variants
� are the subject of future work��

Simultaneously with our work� Tibshirani conducted a similar study �Tib	��� In his
study� he investigated the �V�� E�� estimator� for classi�cation problems �as opposed
to the regression problems studied in this paper�� The results in �Tib	�� are quite
encouraging� they suggest that the basic idea of the �V�� E�� estimator also works
well on classi�cation problems� Combined with our results this suggests that this
estimation method may be broadly applicable�



Our work complements Tibshirani�s study in a number of ways� We have considered
other estimators beyond those concurrently investigated by Tibshirani� In particu�
lar� we have presented an estimator that exploits stacking and that improves upon
the already e�ective �V�� E�� estimator also investigated by Tibshirani� at least
for the problems we have investigated to date� Moreover� we have made compar�
isons to cross�validation� comparisons that have demonstrated that these estimation
schemes sometimes work better than cross�validation� This result potentially pro�
vides a novel reason to use bagging�

In addition to results similar to those Tibshirani presented concerning the bias of
using �V�� E�� to estimate generalization error� we have also considered other mea�
sures of the e�cacy of that estimator �and others�� Such results are important
because bias alone can be highly misleading� For example� one could conceivably
have zero bias� but perfect anti�correlation between one�s estimator and the quan�
tity being estimated� We have found this not to be the case and observed strong
correlation between estimated and true error�

Finally� we have also drawn attention to the importance of these estimation schemes
in light of the computational cost of bagging� We have also placed the estimation
problem in the context of the bias�variance decomposition�

� Future Work

In addition to the work mentioned in the text� there are many other ways that the
investigations presented in this paper should be extended� Most obviously� it is
important to investigate the performance of the stacking�based estimator on higher
dimensional problems than those investigated here� That estimator�s performance
on classi�cation problems should also be explored� In addition� we plan to explore
stacking schemes where Err�q� depends on other variables besides or in addition to
Vc�q� �e�g�� have it depend on q�� More generally� we plan to explore other kinds of
stacking schemes� e�g�� a more principled way of using the �� mis�t in the stacking
to determine how best to combine the stacker�s estimate of Err�q� with the E��V�
estimate of Err�q��

Taking a di�erent approach� in those cases where we can a�ord to do some cross�
validation �though would prefer not to�� whenever one or more of the �Vi� Ej� es�
timation schemes gives dubious results �e�g� when it estimates a negative squared
error� we can resort to cross�validation� In other words� we can use such dubious
results as a warning "ag� Future work involves characterizing the performance of
such a hybrid estimator�

It is worth noting that many of the concepts introduced in this paper can be ex�
tended to other problems besides the estimation of a bagged algorithm�s general�
ization error� For example� the basic insight that one can measure variance exactly
could perhaps be used to improve the accuracy of cross�validation schemes in which
there is overlap between the validation sets so that the calculated cross�validation
value can be viewed as a sum of �an estimate of� bias and �an estimate of� variance�
�In the variant of such a scheme being suggested here� one would only estimate
bias by means of partitions of the training set � variance would be measured di�
rectly on the test set�� In particular� stacking could perhaps be used to e�ect this
improvement� Similarly� the schemes explored in �WM	�� use stacking to shrink



the generalization error of bagging� the results of this paper suggest that having
Vc�q� be one of the variables involved in the stacking would result in even greater
improvement in generalization error�

Another avenue of future work is to investigate scenarios where hd is non�single�
valued� and in fact is an estimate for f � Such scenarios are quite common� arising
for example whenever a Bayesian learning algorithm is used� �For quadratic loss�
for example� one�s �nal generalization guess at q with such a learning algorithm
would be

P
y yhd�yjq��� For such scenarios� the replicates going into the bagging

can be formed by sampling hd rather than d� If hd is a better estimate of f at
the points fxig than is d � which one would hope is a common case � then such
sampling of hd to form bagging�s guess may result in lower generalization error
than does conventional bagging� �See �Bre	�a� for related discussion�� An even
more speculative issue is how best to estimate generalization accuracy for such a
modi�cation of bagging�
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