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“The plague was nothing; fear of the plague was much more formidable.” 
Henri Poincare 

 
 
ABSTRACT: We model two interacting contagion processes:  one of disease and one 
of fear of1 the disease.  Individuals can "contract" fear through contact with individuals 
who are infected with the disease (the sick), infected with fear only (the scared), and 
infected with both fear and disease (the sick and scared). Scared individuals--whether 
sick or not--may remove themselves from circulation with some probability, which 
affects the contact of individuals and thus the disease epidemic proper.  If we allow 
individuals to recover from fear and return to circulation, the coupled dynamics become 
quite rich, and include multiple waves of infection, such as occurred in the 1918 flu 
pandemic.  We also study flight as a behavioral response.  In a spatially extended 
setting, even relatively small levels of fear-inspired flight can have a dramatic impact on 
spatio-temporal epidemic dynamics. 
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1 We do not define the term “fear.” Readers should feel free to interpret it as “concerned 
awareness,” for example. The point is that it is a behavior-inducing transmissible signal distinct 
from the pathogen itself.  For expository purposes, “fear” will do.  



Motivation 
In classical mathematical epidemiology,2 individuals do not adapt their 

contact behavior during epidemics.  They do not endogenously engage, for 
example, in social distancing (protective sequestration) based on disease 
prevalence.  Rather, they simply continue mixing (often uniformly) as if no 
epidemic were under way. This may be a reasonable assumption for non-lethal 
infections such as the common cold, but for lethal diseases such as AIDS, it is 
known to fail; and for other lethal disease threats, like pandemic influenza or 
bioterrror smallpox, it seems likely to. People may be expected to adapt their 
contact patterns, and this will feed back to alter epidemic dynamics.   
Homo EconomSickus 
 Economists have begun to address this issue, introducing the notion of 
prevalence elastic behavior into epidemic models.  For example, as AIDS 
prevalence grows in a community, people may reduce their number of sexual 
partners.  On prevalence elastic partner selection in AIDS, for example, see 
Kremer (1996).  Predictably, economic epidemiology, as this subfield is called, 
posits optimizing behavior on the part of individuals.  In effect, it models how 
canonically rational individuals would behave given some level of disease 
prevalence.  They behave as homo economicus would behave given the 
associated health risks and costs of protection (e.g., vaccine-seeking).  A term 
used for the resulting dynamics is rational epidemics.   This literature includes 
elegant mathematical work, and captures—in the notion of prevalence 
elasticity—a clearly important phenomenon. 
Boundedly Rational Epidemics  
 However, prevalence is treated as a kind of exogenous signal 
(suspiciously like a perfectly competitive price) to which agents respond with 
some elasticity.  They do not interact directly with one another to gain information 
on prevalence or in deciding how to behave.  The approach, therefore, seems ill-
suited to capture cases where endogenous epidemics of fear inspire widespread 
adaptations unrelated to prevalence.  Such cases abound:  in 1996, millions of 
Indians fled Surat province to escape pneumonic plague.  Yet, not a single case 
of pneumonic plague was actually confirmed.  Prevalence of the disease itself, in 
other words, was zero. The model developed here handles cases where the fear 
is contagious, even though the pathogen is not (e.g., anthrax).  Indeed, it handles 
cases where the event in question is not a pathogen at all, such as a chemical or 
radiological event, or natural disaster, such as an earthquake or volcano. 

A second problem with the literature is that, even models that do include 
prevalence-dependent behavior assume behavioral changes that are depressive 
in their effect on the epidemic - protective self-isolation (sequestration) being the 
most common.  However, research on mass behavior during crises (and even 
epidemics specifically) records another behavioral response that is common - 
                                            
2 This is the tradition of ordinary differential equations with perfect mixing (mass action kinetics) 
beginning with the 1927 Kermack-McKendrick model, which still dominates mathematical 
epidemiology (see Murray 1989, Anderson and May 1991).  
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flight.  Unlike protective sequestration, flight has the potential to increase long-
range mixing across spatial regions, exacerbating epidemics. In the model 
introduced here, we expand the behavioral response repertoire of agents 
infected with fear to include both flight and protective self-isolation.  

In summary, most infectious disease modeling ignores behavior.  Models 
have begun to include prevalence elastic behavior.  It typically damps the 
epidemic.  We introduce a model where fear and pathogen are coupled. Fear can 
spread independent of prevalence.  In a spatially extended variant, flight is added 
to the behavioral repertoire.  The full model can generate multi-wave dynamics, 
and elegantly shows how even a small amount of flight can amplify epidemic 
severity.  To begin, we present the no-flight version. 

PART I:  THE BASIC NO FLIGHT MODEL 
  For expository purpose, we imagine two contagion processes: one of 

disease proper, and one of fear about the disease.3  Individuals contract disease 
only through contact with the disease-infected (the sick). However, individuals 
can contract fear through contact with the disease-infected (the sick), the fear-
infected (the scared, or worried well), or those infected with both fear and 
disease (the sick and scared).  Scared individuals—whether sick or not—may 
withdraw from circulation with some probability, and return to circulation having 
recovered from fear, all of which affects the course of the disease epidemic 
proper. 

Agents can occupy one and only one of seven states at any time.  The 
model’s (seven dimensional) state space is shown in Figure 1.   

 
S:  Susceptible to pathogen and fear 
IF: Infected with fear only 
IP: Infected with pathogen only 
IPF: Infected with pathogen and fear 
RF: Removed from circulation due to fear 
RPF: Removed from circulation due to fear and infected 

with pathogen 
R: Recovered from pathogen and immune to fear 

     Figure 1: Possible States 
 

Let β  denote the per-contact disease transmission rate, and let α denote the 
per-contact fear transmission rate. If we now imagine a susceptible individual 
(i.e.,  neither sick nor scared) having contact with one who is both sick and 
scared, then the transmission rates of fear, infection, and various combinations 
are given in Table 1.  For instance, the probability that the first individual (neither 
sick nor scared) contracts neither bug nor fear is (1-α)(1- β ), and so forth.      
  

                                            
3 As noted, the model in fact does not require that the disease be contagious—or for that matter, 
that the event which sparks the fear epidemic be a disease of any sort.  It could be a radiological 
event, the DC snipers, 9/11, or an earthquake.  We will return to these forms of the model. 
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 Get scared Not get scared  

Get sick αβ  (1 - α) β  

Not get sick α (1-β ) (1-α)(1- β ) 
  Table 1:  Transmission Probabilities 

 
Finally we specify parameters controlling the rate at which individuals self-isolate 
due to fear and recover from fear and return to circulation.  These are given in 
Figure 2. 
 

λ1: Rate of removal to self-isolation of those infected with fear only  
λ2: Rate of recovery from infection with pathogen 
λ3: Rate of removal to self-isolation of those infected with fear and 

pathogen 
H:  Rate of recovery from fear and return to circulation 

Figure 2: Parameters governing Removal and Return 
 
With all of this in place, the model can be implemented as a classical well-mixed 
ordinary differential equation (ODE) system.  The appropriate generalization of 
the standard Kermack-McKendrick (1927) ODE set-up is diagrammed in Figure 3 
and formalized in the equations listed in Figure 4.  The initial agent-based model 
will closely mimic these well-mixed differential equations.  Each representation 
will inform the other. Having examined the well-mixed no-flight models in some 
detail, we will extend the agent model to better represent space, enabling the 
study of fear-inspired flight. 
 

Figure 3: State transition chart. 
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     Figure 4: Classical SIR Differential Equations Formulation 
 
Tracing through some simple state transitions, individuals susceptible to the Bug 
and Fear, S, flow into the Infected (with pathogen only) pool IP at rate β(1-α)SIP  

and into the pool infected with fear only IF at rate (1-β)αSIP.  Similarly, those who 
self-isolated out of fear only, denoted RF (removed through Fear) return to the S 
pool at rate H RF, where the constant H would yield exponential decay of 
individual fear, ceteris paribus.  Clearly this most elementary form of the model 
assumes constant population; all the right-hand sides sum to zero. 

While the differential equation form has the advantage of considerable 
elegance (exploited below to derive analytical expressions for R0), there are 
some important extensions that are more naturally studied in agent-based 
models.  For example, one mechanism for the multiple waves of 1918 was the 
premature government decisions to lift social distancing measures which were 
effective at reducing transmission.  In many cities of the US, imposed bans on 
public gatherings, the closure of schools, and other measures meant to reduce 
transmission of influenza, were lifted once cases appeared to be at a minimum.  
Several cities prematurely declared victory over the epidemic and abruptly ended 
control measures.  These edicts produced sharp step-functional returns from 
isolation and, as show below, these could have produced the multiple waves.  In 
linear differential equation models step-functional forcings are elegantly handled 
through the use of Laplace Transform methods.  But for the nonlinear equations 
above, these methods are not available, and numerical simulation is normally 
required.  Agent-based models accommodate these step-functional forcings very 
naturally, and are developed next.   

We will then extend this agent model to a version with both self-isolation 
and long-range flight.  Of course, one could in principle formulate this as a high 
dimensional meta-population ODE model with many patches and coupling 
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coefficients.4  However, with the inclusion of both self-isolation and flight, the 
result would be a fairly opaque ODE system.  The agent version will prove very 
transparent, and quickly yields the main result: even a small level of flight can 
dramatically affect contagion dynamics.  The next step, then, is to present the 
agent version of the ODE model presented above, and exercise it on some basic 
cases.   
Agent-Based Computational Model 
 We retain the same seven pools enumerated above, and the qualitative 
flow chart of Figure 3.  While local interactions are easily introduced, we will 
assume for exposition that agents move to random sites on a 200 X 200 site 
lattice with periodic boundary conditions (i.e., a torus).  The agent population is 
8000.  When an agent moves to a new location, it interacts with a randomly 
selected Moore neighbor (agents on all eight neighboring sites), if such exists.  
Simulations begin with a single infected agent, so I(0) = 1.   Given a contact, 
transmissions of fear and disease are governed by α and β, defined earlier.  For 
this basic version, the progression of random agent locations and neighbors is 
intended to mimic the well-mixed contact dynamics of the classical model. 
Runs with Fear and Disease Uncoupled 

The first elementary run of the model (Figure 5) posits no removal from 
circulation, either by fear (clamped at zero) or by disease (e.g., by morbidity or 
mortality), and no recovery from either the diseased or fear states.  This is the 
classical SI case, and agrees with the special case of our general ODE model, á 
la Kermack-McKendrick.   S falls, I rises in familiar S-curves. 

 

          
     Figure 5:  Run 1. Pure Bug, No Fear, No Removal (α=0, β=.04) 

                                            
4 Formulation as a reaction diffusion system on a spatial continuum might also be possible. 
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In Run 2, we reverse things, setting bug transmission (β) to zero, and fear 
transmission (α) to a positive value. We seed the simulation with a single case of 
fear rather than disease.  Predictably, we generate a pure fear epidemic with no 
underlying disease.  The Salem Witch Hunt would be an example, though, 
tragically, there are innumerable further ones.  Analogous to the first Run, all 
susceptibles transfer into the Fear pool, despite actual disease (Red) remaining 
at zero. 
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      Figure 6:  Run 2. Salem Witches.  Pure Fear (α=0.04), No Bug (β=0) 
 
Runs 1 and 2 seem reasonably predictable, and are symmetrical to one another: 
at β=.04 and α =0, we get one pair of S-curves.  Reverse these settings (β=0, α 
=.04) and we get the reverse pair. Surely one would expect that if we set 
α=β=.04, the two epidemic S-curves should coincide.  Is this what happens?  
Surprisingly, Run 3 shows the answer to be no (see Figure 7).   
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     Figure 7: Run 3. Coupled Case with α=β=0.04 
 
The S-curves do not coincide   Indeed, ceteris paribus, the fear epidemic is faster 
then the bug epidemic.  Why?  The reason is that there are more pathways by 
which to contract fear than there are to contract bug.  One can contract disease 
from contact with either of two pools: IP or IPF.  But one can contract Fear by 
contact with any one of three pools: IB, IBF, or IF.  Obviously, once there is any 
fear, the latter three is a bigger set with which contact is more likely.  
Insights from the Differential Equations: Reproductive Rates of Fear and 
Disease 
 Thus far, we have considered an SI model without recovery.  The length of 
time for which people are transmissible with pathogen or fear greatly affects the 
speed at which epidemics progress.  Since this agent model is essentially 
mimicking the differential equations, one might ask whether a classical analysis 
of those equations is illuminating on this point.  One measure of speed is the 
basic reproduction number—the R0, or “R-naught.”  This is defined as the 
expected number of secondary cases from a typical infectious individual during 
the entire period of their infectiousness in a completely susceptible population. 
The basic reproduction number of either the pathogen or fear can be found by 
calculating the spectral radius of the next generation operator.  Diekmann et al. 
(1990) describe a procedure for estimating R0 about the disease-free equilibrium.  
The basic reproduction number of the pathogen as a function of the transmission 
coefficient and rates of recovery or withdrawal from contact from the above 
system of equations is: 
 

2 3 3
0

2 2 3

( )(pathogen)
( )

R β λ λ αλ
λ λ λ
+ −

=
+      [1]  
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Two types of individuals are infectious with the pathogen, IP and IPF.  The 
average residence time in each of these states is 1/ λ2 and 1/(λ2+λ3), 
respectively.  Individuals in these states will infect others at a rate of β per unit 
time. R0(pathogen) can be interpreted as a weighted sum of the product of β and 
the residence times in the two infectious states weighted by the fraction of those 
that become infected by the pathogen who transit to IP (1-α) and IPF (α).  
The basic reproduction number of fear is given by: 

 

0
1 2 3

(fear) max ,R α βα
λ λ λ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

     [2] 

 
The first term above, α/λ1, is the product of the transmission coefficient of fear, α, 
and the duration of the infectious period of fear, 1/ λ1.  This is the classical form 
of the basic reproductive number for a pathogen in a SIR model with a closed 
population.  The second term dictates the growth of the fear epidemic when the 
length of time that individuals infected with both fear and pathogen are 
transmitting fear is longer than the length of time that people with just fear 
transmit the fear.  The second term of [2] is greater than the first term only when 
the ratio of the infectious period of fear, 1/λ1 to the infectious period of those with 
pathogen and fear in this system 1/(λ2+ λ3) is less than the transmission 
coefficient of the pathogen, β.  In this case, the basic reproduction number of the 
pathogen always exceeds the basic reproduction number of fear.   

In the case where α=β and λ1=λ2=λ3=λ we find, as we found in the 
simplified SI agent model, fear spreads faster than disease, as R0 (fear)=α/λ > 
R0(pathogen)= α/2λ (α and λ are both non-negative).  When all three rate 
constants and the transmission coefficients differ from one another, the basic 
reproductive number of fear exceeds the basic reproductive number of the 
pathogen precisely when: 

 

1 2 3

1 3 2 3 1

( )
( )( ) 3

βλ λ λα
λ λ λ λ βλ λ

+
>

+ + −      [3] 

  
In the absence of fear or pathogen, these models collapse to SIR or SIRS 
models in pathogen or fear.  In the absence of transmissible fear, α =0, 
R0(pathogen) [1] reduces to the classical R0 of β/λ3.  In the absence of pathogen, 
the model collapses to an SIRS model of fear due to the recovery of individuals 
to the susceptible state and R0(fear) is α/λ1.  Clearly, then, the coupled model 
subsumes the classical one.  

In spatially extended settings where fear may inspire long-range migration, 
the possibility of fear propagating faster than bug will prove highly consequential.  
It may also generate high congestion undermining evacuation efforts and 
exacerbating exposures. Now we turn to 1918. 
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Explaining Multiple Waves of Infection in 1918: Bottom-Up and Top-Down 
Mechanisms 

An outstanding question in epidemiology has been to account for the 
multiple temporal waves of incidence observed in the 1918 Pandemic Flu.  
Figure 8 shows the temporal mortality pattern due to influenza in four cities of the 
United States.  
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            Figure 8: Temporal Mortality Pattern 

  
It is clear from the statistical work of Louis (Yue, et al., in prep) and others 

that no simple variation on the classical well-mixed differential equations will 
generate these waves.  There has been elegant recent work adapting earlier 
ideas (Kremer, 1996) of prevalence elasticity to this important case (Bootsma 
and Ferguson, 2007).  These authors have suggested that temporal waves in the 
incidence of influenza during the pandemic of 1918 were caused by behavioral 
responses to the pandemic which reduced contact, temporarily halting the 
increase of influenza infections.  However, cases surged once again a few weeks 
after the initial peaks, once these behavioral adaptations were relaxed.  Bootsma 
and Ferguson fit deterministic models to these patterns of multiple waves using 
both endogenous (bottom up) changes in contact rates and changes in contact 
rates due to (top down) edicts from central authorities.  This does indeed 
generate multiple waves, and the authors have calibrated these impressively to 
the historical data.  But either mechanism alone is sufficient, as we now show.   
Endogenous Account in the ODE Model 

The interaction of incidence of pathogen and fear of the pathogen can 
create temporal patterns with multiple peaks in the incidence of the infectious 
disease.  An example is shown in Figure 9a.  In this numerical simulation of the 
model, the incidence of the pathogen initially increases, then as the epidemic of 
fear increases, the number of susceptible individuals exposed to infectious 
individuals declines because many individuals remove themselves from 
circulation due to fear. This causes a temporary decline in the number of 
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individuals infected with the pathogen, but as individuals return (from removal) to 
the susceptible compartment having recovered from fear, transmission of the 
pathogen increases the number of individuals in IP ,creating a second peak in 
disease cases.  Figure 9b shows a plot of the IP compartment against the IF,  
showing (i) the initial increase of both pathogen and fear from an initial state of 
IP=0.001, IF=0, (ii) a decrease in pathogen while fear continues to increase, (iii) 
the resurgence of the pathogen as fear decreases and finally, (iv) a decline of the 
pathogen prevalence to 0.    
 

      
      
     Figure 9a: Incidence of Pathogen          Figure 9b: Phase Portrait 
  
  
Here, we suggest that these patterns might be created purely by the endogenous  
interplay between the spread of the influenza virus and the spread of fear or 
behavioral adaptation to the virus, but in a simpler memory-less system quite 
different from that of Bootsma and Ferguson.    
Exogenous Account in the Agent Model 
 Let us now extend the agent model above to give an alternative “Top-
Down” account.  In the agent model elaborated earlier, the infection proper was 
of type SI.  Now let us make it a classic SIR disease.  Scared agents, whether 
infected or not, withdraw from circulation with some probability (set at 0.8) 
throughout, and stay in “the basement” (i.e., in isolation) until government issues 
an “all clear.” We assume that this is issued when prevalence falls below some 
threshold, measured (by the government ) as the fraction infected (I/N).    

Posit endogenous distancing due to fear, as before.   But now assume 
that public health authorities announce “all clear” at a low infection level—let us 
say 0.5%.  It is certainly understandable that 1918 authorities would make the 
assumption that once the infection level has fallen to one half of one percent, it is 
safe to lift the measures.  But it was wrong.  Multiple waves ensue, as shown in 
Run 5 (Figure 10). 
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    Figure 10: Multiple waves. 

 
What explains this?  The differential equations elaborated at the outset tell the 
essential story.  Indeed the simplest  version—the fear-free (β=0) Kermack-
McKendrick Model gives the answer.   

Authorities surmised that a low level of infection made it safe to relax 
distancing. But they lacked the central Kermack-McKendrick (1927) insight that it 
is S, not I, that is the epidemic threshold.  For an SIR process, the condition for 
an epidemic to take off (i.e., for dI/dt to be positive) is, in fact, that the susceptible 
pool exceed the relative removal rate, ./ βλ   That is: 

  

β
λλβ >⇔>−= SISI

dt
dI 0      [4] 

  
In 1918, infection and distancing had reduced the susceptible pool S to sub-
threshold, and I was indeed declining.  But the abrupt release of susceptibles 
from isolation poured fuel on the infective embers, pushing S back over the 
threshold, producing a 2nd wave. 
Summary on 1918 Temporal Waves 

The present model can thus generate waves through decentralized 
(bottom up) behavioral adaptations or through centralized (top down) premature 
government relaxations of isolation.  It may be that different mechanisms or 
mixes of them were at play in particular cases.  Further research is surely 
warranted.    
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PART II. SPATIAL PROPAGATION: 
THE EXTENDED AGENT MODEL WITH FLIGHT 

 
 As noted earlier, most research in epidemiology does not take into 
consideration the possibility of behavioral adaptations that are prevalence-
dependent (see above). Those models that do include prevalence-dependent 
behavior almost exclusively assume behavioral changes that are depressive in 
their effect on the epidemic, protective self-isolation (sequestration) being the 
most common . 
 However, research on mass behavior during crises (and even epidemics 
specifically) records another behavioral response that is common—flight. 
Historical cases of flight from epidemics are numerous, dating back at least as far 
as Medieval Europe, where the morality of fleeing from the Plague was a central 
and divisive topic among early modern Jesuits (Martin 1996). In the 19th century, 
large scale flight was a common behavioral response to urban epidemics of 
cholera and yellow fever. For example, more than 25,000 residents (almost half 
the population) fled Memphis when yellow fever struck in summer 1878, and as 
the fever spread through the South the highest incidence was in cities directly 
along railroad lines leading out of Memphis (Tennessee Encyclopedia). Within 
days of cholera’s appearance in Cairo in 1831, the Nile “swarmed with craft of 
every description filled with refugees from the stricken city” as a mass exodus 
began (Kuhnke 1990). Cholera arrived in North America for the first time in 1832, 
carried by Irish immigrants fleeing the epidemic in Ireland. As it spread rapidly 
through the Midwest and Northeast of the United States, flight was common: “the 
appearance of cholera in even the smallest hamlet was the signal for… headlong 
flight, spreading the disease throughout the surrounding countryside” (Rosenberg 
1962). Flight was also a response to 20th century epidemics such as polio, 
influenza, and plague. In some cases, fear alone was sufficient to cause flight 
(even in the absence of any confirmed disease) and “sociogenic” illness—for 
example in Surat India in 2006, and Melbourne Australia in 2005 (Bartholomew 
and Wessely 2002, Bartholomew 2005, IANS 2006).  

The potential for flight as a behavioral response to disease prevalence has 
important consequences for epidemic modeling.  Unlike protective sequestration, 
flight has the potential to increase mixing in the short term, and across spatial 
regions (even if it ultimately removes individuals from circulation locally). In the 
model developed below, we expand the behavioral response repertoire of agents 
infected with fear to include both flight and protective self-isolation. For now, a 
specific behavioral response is a characteristic of each individual—some agents 
always flee when afraid, others hide. We explore the impact of differing levels of 
flight on the epidemic dynamics. 
Set-up  

The agent model with self-isolation and flight takes place on a 2D lattice. 
Each agent (except the infection seeding agent who starts in a corner) is given a 
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random initial location.  Normally, agents move a short distance5 each round in a 
random walk, and interact with a random agent in their vision (if any). Contact 
spreads both the bug and the fear according to α andβ .  However, once agents 
contract fear they may adapt their movement and contact behaviors.  

The model has three types of agents, representing three different 
characteristic responses to fear. The first type, “fleers”, respond to fear by 
selecting a distant location6 on the lattice and moving directly to that location as 
fast as possible.  Upon reaching the goal location this agent will recover from fear 
and his movement rule reverts to the random walk.  The second type, “hiders”, 
respond to fear by removing themselves from circulation for a specified number 
of iterations (during which they neither move nor contact other agents). The third 
type, “ignorers”, never change their behavior and remain in normal circulation. 
  Parameters of the model include the movement and contact radii, the 
distribution of agents across the three types of behavioral responses, and the 
duration and transmission rates of fear and the bug7. 
Sensitivity to Flight 

The results from this agent model highlight the importance of flight as an 
avenue for research—even a small amount of flight can have a dramatic impact 
on epidemic dynamics.  

First, to establish a baseline, we consider the simple form of the model in 
which fear does not play a role—no one hides or flees. All agents are “ignorers”. 
In a representative run (shown in Figure 11) the model produces standard SIR 
curves. 
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” Figure 11: Standard SIR curves in a representative simulation run with all “ignorers

                                            
5 For the runs reported here, this is a random Moore neighboring site. 
6 For the runs reported here, this is a random site 15 sites south of the agent’s current location. 
7 The parameters used for all of the simulation experiments discussed in this section, are: 1800 
agents on a 120x120 lattice, alpha = 0.11, beta = 0.1, lambda = 0.015, illness duration = 100 
periods, fear duration = 800 periods  
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r and disease, as described 
above—

l 
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(12a) 

 (12b) 
Figure 12 (a & b): Epidemic duration and total incidence under three different pa settings. 

In a 30-run analysis, the average epidemic duration with all agents se
“ignorers” is 742.1 periods (SE 9.5), and average total incidence is 99.9%. (See 
the leftmost bars of Figures 12a and b, respectively) 

We now introduce the coupled epidemic of fea
with only protective isolation allowed as a response to fear. This reduces 

incidence enormously (to an average of 27.8%) and stops the epidemic earlier (in 
an average of 647 rounds). See the middle bars of Figure 12a and b below. 

Next, we introduce flight, but only a small amount—90% of agents stil
d to fear by hiding (removing themselves from circulation), and only 10%

flee. How does this small proportion of flight affect incidence and duration of the 
epidemic? 

rameter 
Each bar in the chart represents an average across 30 simulation runs for a given parameter 
setting, with standard error range. When all agents hide, the epidemic is shorter and has 
substantially lower incidence that with no adaptive behavior.  When a small percentage of agents 
flee (with the majority hiding), however, incidence goes up substantially even as the duration falls 
farther. 
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As Figure 12 above shows, even a small amount of flight has dramatically 
increased the spread of the epidemic—resulting in much higher overall inci
with a shorter duration (comparing the rightmost bars of 12a and b to the others). 

Of course, the 10% of agents who are fleeing are also not hiding. By 
remaining in circulation, even non-fleeing non-hiders have an inflammatory effect 

dence 

(13a) 

 (13b) 
 
Figure 13 (a & b): A comparison of epidemic duration and total incidence with 10% “fleers” 
ersus 10% “ignorers”. As before, each bar in the chart represents an average ss 30 

ulation runs for a given parameter setting, with standard error range. The runs with 10% 
“ignorers” have similar incidence to runs with 100% “hiders”, and similar duration to runs with 

on the epidemic. So is it the flight or simply the increased circulation from non-
hiding which is driving the results shown in Figure 12? To answer this question, 
we ran the simulation with 90% “hiders” and 10% non-hiding, non-fleeing 
“ignorers”. As Figure 13 illustrates, the results from these runs differ noticeably 
from the runs with actual flight—suggesting that flight has a substantial impact 
above and beyond increasing the number of “non-hiders”.  

acrov
sim
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100% “ignorers”. By contrast, the runs with 10% “fleers” have much higher incidence and lower 
duration. 
 

Not only does flight increase incidence dramatically, but it also increases 
the rapidity and geographic scope of the epidemic. One way to measure the 
eograpg

c
hic spread of the bug is to begin the epidemic with an index case in one 

orner

 

 
Figure 14: The percentage of runs (out of 30) for each parameter setting in which the 
epidemic spreads fully across the landscape, from an index case in one corner of the 
lattice all the way to the opposite corner. 

 
Furthe
withou n 

igure

                                           

 of the 2D lattice, and observe if and when the bug reaches the far 
diagonal corner8. Figure 14 shows that epidemics rarely spread fully across the 
lattice with no flight—but almost always spread fully across the lattice with even a
small amount of flight. 

rmore, in rare cases where the epidemic spreads fully across the lattice 
t flight, it takes much longer to do so than in cases with flight, as shown i
 15. F

 
8 Obviously, unlike the lattice with periodic boundary conditions used above to mimic the ODEs, 
this lattice is not a topological torus. 
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         Figure 15: Epidemic Spread Time (Runs with corner-to-corner spread). 
 
For an illustration of how flight spreads the epidemic quickly across the 

lattice, increasing both incidence and speed, see Figure 16 below.  Blue dots 
represent susceptibles (infected with neither fear nor pathogen); yellow dots, 
infected with fear alone; orange dots, acting on fear; red dots, infected with 
pathogen; white dots, recovered. In the first screen shot (16a), with no flight, 
yellow agents (infected with fear) form a moving buffer zone between the 
epidemic of pathogen and the susceptible agents. Since the fear arrives first, 
agents can respond by removing themselves from circulation before they are 
infected with pathogen.  In the second screen shot (16b), with a small amount of 
flight, a few infected fleeing agents pierce this buffer zone—moving the pathogen 
quickly into the susceptible pool. 

 (16a) 
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 (16b) 
 
Figure 16 (a & b): Screenshots from the agent-based simulation model without and with flight. 
Each agent is represented by a colored dot on the lattice.  
Conclusion 
 These specific quantitative results are, of course, dependent on the 
specific parameters used above.  But the larger qualitative point is robust: 
“prevalence elastic” behavioral adaptation need not damp the force of an 
epidemic. If flight is admitted, this form of “social distancing” can amplify the 
contagion and spread it spatially.  This exposition invites a great deal of further 
work, including development of the multi-patch ODEs with flight, full sensitivity 
analysis of the agent-based model, further “dialogue” between the two, and 
calibration to historical cases.   
 In general, this effort enforces the overarching point that infectious 
disease models must incorporate behavior.  Indeed, the model—while explored 
for contagious disease here—can be applied to a wide range of cases where 
momentous contagions of fear eventuate from events that are not themselves 
contagious.   
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