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Abstract

We study the small-world network model, which mimics the transition be-

tween regular-lattice and random-lattice behavior in social networks of in-

creasing size. We contend that the model displays a normal continuous phase

transition with a divergent correlation length as the degree of randomness

tends to zero. We propose a real-space renormalization group transformation

for the model and demonstrate that the transformation is exact in the limit

of large system size. We use this result to calculate the exact value of the

single critical exponent for the system, and to derive the scaling form for the

average number of \degrees of separation" between two nodes on the network

as a function of the three independent variables. We con�rm our results by

extensive numerical simulation.
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I. INTRODUCTION

Folk wisdom holds that there are \six degrees of separation" between any two human

beings on the planet|i.e., a path of no more than six acquaintances linking any person to any

other. While the exact number six may not be a very reliable estimate, it does appear that

for most social networks quite a short chain is needed to connect even the most distant of the

network's members [1], an observation which has important consequences for, amongst other

things, the spread of disease [2,3] and evolutionary game theory [4], as well as related topics

concerning genetic regulatory networks [5] and networks of synchronized oscillators [6,7].

At �rst sight this does not seem too surprising a result; random networks have average

vertex{vertex distances which increase as the logarithm of the number of vertices and which

can therefore be small even in very large networks [8]. However, real social networks are

far from random, possessing well-de�ned locales in which the probability of connection is

high and very low probability of connection between two vertices chosen at random. Watts

and Strogatz [9] have recently proposed a model of the \small world" which reconciles these

observations. Their model does indeed possess well-de�ned locales, with vertices falling on a

regular lattice, but in addition there is a �xed density of random \shortcuts" on the lattice

which can link distant vertices. Their principal �nding is that only a small density of such

shortcuts is necessary to produce vertex{vertex distances comparable to those found on a

random network.

In this paper we study the model of Watts and Strogatz using the techniques of statis-

tical physics, and show that it possesses a continuous phase transition in the limit where

the density of shortcuts tends to zero. We investigate this transition using a renormaliza-

tion group (RG) method and calculate the scaling forms and the single critical exponent

describing the behavior of the model in the critical region.
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II. THE SMALL-WORLD MODEL

Previous studies have concentrated on the one-dimensional version of the small-world

model, and we will start with this version too, although we will later generalize our results

to higher dimensions. In one dimension the model is de�ned on a lattice with L sites and

periodic boundary conditions (the lattice is a ring). Initially each site is connected to all

of its neighbors up to some �xed range k to make a network with coordination number

z = 2k [10]. Randomness is then introduced by independently rewiring each of the kL

connections with probability p. \Rewiring" in this context means moving one end of the

connection to a new, randomly chosen site. The behavior of the network thus depends on

three independent parameters: L, k and p. In this paper we will study a slight variation

on the model in which shortcuts are added between randomly chosen pairs of sites, but no

connections are removed from the regular lattice. For large L, this makes no di�erence to

the mean separation between vertices of the network up to order p2k�1. At order p2k and

higher it does make a di�erence, since the original small-world model is poorly de�ned in

this case|there is a �nite probability of a part of the lattice becoming disconnected from the

rest and therefore making an in�nite contribution to the average distance between vertices,

and this makes the distance averaged over all networks also in�nite. Our variation does not

su�er from this problem and this makes the analysis signi�cantly simpler. In Fig. 1 we show

some examples of small-world networks.

We consider the behavior of the model for low density p of shortcuts. The fundamental

observable quantity that we measure is the shortest distance between a pair of vertices on

the network, averaged both over all pairs on the network and over all possible realizations

of the randomness. This quantity, which we denote `, has two regimes of behavior. For

systems small enough that there is much less than one shortcut on the lattice on average,

` is dominated by the connections of the regular lattice and can be expected to increase

linearly with system size L. As the lattice becomes larger with p held �xed, the average

number of shortcuts will eventually become greater than one and ` will start to scale as

3



logL. The transition between these two regimes takes place at some intermediate system

size L = �, and from the arguments above we would expect � to take a value such that the

number of shortcuts pk� ' 1. In other words we expect � to diverge in the limit of small p

as � � p�1. The quantity � plays a role similar to the correlation length in an interacting

system in conventional statistical physics, and its divergence leaves the small-world model

with no characteristic length scale other than the fundamental lattice spacing. Thus the

model possesses a continuous phase transition at p = 0, and, as we will see, this gives rise

to speci�c �nite-size scaling behavior in the region close to the transition. Note that the

transition is a one-sided one, since p can never take a value less than zero. In this respect the

transition is similar to transitions seen in other one-dimensional systems such as 1D bond

or site percolation [11], or the 1D Ising model [12].

Barth�el�emy and Amaral [13] have suggested that the arguments above, although correct

in outline, are not correct in detail. They contend that the length-scale � diverges as

� � p�� ; (1)

with � di�erent from the value of 1 given by the scaling argument. On the basis of numerical

results, they conjecture that � = 2

3
. Barrat [14], on the other hand, has given a simple

physical argument which contradicts this, indicating that � should be greater than or equal

to 1. Amongst other things, we demonstrate in this paper that in fact � is exactly 1 for all

values of k [15].

III. RENORMALIZATION GROUP CALCULATIONS

Let us �rst consider the small-worldmodel for the simplest case k = 1. As discussed in the

preceding section, the average distance ` scales linearly with L for L� � and logarithmically

for L� �. If � is much larger than one (i.e., we are close to the phase transition), this implies

that ` should obey a �nite-size scaling law of the form

` = Lf(L=�); (2)
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where f(x) is a universal scaling function with the limiting forms

f(x) �

�
constant for x� 1

(logx)=x for x� 1.
(3)

In fact, it is easy to show that the limiting value of f(x) as x ! 0 is 1

4
. A scaling law

similar to this has been proposed previously by Barth�el�emy and Amaral [13] for the small-

world model, although curiously they suggested that scaling of this type was evidence for

the absence of a phase transition in the model, whereas we regard it as the appropriate form

for ` in the presence of one [16].

We now assume that, in the critical region, � takes the form (1), and that we do not

know the value of the exponent � . Then we can rewrite Eq. (3) in the form

` = Lf(p�L); (4)

where we have absorbed a multiplicative constant into the argument of f(x), but otherwise

it is the same scaling function as before, with the same limits, Eq. (3).

Now consider the real-space RG transformation on the k = 1 small-world model in which

we block sites in adjacent pairs to create a one-dimensional lattice of a half as many sites.

(We assume that the lattice size L is even. In fact the transformation works �ne if we block

in groups of any size which divides L.) Two vertices are connected on the renormalized

lattice if either of the original vertices in one was connected to either of the original vertices

in the other. This includes shortcut connections. The transformation is illustrated in Fig. 1a

for a lattice of size L = 24.

The number of shortcuts on the lattice is conserved under the transformation, so the

fundamental parameters L and p renormalize according to

L0 = 1

2
L; p0 = 2p: (5)

The transformation generates all possible con�gurations of shortcuts on the renormalized

lattice with the correct probability, as we can easily see since the probability of �nding a
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(a)

(b)

Figure 1 The RG transformations used in the calculations described in the text:

(a) the transformation used for the k = 1 system; (b) the transformation used for

k > 1, illustrated in this case for k = 3. The shading of the sites indicates how they

are grouped under the transformations.

shortcut between any two sites i and j is uniform, independent of i and j both before and

after renormalization.

In almost all cases, the geometry of the shortest path between any two vertices is un-

changed by our transformation, and it is straightforward to show that the number of vertex

pairs for which the geometry does change is negligible for large L and small p. The length of

a particular path is, on average, halved along those portions which run around the perimeter

of the ring, and remains the same along the shortcuts. For large L and small p, the portion

of the length along the shortcuts tends to zero and so can be neglected. Thus
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`0 = 1

2
` (6)

in this limit.

Eqs. (5) and (6) constitute the RG equations for this system and are exact for L � 1

and p� 1. Substituting into Eq. (4) we then �nd that

� =
log(L=L0)

log(p0=p)
= 1: (7)

Now we turn to the case of k > 1. To treat this case we de�ne a slightly di�erent RG

transformation: we group adjacent sites in groups of k, with connections assigned using

the same rule as before. The transformation is illustrated in Fig. 1b for a lattice of size

L = 24 with k = 3. Again the number of shortcuts in the network is preserved under the

transformation, which gives the following renormalization equations for the parameters:

L0 = L=k; p0 = k2p; k0 = 1; `0 = `: (8)

Note that, in the limit of large L and small p, the mean distance ` is not a�ected at all; the

number of vertices along the path joining two distant sites is reduced by a factor k, but the

number of vertices that can be traversed in one step is reduced by the same factor, and the

two cancel out. For the same reasons as before, this transformation is exact in the limit of

large L and small p.

We can use this second transformation to turn any network with k > 1 into a corre-

sponding network with k = 1, which we can then treat using the arguments given before.

Thus, we conclude, the exponent � = 1 for all values of k and, substituting from Eq. (8)

into Eq. (4), the general small-world network must obey the scaling form

` =
L

k
f(pkL): (9)

This form should be correct for L0

� 1 and p0 � 1, which implies that L=k � 1 and k2p� 1.

The �rst of these conditions is trivial|it merely ensures that we can neglect inaccuracies of

�k in our estimate of ` arising because positions on the lattice are rounded o� to the nearest

multiple of k by the RG transformation. The second condition is interesting however; it is
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necessary to ensure that the average distance traveled along shortcuts in the network is small

compared to the distance traveled around the perimeter of the ring. This condition tells

us when we are moving out of the scaling regime close to the transition, which is governed

by (9), into the regime of the true random network, for which (9) is violated and ` is known

to scale as logL= log k [8]. It implies that we need to work with values of p which decrease

as k�2 with increasing k if we wish to see clean scaling behavior, or conversely, that true

random-network behavior should be visible in networks with values of p ' k�2 or greater.

We have tested our predictions by extensive numerical simulation of the small-world

model. We have calculated exhaustively the minimum distance between all pairs of points

on a variety of networks and averaged the results to �nd `. We have done this for k = 1

(coordination number z = 2) for systems of size L equal to a power of two from 128 up

to 8192 and p = 1 � 10�4 up to 3 � 10�2, and for k = 5 (z = 10) with L = 512 : : : 32 768

and p = 1 � 10�6 : : : 3 � 10�4. Each calculation was averaged over 1000 realizations of the

randomness. In Fig. 2 we show our results plotted as the values of `k=L against pkL. Eq. (9)

predicts that when plotted in this way the results should collapse onto a single curve and,

as the �gure shows, they do indeed do this to a reasonable approximation.

As mentioned in Section II, Barth�el�emy and Amaral [13] also performed numerical simu-

lations of the small-world model and extracted a value of � = 2

3
for the critical exponent. In

the inset of Fig. 2 we show our simulation results for k = 1 plotted according to Eq. (4) using

this value for � . As the �gure shows, the data collapse is signi�cantly poorer in this case

than for � = 1. It is interesting to ask then how Barth�el�emy and Amaral arrived at their

result. It seems likely that the problem arises from looking at systems that are too small

to show the true scaling behavior. In our calculations, we �nd good scaling for L=k & 60.

Barth�el�emy and Amaral examined networks with k = 5, 10 and 15 (z = 10, 20, 30) so we

should expect to �nd good scaling behavior for values of L larger than about 600. However,

the systems studied by Barth�el�emy and Amaral ranged in size from about L = 50 to about

500 in most cases, and in no case exceeded L = 1000. Their calculations therefore had either

no overlap with the scaling regime, or only a small overlap, and so we would not expect to
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Figure 2 Collapse of numerical data for ` according to Eq. (9) as described in

the text. Error bars are in all cases smaller than the data points. Note that the

horizontal axis is logarithmic. Inset: the collapse is noticeably poorer for � = 2

3
.

�nd behavior typical of the true value of � in their results.

IV. NETWORKS IN HIGHER DIMENSIONS

It is possible to generalize the calculations presented here to small-world networks built

on lattices of dimension d greater than one. For simplicity we consider �rst the case k = 1.

If we construct a square or (hyper)cubic lattice in d dimensions with linear dimension L,

connections between nearest-neighbor vertices, and shortcuts added with a rewiring proba-

bility of p, then as before the average vertex{vertex distance scales linearly with L for small

L, logarithmically for large L, and the length-scale � of the transition diverges according to

Eq. (1) for small p. Thus the scaling form (4) applies for general d also. The appropriate
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generalization of our RG transformation involves grouping sites in square or cubic blocks of

side 2, and the quantities L, p and ` then renormalize according to

L0 = 1

2
L; p0 = 2dp; `0 = 1

2
`: (10)

Thus

� =
log(L=L0)

log(p0=p)
=

1

d
: (11)

As an example, we show in Fig. 3 numerical results for the d = 2 case, for L equal to a

power of two from 64 up to 1024 (i.e., a little over a million vertices for the largest networks

simulated) and six di�erent values of p for each system size from p = 3�10�6 up to 1�10�3.

The results are plotted according to Eq. (4) with � = 1

2
and, as the �gure shows, they again

collapse nicely onto a single curve.

A number of generalizations are possible for k > 1. Perhaps the simplest is to add

connections along the principal axes of the lattice between all vertices whose separation is

k or less. This produces a graph with average coordination number z = 2dk. By blocking

vertices in square or cubic blocks of edge k, we can then transform this system into one with

k = 1. The appropriate generalization of the RG equations (8) is then

L0 = L=k; p0 = kd+1p; k0 = 1; `0 = `; (12)

which gives � = 1=d for all k and a scaling form of

` =
L

k
f((pk)1=dL): (13)

Alternatively, we could rede�ne our scaling function f(x) so that `k=L is given as a function

of pkLd. Writing it in this form makes it clear that the number of vertices in the network

at the transition from large- to small-world behavior diverges as p�1 in any number of

dimensions.

Another possible generalization to k > 1 is to add connections between all sites within

square or cubic regions of side 2k. This gives a di�erent dependence on k in the scaling

form, but � still equal to 1=d.
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Figure 3 Collapse of numerical data for networks based on the square lattice in

two dimensions, as described in the text. Error bars are in all cases smaller than

the data points.

V. CONCLUSIONS

We have studied the small-world network model of Watts and Strogatz using an asymp-

totically exact real-space renormalization group method. We �nd that in all dimensions d

the model undergoes a continuous phase transition as the density of shortcuts p tends to

zero and that the characteristic length � diverges according to � � p�� with � = 1=d for all

values of the connection range k. We have also deduced the general �nite-size scaling law

which describes the variation of the mean vertex{vertex separation as a function of p, k and

the system size L. We have performed extensive numerical calculations which con�rm our

analytic results.
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