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Abstract

Forecasting technological progress is of great interest to engineers, policy makers, and private investors.
Several models have been proposed for predicting technological improvement, but how well do these
models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power
law of cumulative production. An alternative hypothesis is Moore’s law, which can be generalized to
say that technologies improve exponentially with time. Other alternatives were proposed by Goddard,
Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using
a new database on the cost and production of 62 different technologies, which is the most expansive
of its kind, we test the ability of six different postulated laws to predict future costs. Our approach
involves hindcasting and developing a statistical model to rank the performance of the postulated laws.
Wright’s law produces the best forecasts, but Moore’s law is not far behind. We discover a previously
unobserved regularity that production tends to increase exponentially. A combination of an exponential
decrease in cost and an exponential increase in production would make Moore’s law and Wright’s law
indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities
are observed in data to such a degree that the performance of these two laws is nearly tied. Our results
show that technological progress is forecastable, with the square root of the logarithmic error growing
linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications
for theories of technological change, and assessments of candidate technologies and policies for climate
change mitigation.

Introduction

Innovation is by definition new and unexpected, and might therefore seem inherently unpredictable. But
if there is a degree of predictability in technological innovation, understanding it could have profound
implications. Such knowledge could result in better theories of economic growth, and enable more effective
strategies for engineering design, public policy design, and private investment. In the area of climate
change mitigation, the estimated cost of achieving a given greenhouse gas concentration stabilization
target is highly sensitive to assumptions about future technological progress [1].

There are many hypotheses about technological progress, but are they any good? Which, if any,
hypothesis provides good forecasts? In this paper, we present the first statistically rigorous comparison
of competing proposals.

When we think about progress in technologies, the first product that comes to mind for many is
a computer, or more generally, information technologies. The following quote by Bill Gates captures
a commonly held view: “Exponential improvement – that is rare – we’ve all been spoiled and deeply
confused by the IT model” [2]. But as we demonstrate here, information technologies are not special
in terms of the functional form that describes their improvement over time. Information technologies
show rapid rates of improvement, but many technologies show exponential improvement. In fact, all the
technologies we study here behave roughly similarly: Information technologies closely follow patterns of
improvement originally postulated by Wright for airplanes [3–8], and technologies such as beer production
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or offshore gas pipelines follow Moore’s law [9,10], but with a slower rate of improvement [8, 11–15].
It is not possible to quantify the performance of a technology with a single number [16]. A computer,

for example, is characterized by speed, storage capacity, size and cost, as well as other intangible charac-
teristics such as aesthetics. One automobile may be faster while another is less expensive. For this study
we focus on one common measure of performance: the inflation-adjusted cost of one “unit”. This metric
is suitable in that it can be used to describe many different technologies. However, the nature of a unit
may change over time. For example, a transistor in a modern integrated circuit today may have quite
different performance characteristics than its discrete counterpart in the past. Furthermore, the degree
to which cost is emphasized over other performance measures may change with time [17]. We nonetheless
use the changes in the unit cost as our measure of progress, in order to compare competing models using
a sizable dataset. The crudeness of this approach only increases the difficulty of forecasting and makes
it particularly surprising that we nonetheless observe common trends.

Analysis

We test six different hypotheses that have appeared in the literature [3, 9, 18–20], corresponding to the
following six functional forms:

Moore log yt = at+ b+ n(t) (1)

Wright log yt = a log xt + b+ n(t)

lagged Wright log yt = a log(xt − qt) + b+ n(t)

Goddard log yt = a log qt + b+ n(t)

SKC log yt = a log qt + c log(xt − qt) + b+ n(t)

Nordhaus log yt = at+ c log xt + b+ n(t)

The dependent variable yt is the unit cost of the technology measured in inflation adjusted dollars. The
independent variables are the time t (measured in years), the annual production qt, and the cumulative
production xt =

∑t
i=1 qi. The noise term n(t), the constants a, b and c and the predictor variables differ

for each hypothesis.
Moore’s law here refers to the generalized statement that the cost y of a given technology decreases

exponentially with time, i.e.
yt = B exp(−mt), (2)

where m > 0 and B > 0 are constants [9, 12]. (We assume throughout that t > 0, and we have renamed
a = −m and b = logB in Eq. (1)). Moore’s law postulates that technological progress is inexorable, i.e.
it depends on time rather than controllable factors such as research and development.

Wright’s law, in contrast, postulates that cost decreases at a rate that depends on cumulative pro-
duction, i.e.

yt = Bx−wt , (3)

where w > 0 and B > 0 are constants, and we have renamed a = −w and b = logB in Eq. (1). Wright’s
law is often interpreted to imply “learning by doing” [5,21]. The basic idea is that cumulative production
is a proxy for level of effort, so that the more we make the more we learn, and knowledge accumulates
without loss.

Another hypothesis is due to Goddard [18], who argues that progress is driven purely by economies
of scale, and postulates that:

yt = Bq−st , (4)

where s > 0 and B > 0 are constants, and we have renamed a = −s and b = logB in Eq. (1).
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We also consider the three multi-variable hypotheses in Eq. (1): Nordhaus [20] combines Wright’s law
and Moore’s law1, and Sinclair, Klepper, and Cohen (SKC) [19] combine Wright’s law and Goddard’s law.
For completeness we also test Wright’s law lagged by one year. Note that these methods forecast different
things: Moore’s law forecasts the cost at a given time, Wright’s law at a given cumulative production,
and Goddard’s law at a given annual production.

We test these hypotheses on historical data consisting of 62 different technologies that can be broadly
grouped into four categories: Chemical, Hardware, Energy, and Other2. The data are sampled at annual
intervals with timespans ranging from 10 to 39 years. The choice of these particular technologies was
driven by availability – we included all of the data that we could find to assemble the largest database of
its kind. For a detailed description see the Supporting Information.

To compare the performance of each hypothesis we use hindcasting, which is a form of cross-validation.

We pretend to be at time i and make a forecast ŷ
(f,d,i)
j for time j using hypothesis (functional form) f

and data set d, where j > i. The parameters for each functional form are fit using ordinary least squares
based on all data prior to time i, and forecasts are made based on the resulting regression3. We score
the quality of forecasts based on the logarithmic forecasting error

efdij = log y
(d)
j − log ŷ

(f,d,i)
j (5)

The quality of forecasts is examined for all datasets and all hypotheses (and visualized as a three-
dimensional error mountain, as shown in the Supporting Information). For Wright’s law an illustration
of the growth of forecasting errors as a function of the forecasting horizon is given in Fig. ??.

Developing a statistical model to compare the competing hypotheses is complicated by the fact that
errors observed at longer horizons tend to be larger than those at shorter horizons, and errors are corre-
lated across time and across functional forms. After comparing many different possibilities (as discussed
in detail in the Supporting Information), we settled on the following approach. Based on a search of
the family of power transformations, which is known for its ability to accommodate a range of variance
structures, we take as a response the square root transformation of the logarithmic error. This response
was chosen to maximize likelihood when modeled as a linear function of the hindcasting horizon = target
− origin = j − i, using a linear mixed effects model.

Specifically, we use the following functional form to model the response.

rfdij ≡ |efdij |0.5 = αf + ad + (βf + bd)(j − i) + εfdij , (6)

where rfdij is the expected root error. The parameters αf and βf depend on the functional form and
are called fixed effects because they are the same for all datasets. αf is the intercept and βf is the slope
parameter.

The parameters ad and bd depend on the dataset, and are called random effects because they are
not fitted independently, but are instead treated as dataset-specific random fluctuations from the pooled
data. The quantities ad and bd are additive adjustments to the average intercept and slope parameters
αf and βf , respectively, to take into account the peculiarities of each dataset d.

In order to avoid adding 62 ad parameters plus 62 bd parameters, we treated the

(
ad
bd

)
pair as a

two-dimensional random vector having a bivariate normal distribution with mean

(
0
0

)
and variance-

1Note that the conclusions presented do not work against Nordhaus’ point about the difficulty in separating learning
from exogenous sources of change [20].

2 All data can be found in the online Performance Curve Database at pcdb.santafe.edu.
3 An alternative is to adjust the intercepts to match the last point, which produces better short term forecasts. For

example, for Moore’s law this corresponds to using a log random walk of the form log yt+1 = log yt − µ+ n(t), where n(t)
is an IID noise term. We have not done this here to be consistent with the way these hypotheses have been historically
presented. The method we have used here also results in more stable errors. Our purpose here is not to propose an optimal
forecasting method, but rather to compare existing hypotheses.
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covariance matrix

(
ψ2
a ψab

ψab ψ2
b

)
. This approach dramatically reduces the number of parameters. We

parameterize the dataset-specific adjustments as random deviations from the average

(
αf

βf

)
at a cost of

only 3 additional parameters instead of 2 × 62 = 124. This parsimonious approach makes maximum
likelihood estimation possible by keeping the number of parameters in check.

Finally, we add an εfdij random field term to take into account the deviations from the trend. This

is assumed to be a Gaussian stochastic process independent of the

(
ad
bd

)
random vector, having mean 0,

and given ad and bd, having variance equal to a positive σ2 times the fitted values:

Var (εfdij | ad, bd) = σ2 E (rfdij | ad, bd) (7)

We also define an exponential correlation structure within each error mountain (corresponding to each
combination of dataset and hypothesis, see the Supporting Information), as a function of the differences of
the two time coordinates with a positive range parameter ρ and another small positive nugget parameter
η quantifying the extent of these correlations:

Corr(εfdij , εf ′d′i′j′) = δff ′δdd′(1− η) exp {−(|i− i′|+ |j − j′|)/ρ}, (8)

where the two Kronecker δ functions ensure that each error mountain is treated as a separate entity.
Equations (7) and (8) were chosen to deal with the observed heteroscedasticity (increasing variance

with increasing logarithmic forecasting error) and the serial correlations along the time coordinates i
(hindcasting origin) and j (hindcasting target). Based on the likelihood, an exponential correlation
function provided the best fit. Note that instead of a Euclidean distance (root sum of the squares of
differences), the Manhattan measure was used (the sum of the absolute differences), because it provided
a better fit in terms of the likelihood.

Using this statistical model, we compared five different hypotheses. (We removed the Nordhaus
model from the sample because of poor forecasting performance. This model gave good in-sample fits
but generated large and inconsistent errors when predicting out-of-sample, a signature of over-fitting.)
Rather than the 62 × 5 × 2 = 620 parameters needed to fit each of the 62 datasets separately for each
of the five functional forms, there are only 16 free parameters: 5× 2 = 10 parameters αf and βf , three
parameters for the covariance matrix of the bivariate random vector (ad, bd), and three parameters for
the variance and autocorrelation of the residuals εfdij .

Results and Discussion

We fit the error model to the 37, 745 different rfdij data points using the method of maximum likelihood.
In Fig. 2 we plot the expected root error rfij = αf +βf (j− i) for the five hypotheses as a function of the
hindcasting horizon. While there are differences in the performance of these five hypotheses, they are not
dramatic. The intercept is tightly clustered in a range 0.16 < αf < 0.19 and the slope 0.024 < βf < 0.028.
Thus all the hypotheses show a large initial error, followed by a growth in the root error of roughly 2.5%
per year4.

The error model allows us to compare each hypothesis pairwise to determine whether it is possible to
reject one in favor of another at statistically significant levels. The comparisons are based on the intercept
and slope of the error model of Eq. (6). The parameter estimates are listed in Tables S1 and S3 and
the corresponding p-values in Tables S2 and S4. For example, at the 5% level, the intercept of Goddard
is significantly higher than any of the others and the slope of SKC is significantly greater than that of
Wright, lagged Wright and Goddard. With respect to slope, Moore is at the boundary of being rejected

4This is a central tendency for the pooled data.
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in favor of Wright. Fig. 2 makes the basic pattern clear: Goddard does a poorer job of forecasting at
short times, whereas SKC and to a lesser extent Moore do a poorer job at long times.

We thus have the surprising result that most of the methods are quite similar in their performance.
Although the difference is not large, the fact that we can eliminate Goddard for short term forecasts
indicates that there is information in the cumulative production not contained in the annual production,
and suggests that there is a learning effect in addition to economies of scale. But the fact that Goddard is
not that much worse indicates that much of the predictability comes from annual production, suggesting
that economies of scale are important. (In our database technologies rarely decrease significantly in annual
production; examples of this would provide a better test of Goddard’s theory.) We believe the SKC model
performs worse at long times because it has an extra parameter, making it prone to overfitting.

Although Moore performs slightly worse than Wright, given the clear difference in their economic
interpretation, it is surprising that their performance is so similar. A simple explanation for Wright’s law
in terms of Moore’s law was originally put forward by Sahal [22]. He noted that if cumulative production
grows exponentially5, i.e.

xt = A exp(gt), (9)

then eliminating t between Eqs. (2) and (9) results in Wright’s law, Eq. (3), with w = m/g. Indeed, when
we look at production vs. time we find that in almost every case the cumulative production increases
roughly exponentially with time. This is illustrated in Fig. 3, where we show three representative examples
for production and cost plotted as a function of time. Fig. 3 also shows histograms of R2 values for fitting
g and m for the 62 datasets. The agreement with exponential behavior ranges from very good to rather
poor, but of course these are short time series and some of them are very noisy.

We test this in Fig. 4 by plotting the measured value of wd against the derived value ŵd = m/g for
each data set d. The values cluster tightly along the identity line, indicating that Sahal’s conjecture is
correct.

The differences in the data sets can be visualized by plotting ad and bd as shown in Fig. 5. All
but one data set is inside the 95% confidence ellipsoid, indicating that the estimated distribution of
(ad, bd) is consistent with the bivariate normal assumption. The intercepts vary in a range roughly
−0.10 < ad < 0.17 and the slopes −0.018 < bd < 0.015. Thus the variation in the corresponding
logarithmic forecasting error for the different datasets is comparable to the average error for all datasets
(Fig. 5) and about an order of magnitude larger than the difference between the hypothesized laws
(Fig. 2).

To illustrate the practical usefulness of our approach we make a forecast of the cost of electricity for
residential scale photovoltaic solar systems (PV). Fig. 6 shows the best forecast (solid line) as well as
the expected error (dashed lines)6. The expected cost in 2020 is 6 cents/kWh, with a range (3, 12), and
in 2030 it is 2 cents, with a range (0.4, 11)7. The current cost of the cheapest alternative, coal-fired
electricity, is roughly 5 cents/kWh8. In contrast to PV, coal-fired electricity is not expected to decrease
in cost, and will likely increase if there are future penalties for CO2 emissions [23].

The key postulate that we have made here is that the processes generating the costs of technologies
through time are generic except for technology-specific differences in parameters. This hypothesis is
powerful in allowing us to to view any given technology as being drawn from an ensemble. This means
that we can pool data from different technologies to make better forecasts, and most importantly, make

5 Note that if production grows exponentially, cumulative production also grows exponentially with the same exponent.
6 Note that these are not confidence limits, but rather projected absolute log deviations from the best forecast, calculated

from Eq. (6) using αMoore, βMoore, aPhotovoltaics2, and bPhotovoltaics2. The sharp drop in the one year forecast relative
to the last observed data point comes from the fact that forecasts are based on the average trend line, and because this
data series is particularly long. PV costs have risen recently due to increased material costs and other effects, but many
industry experts expect this to be a short-lived aberration from the long-term cost trend. See footnote 4 and Section 5 of
the Supporting Information.

7 This does not include the additional cost of energy storage technologies. Note also that this is for residential scale PV.
Industrial scale PV is typically about two-thirds the cost of electricity from residential scale systems.

8 This is the wholesale cost at the plant (busbar), which may be most directly comparable to industrial scale PV.
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error estimates. This is particularly useful in studying technology trends, where available data is limited.
Of course we must add the usual caveats about making forecasts – as Neils Bohr reputedly said, prediction
is very difficult, especially of the future.

Our analysis reveals that decreasing costs and increasing production appear to be closely related, and
that the hypotheses of Wright and Moore are more similar than they might appear. We should stress,
though, that they are not the same. For example, consider a scenario in which the exponential rate of
growth of PV production suddenly increased, which would decrease the current production doubling time
of roughly 3 years. In this case, Wright predicts that the rate at which costs fall would increase, whereas
Moore predicts that it would be unaffected. Distinguishing between the two hypotheses requires a suffi-
cient number of examples where production does not increase exponentially, which our current database
does not contain. The historical data shows a strong tendency, across different types of technologies,
toward constant exponential growth rates. Recent work has, however, demonstrated super-exponential
improvement for information technologies [24] over long time spans, suggesting that Moore’s law is only
a reasonable approximation over short spans of time. This evidence from information technology, and
the results presented here, suggest that Moore may perform significantly worse than Wright over longer
time horizons.
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Figure Legends
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Figure 1. An illustration of the growth of errors with time using the Wright model. The
mean value of the logarithmic hindcasting error for each dataset is plotted against the hindcasting
horizon j − i, in years. An error of 100.5 ≈ 3, for example, indicates that the predicted value is three
times as big as the actual value. The longest data-sets are: PrimaryAluminum (green),
PrimaryMagnesium (dark blue), DRAM (grey), and Transistor (red).
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Figure 2. An illustration of the growth of errors of each hypothesized law vs. time. The
plot shows the predicted root absolute log error rfij vs. forecasting horizon (j − i) using each of the
functional forms (see Eq. (6)). The performance of the five hypotheses shown is fairly similar, though
Goddard is worse at short horizons and SKC and Moore are worse at long horizons.
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on industry-wide data. We have chosen these examples to be representative: The top row contains
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1 Data set
This section contains four tables for the 62 technologies used in the paper, divided into four indus-
try groups: Chemical, Hardware, Energy, and Other. In each row, after the name of a particular
product, a contiguous time period is specified for which data was available, followed by the num-
ber of data points in the resulting yearly time series. Then the parameter estimates g, m, and w
are given, followed by the corresponding cumulative production volume doubling times, unit price
halving times, and progress ratios, respectively.

References for all the data sources and all the data for the 62 technologies used in this pa-
per are available for online visualization and free download in the Performance Curve Database at
http://pcdb.santafe.edu/. Based on what was available in this database as of November
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Chemical time data g m w doubling halving progress
Industry period points time time ratio
AcrylicFiber 1960 - 1972 13 0.076 0.045 0.58 4.0 6.8 0.67
Acrylonitrile 1959 - 1972 14 0.077 0.033 0.43 3.9 9.1 0.74
Aluminum 1956 - 1972 17 0.035 0.004 0.13 8.7 67 0.91
Ammonia 1960 - 1972 13 0.047 0.039 0.83 6.4 7.7 0.56
Aniline 1961 - 1972 12 0.027 0.025 0.93 11 12 0.52
Benzene 1953 - 1968 16 0.036 0.027 0.74 8.4 11 0.60
BisphenolA 1959 - 1972 14 0.065 0.027 0.41 4.6 11 0.76
Caprolactam 1962 - 1972 11 0.092 0.050 0.55 3.3 6.0 0.69
CarbonDisulfide 1963 - 1972 10 0.019 0.009 0.47 16 32 0.72
Cyclohexane 1956 - 1972 17 0.060 0.023 0.37 5.0 13 0.77
Ethanolamine 1955 - 1972 18 0.049 0.027 0.53 6.1 11 0.69
EthylAlcohol 1958 - 1972 15 0.031 0.006 0.17 9.8 51 0.89
Ethylene 1954 - 1968 15 0.083 0.016 0.18 3.6 19 0.88
Ethylene2 1960 - 1972 13 0.058 0.028 0.49 5.2 11 0.71
EthyleneGlycol 1960 - 1972 13 0.041 0.029 0.69 7.3 10 0.62
Formaldehyde 1962 - 1972 11 0.041 0.026 0.63 7.4 12 0.65
HydrofluoricAcid 1962 - 1972 11 0.035 0.001 0.018 8.5 460 0.99
LowDensityPolyethylene 1953 - 1968 16 0.11 0.044 0.38 2.7 6.8 0.77
Magnesium 1954 - 1972 19 0.022 0.003 0.15 13 90 0.90
MaleicAnhydride 1959 - 1972 14 0.055 0.024 0.43 5.4 13 0.74
Methanol 1957 - 1972 16 0.038 0.025 0.68 8.0 12 0.63
NeopreneRubber 1960 - 1972 13 0.033 0.009 0.28 9.1 32 0.82
Paraxylene 1958 - 1968 11 0.10 0.043 0.42 3.0 7.0 0.75
Pentaerythritol 1952 - 1972 21 0.039 0.018 0.45 7.7 17 0.73
Phenol 1959 - 1972 14 0.042 0.035 0.83 7.1 8.5 0.56
PhthalicAnhydride 1955 - 1972 18 0.035 0.031 0.88 8.6 9.7 0.54
PolyesterFiber 1960 - 1972 13 0.12 0.059 0.48 2.4 5.1 0.72
PolyethyleneHD 1958 - 1972 15 0.093 0.042 0.46 3.2 7.1 0.73
PolyethyleneLD 1958 - 1972 15 0.077 0.038 0.50 3.9 7.8 0.71
Polystyrene 1944 - 1968 25 0.086 0.025 0.24 3.5 12 0.84
Polyvinylchloride 1947 - 1968 22 0.073 0.033 0.43 4.1 9.2 0.74
PrimaryAluminum 1930 - 1968 39 0.044 0.011 0.25 6.8 28 0.84
PrimaryMagnesium 1930 - 1968 39 0.075 0.011 0.17 4.0 26 0.89
Sodium 1957 - 1972 16 0.014 0.007 0.47 21 45 0.72
SodiumChlorate 1958 - 1972 15 0.043 0.017 0.40 7.0 17 0.76
Styrene 1958 - 1972 15 0.051 0.030 0.59 5.9 10 0.67
TitaniumSponge 1951 - 1968 18 0.12 0.051 0.38 2.6 5.9 0.77
Urea 1961 - 1972 12 0.065 0.032 0.49 4.6 9.5 0.71
VinylAcetate 1960 - 1972 13 0.055 0.033 0.60 5.5 9.1 0.66
VinylChloride 1962 - 1972 11 0.061 0.039 0.64 5.0 7.7 0.64
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Hardware time data g m w doubling halving progress
Industry period points time time ratio
DRAM 1972 - 2007 36 0.26 0.19 0.72 1.2 1.6 0.61
HardDiskDrive 1989 - 2007 19 0.28 0.28 1.0 1.1 1.1 0.49
LaserDiode 1983 - 1994 12 0.32 0.14 0.39 0.95 2.2 0.76
Transistor 1969 - 2005 37 0.26 0.21 0.82 1.2 1.4 0.57

Energy time data g m w doubling halving progress
Industry period points time time ratio
CCGTElectricity 1987 - 1996 10 0.075 0.009 0.12 4.0 34 0.92
CrudeOil 1947 - 1968 22 0.025 0.004 0.17 12 68 0.89
ElectricPower 1940 - 1968 29 0.046 0.016 0.34 6.5 19 0.79
Ethanol 1981 - 2004 24 0.06 0.023 0.36 5.0 13 0.78
GeothermalElectricity 1980 - 2005 26 0.042 0.022 0.50 7.2 14 0.71
MotorGasoline 1947 - 1968 22 0.028 0.006 0.21 11 48 0.86
OffshoreGasPipeline 1985 - 1995 11 0.11 0.049 0.49 2.7 6.1 0.71
OnshoreGasPipeline 1980 - 1992 13 0.068 0.007 0.11 4.4 45 0.93
Photovoltaics 1976 - 2003 28 0.097 0.028 0.30 3.1 11 0.81
Photovoltaics2 1977 - 2009 33 0.092 0.045 0.48 3.3 6.7 0.71
WindElectricity 1984 - 2005 22 0.19 0.040 0.18 1.6 7.5 0.88
WindTurbine 1982 - 2000 19 0.12 0.018 0.13 2.5 17 0.91
WindTurbine2 1988 - 2000 13 0.23 0.017 0.073 1.3 18 0.95

Other time data g m w doubling halving progress
Industry period points time time ratio
Beer 1952 - 1968 17 0.077 0.015 0.20 3.9 20 0.87
ElectricRange 1947 - 1967 21 0.029 0.010 0.29 10 31 0.82
FreeStandingGasRange 1947 - 1967 21 0.014 0.009 0.56 21 35 0.68
MonochromeTelevision 1948 - 1968 21 0.074 0.024 0.28 4.1 12 0.82
RefinedCaneSugar 1936 - 1968 33 0.006 0.002 0.32 47 150 0.80

Table 1: Statistics for the datasets used in this study. g is the exponent for the increase in produc-
tion, m the exponent for the drop in cost, w the exponent for Wright’s law, the doubling time refers
to the increase in production, the halving time to the decrease in cost, and the progress ratio is 2−w,
interpreted as the drop in cost with a doubling of production. All times are in years.
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2010 we selected the performance curves that had both price and production data for at least 10
years, with no missing values in between. The resulting 62 datasets are commodity-type products
that retained a functional unit equivalence during their (at least decade-long) evolution.

For example, the Transistor dataset represents many different technologies that have been in
production during the 37 years in its time period. Transistors have changed dramatically during
that period in terms of factors such as speed and power requirements. Nonetheless, one could very
crudely say that a transistor as a functional unit is equivalent to any other; hence, we make the
crude approximation of comparing the price of such a unit from the sixties to one from the 2000s.
Similarly, a bit can be viewed as a functional unit for the DRAM and HardDiskDrive data.

All unit prices are yearly averages after adjusting for inflation. The Transistor, DRAM, Hard-
DiskDrive, and Photovoltaics2 data was converted to real 2005 U.S. dollars using the GDP deflator.
The other data sets were published previously, and were converted to real values by their respective
authors.

Since originally for each dataset either only yearly production or only total cumulative pro-
duction was available, we obtained the missing variable from the other one by adding up yearly
production or differencing cumulative production, respectively. In order to avoid missing values,
this resulted in a shortening of the original time period by one year because for the first year either
the previous experience measure was absent (assumed to be zero) or the yearly production was
unknown.

2 Exponential increase of production
In this section we present additional evidence for the exponential increase in production, which is
one of our new findings in this paper. One way to evaluate the assumption of the constant growth
rates g and m and the constant learning rate determined by w is to assess goodness of fit by looking
at the distribution of R2 percentages for the regression lines used for estimating g, m, and w. High
R2 values in Supplementary Figure 1 indicate that in most cases the exponential approximation is
accurate for g and m, and the power law fit is good for w.

3 Hindcasting results
We illustrate the hindcasting method using the Transistor dataset. This time series started in the
year 1969 and ended in 2005. Thus the first hindcast was made in 1973 based on only five data
points, targeting the rest of the time period from 1974 to 2005. The last hindcast was based on the
data from 1969 to 2004 having a single target: the year 2005. The resulting projection lines over
the actual data points are drawn in Supplementary Figure 2 for the six different functional forms.
The most striking feature of Moore’s projections is that they consistently underestimated prices for
the latter half of the Transistor dataset. On the other hand, Nordhaus’s projections strayed from the
data in both directions. In contrast, we can see that the other four functional forms demonstrated
a more satisfactory prediction performance on this particular dataset, having projection lines near
the actual data points and thus avoiding huge deviations (that are measured on the log scale).

Another way to visualize the prediction errors of the hindcasting procedure is to plot them as
a surface over two time coordinates: the origin and the target of the hindcasts. Since the target
year is always after the origin, the result is a mountain of prediction errors over a triangular area.
Figures 3 to 8 use topographical colors to indicate the magnitude of these errors on the log scale
(base 10). Note that the coloring scheme only extends from the sea level in blue (meaning no or
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Figure 1: Histograms of R2 values for fitting g, m, and w for the 62 datasets in percent. The
majority of the cases have R2 values in excess of 90%.
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Figure 2: Predictions of six functional forms for the transistor dataset. The hindcasting origin
varies from 1973 to 2004 (and thus the target year varies from 1974 to 2005). Forecasts are plotted
in shades of gray; the real data is shown in blue diamonds, and ranges from 1969 to 2005. The
forecast for 1974 is based on five years of data from 1969 - 1973.6
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Figure 3: Moore’s prediction errors for the Transistor dataset as a function of the hindcasting origin
from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 4: Goddard’s prediction errors for the Transistor dataset as a function of the hindcasting
origin from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 5: laggedWright’s prediction errors for the Transistor dataset as a function of the hindcast-
ing origin from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 6: Wright’s prediction errors for the Transistor dataset as a function of the hindcasting
origin from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 7: SKC’s prediction errors for the Transistor dataset as a function of the hindcasting origin
from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 8: Nordhaus’s prediction errors for the Transistor dataset as a function of the hindcasting
origin from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 9: Summary of the prediction errors of six functional forms for the Transistor dataset as a
function of the hindcasting origin from 1973 to 2004 and the target year from 1974 to 2005.
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Figure 10: Summary of the prediction errors of six functional forms for the Photovoltaics2 dataset
as a function of the hindcasting origin from 1981 to 2008 and the target year from 1982 to 2009.
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negligible error between -6% and +6%), up to the snow line at 1.0 (above which the rest of the
mountain is left uncolored). This is where the absolute error on the log scale reaches 1.0, mean-
ing that the predicted price is either 10 times greater than the actual (+900% hindcasting error)
or 10 times less (−90% error). To illustrate how the errors on the log scale translate to percent-
ages, the color key on the right of these three-dimensional plots indicate the negative error range
on the original scale from 0% to −90%. (However, we should keep in mind that because the log-
arithm of the absolute difference is taken, a 1.0 on the log scale can mean either +900% or−90%).

The functional form inspired by Moore does not predict transistors very well. This is ironic
since transistors are the technology that Moore’s Law was originally formulated to describe. In
fact, among all the 62 performance curves, Moore’s functional form was the least accurate for the
Transistor dataset. We can see that a large portion of the error mountain in Figure 3 rises not only
above the 1.0 mark at the snow line, but also exceeds the 2.0 mark, i.e. hindcasting that the price
would be less than one-hundredth of what it actually turned out to be. The summit is at 2.67,
meaning that in this case the actual price is underestimated by a factor of 467.

For a side-by-side comparison of all the hindcasts on the Transistor dataset, Supplementary
Figure 9 is a bird’s-eye view from the top of how the six competing forms fared against one an-
other. Supplementary Figure 10 is a similar plot for the Photovoltaics2 dataset. Supplementary
Figures 11 to 16 are top view supergraphics for the error mountains generated by the six functional
forms for the other 60 datasets.

4 Error model
Visualizing the error mountains is a quick and intuitive way to screen out inadequate functional
forms like Nordhaus that show erratic behavior. This was especially easy to do with multiple-
variable forms (with or without interaction terms) that were prone to overfitting, which is mani-
fested by the fact they gave good in-sample fits but generated large and inconsistent errors when
trying to predict out-of-sample. Hence, Nordhaus and all the other multiple-variable forms that
failed to generate a relatively consistent prediction error surface (without huge jumps) were not in-
cluded in the subsequent formal analysis. The statistical comparison we made here in constructing
our error model is only between the “finalists".

After ruling out all multiple-variable forms but SKC’s by visual inspections of the error moun-
tains, we are left with five candidates competing for the hindcasting champion title: Moore, God-
dard, laggedWright, Wright, and SKC. For example, does Moore’s comparably weaker perfor-
mance on the Transistor dataset make it an inferior functional form? How do the others compare?
Is any one of them significantly better than any of the others?

There are no obvious ways to answer these questions, but one way is to build a suitable sta-
tistical model for the errors generated by the remaining five functional forms, based on the data
displayed for those functional forms in Supplementary Figures 9 to 16. The statistical model em-
ployed here is an extended linear mixed-effects model, fitted by maximum likelihood, using the
lme function in the nlme package in R. The mixed-effects designation here refers to the presence
of both fixed and random effects (as explained later in this section). The basic linear mixed-effects
model needed extension because the hindcasting data was both heteroscedastic (with unequal vari-
ances) and correlated (not independent).
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Figure 11: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 12: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 13: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 14: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).

19



Moore
Photovoltaics

Goddard
Photovoltaics

laggedWright
Photovoltaics

Wright
Photovoltaics

SKC
Photovoltaics

Nordhaus
Photovoltaics

Moore
PhthalicAnhydride

Goddard
PhthalicAnhydride

laggedWright
PhthalicAnhydride

Wright
PhthalicAnhydride

SKC
PhthalicAnhydride

Nordhaus
PhthalicAnhydride

Moore
PolyesterFiber

Goddard
PolyesterFiber

laggedWright
PolyesterFiber

Wright
PolyesterFiber

SKC
PolyesterFiber

Nordhaus
PolyesterFiber

Moore
PolyethyleneHD

Goddard
PolyethyleneHD

laggedWright
PolyethyleneHD

Wright
PolyethyleneHD

SKC
PolyethyleneHD

Nordhaus
PolyethyleneHD

Moore
PolyethyleneLD

Goddard
PolyethyleneLD

laggedWright
PolyethyleneLD

Wright
PolyethyleneLD

SKC
PolyethyleneLD

Nordhaus
PolyethyleneLD

Moore
Polystyrene

Goddard
Polystyrene

laggedWright
Polystyrene

Wright
Polystyrene

SKC
Polystyrene

Nordhaus
Polystyrene

Moore
Polyvinylchloride

Goddard
Polyvinylchloride

laggedWright
Polyvinylchloride

Wright
Polyvinylchloride

SKC
Polyvinylchloride

Nordhaus
Polyvinylchloride

Moore
PrimaryAluminum

Goddard
PrimaryAluminum

laggedWright
PrimaryAluminum

Wright
PrimaryAluminum

SKC
PrimaryAluminum

Nordhaus
PrimaryAluminum

Moore
PrimaryMagnesium

Goddard
PrimaryMagnesium

laggedWright
PrimaryMagnesium

Wright
PrimaryMagnesium

SKC
PrimaryMagnesium

Nordhaus
PrimaryMagnesium

Moore
RefinedCaneSugar

Goddard
RefinedCaneSugar

laggedWright
RefinedCaneSugar

Wright
RefinedCaneSugar

SKC
RefinedCaneSugar

Nordhaus
RefinedCaneSugar

Figure 15: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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Figure 16: Summary of the prediction errors generated by six functional forms as a function of the
hindcasting origin (vertical axis) and the target year (horizontal axis).
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4.1 Choosing the response
When trying to build a model that captures the essence of a large dataset, one is faced with many
theoretical and practical challenges, involving several subjective decisions, such as the various
tradeoffs between simplicity and goodness of fit. One of the most important early choices is what
to model in the first place. We started out by trying to model the prediction errors directly (i.e. the
height of the error mountains), but that did not lead to acceptable diagnostics of the resulting fits.

Next we experimented with transforming these prediction errors in order to obtain a response
that will allow a better fit. We searched the family of power transformations, which is known for its
flexibility to accommodate a wide range of variance structures for the purposes of linear modeling.
Exponents in the neighborhood of 0.5 provided the best fits in terms of regression diagnostics, so
we fixed it at 0.5. This meant applying a square root transformation to the original errors.

Formally, the response rfdij used in this model is the root-transformed absolute hindcasting
error on the log scale (base 10) of the hindcast made in year i for year j using the functional form
f for dataset d. In other words, this is the square root of the height of the error mountain of f for
d at the time coordinates i and j:

rfdij =
∣∣∣log y(d)j − log ŷ

(f,d,i)
j

∣∣∣0.5 , (1)

where y(d)j is the actual price in the dataset d in year j and ŷ(f,d,i)j is the price estimated by the
functional form f for year j, using all data in d available up to and including year i, where i < j.

4.2 Modeling the response
The main advantage of choosing the response given by equation (1) is that it can be modeled in a
parsimonious manner as a linear function of the hindcasting horizon = target − origin = j − i.
The effect of each functional form f can be characterized by two numbers: an intercept αf and a
slope parameter βf that specifies this linear relationship. But the individual curves themselves can
have large effects on the response and we need to take that into account, too. So, instead of model-
ing only the average effect of the functional form f by a linear function of the hindcasting horizon
(j−i) with the linear relationship αf+βf (j−i), we model the joint effect of the functional form f
and the performance curve data d with the adjusted linear trend (αf +ad)+(βf + bd)(j− i), where
the ad and bd quantities are additive adjustments to the average intercept and slope parameters αf

and βf , respectively, to take into account the peculiarities of the dataset d.

In order to avoid adding 62 ad parameters plus 62 bd parameters, we treated the
(
ad
bd

)
pair

as a two-dimensional random vector having a bivariate normal distribution with mean
(
0
0

)
and

variance-covariance matrix
(
ψ2
a ψab

ψab ψ2
b

)
. This way we can parameterize these adjustments as ran-

dom deviations from the average
(
αf

βf

)
at a cost of only 3 additional parameters instead of 2 ×

62 = 124, resulting in a parameterization that is not only much more parsimonious but also makes
maximum likelihood estimation possible by keeping the number of parameters in check.

In statistical terminology, we can say that the effects of the 62 performance curves are random
(as opposed to the fixed effects of the five functional forms). The interpretation is that we view
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each curve as a random draw from a hypothetical population of performance curves. Of course, the
underlying assumption here is that it makes sense to talk about such an ensemble of performance
curves that have enough characteristics in common to make this notion meaningful.

4.3 Statistical model
Now we are ready to define the extended linear mixed-effects model by the following equation:

rfdij = (αf + ad) + (βf + bd)(j − i) + εfdij, (2)

where the response is modeled as the sum of a trend term (that is a linear function of the hindcasting
horizon (j − i) as before) plus an εfdij random field term to take into account the deviations from

the trend. This is assumed to be a Gaussian stochastic process independent of the
(
ad
bd

)
random

vector, having mean 0, and given ad and bd, having variance equal to a positive σ2 times the fitted
values:

Var (εfdij| ad, bd) = σ2 E (rfdij| ad, bd) (3)

and an exponential correlation structure within each mountain that is a function of the differences
of the two time coordinates with a positive range parameter ρ and another small positive nugget
parameter η quantifying the extent of these correlations:

Corr(εfdij, εf ′d′i′j′) = δff ′δdd′(1− η) exp {−(|i− i′|+ |j − j′|)/ρ}, (4)

where the two Kronecker δ functions ensure that each mountain surface is treated as a separate
entity.

Equations (3) and (4) were chosen to deal with the fact that variances tend to increase with
altitude on the error mountains and that there are serial correlations along the time coordinates i
(hindcasting origin) and j (hindcasting target). The heteroscedasticity (increasing variance with
increasing elevation) problem is handled by the variance function (3) and the time dependence is
taken care of by the correlation function (4). Based on the likelihood, this exponential correla-
tion function provided the best fit. Note that instead of the usual Euclidean distance (root sum of
squares of differences), here the so-called “Manhattan” measure was used (the sum of the absolute
differences), because it provided a much better fit in terms of the likelihood.

4.4 Intercept and slope parameter estimates
The maximum likelihood estimates for the five intercept and five slope parameters are listed in
Tables 2 and 4, respectively. It is evident that all five functional forms perform similarly in terms
of hindcasting accuracy, because most of these estimates are not significantly different from one
another. The corresponding approximate p-values for all pairwise comparisons are listed in Tables
3 and 5. The highest intercept estimate for Goddard means that it does a relatively poor job of
forecasting at short times, whereas the higher slope estimates for Moore and SKC mean that they
are not as good at long times. Otherwise the models are roughly equivalent.

5 Extrapolation method
For the purposes of this paper we have chosen to fit the model to all the past data available at time
i and use the resulting parameter estimates to make the forecasts. Thus the forecast corresponds to
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Intercept estimate
αSKC 0.164
αMoore 0.168
αWright 0.170
αlaggedWright 0.172
αGoddard 0.195

Table 2: Intercept estimates.

Intercept difference p-value
αMoore − αSKC 0.555
αlaggedWright − αSKC 0.224
αlaggedWright − αMoore 0.531
αWright − αSKC 0.389
αWright − αMoore 0.786
αWright − αlaggedWright 0.722
αGoddard − αSKC 0.000
αGoddard − αMoore 0.001
αGoddard − αlaggedWright 0.005
αGoddard − αWright 0.002

Table 3: Testing whether the pairwise intercept differences are significantly different from zero.

the trend line for the entire data set, and points in the distant past get just as much weight as points
in the present. We have chosen this method because it is the “vanilla" model, and probably the most
widely used to apply these laws. This method is also well-suited to compare standard hypotheses,
which is the main objective of the paper. We do not argue that this is the best possible forecasting
method; developing more accurate forecasting methods will be a topic of future research. In the
meantime we want to provide more background information on some of the anomalies commented
on in the text, and in particular figure 5 and footnote 7.

In figure 5 there is an immediate drop in the one-year forecast relative to the last observed
price. This is a direct consequence of the use of the vanilla method, which is the ideal model if the
data are generated by independent fluctuations around a deterministic trend. To illustrate this with
Moore’s law, suppose the true random process generating the data is of the form:

log yt = at+ n(t) (5)

This is the most straightforward interpretation of Moore’s law. If the noise terms n(t) are uncorre-
lated in time, then the method we have used to make forecasts here is ideal. But if the noise terms
are correlated in time this is no longer the case. Suppose, for example, that the process is better
described by a random walk with drift, of the form

log yt+1 = log yt − µ+ n(t), (6)

where µ is a drift term, and where the noise fluctuations n(t) are uncorrelated in time. In this case
the best forecast for log yt−1 is log yt − µ. There are many intermediate possibilities, for example
if log yt is a long-memory process.
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Slope estimate
βGoddard 0.02396
βWright 0.02397
βlaggedWright 0.02438
βMoore 0.02706
βSKC 0.02848

Table 4: Slope estimates.

Slope difference p-value
βMoore − βSKC 0.394
βlaggedWright − βSKC 0.011
βlaggedWright − βMoore 0.093
βWright − βSKC 0.005
βWright − βMoore 0.050
βWright − βlaggedWright 0.788
βGoddard − βSKC 0.007
βGoddard − βMoore 0.059
βGoddard − βlaggedWright 0.788
βGoddard − βWright 0.991

Table 5: Testing whether the pairwise slope differences are significantly different from zero.

We find clear evidence for memory in the noise terms. Taking into account correlations in the
noise terms produces better forecasts for short time horizons. For longer time horizons, greater
than 3 - 5 years, they are roughly equivalent.

The use of the vanilla model leads to some peculiar results. For example, we find that short
term forecasts get worse as we add more historical data — in other words, recent data is more
useful than data in the far past. This is not surprising if the true dynamics are closer to Eq. 6 than
to Eq. 5 — more data systematically means that the most recent point will show larger deviations
from the trend line. However, continually adjusting trend lines to take into account the most
recent data compromised the goodness of fit of our error model by generating excessive noise
(discontinuities in the error mountains). In other words, improving the short-term forecasts would
have compromised our ability to compare standard hypotheses (functional forms commonly used
to forecast technological improvement).

In Figure 5, we are using one of the longest time series in the data set, and the forecast is based
on the entire series. Thus the errors for a time horizon of one are large compared with the typical
series in the data set. This is not a problem at longer time horizons. The error estimates after the
first five years become more trustworthy.

In a future paper we intend to work on constructing a “best model". In this paper, our goal to
place the problem of forecasting technological change using past performance in a solid statistical
context, and to quantify the quality of the forecasts.

25


