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Unstable dynamics characterizes the evolution of most solid tumors. Because of an increased
failure of maintaining genome integrity, a cumulative increase in the levels of gene mutation and
loss is observed. Previous work suggests that instability thresholds to cancer progression exist,
defining phase transition phenomena separating tumor-winning scenarios from tumor extinction or
coexistence phases. Here we present an integral equation approach to the quasispecies dynamics
of unstable cancer. The model exhibits two main phases, characterized by either the success or
failure of cancer tissue. Moreover, the model predicts that tumor failure can be due to either a
reduced selective advantage over healthy cells or excessive instability. We also derive an approximate,
analytical solution that predicts the front speed of aggressive tumor populations on the instability
space.
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I. INTRODUCTION

Cancer is a disease where the failure of a single cell de-
veloping some proliferation advantage can overcome se-
lection barriers imposed by the local environment and
generate a large population of cancer cells. This would
be a rough description of the disease, but it would be
more appropriate to say that cancer is an evolutionary
dynamic process [1,2]. Changes occur in time and ac-
cumulate over generations and the final success of the
tumor requires an appropriate accumulation of changes
affecting different types of genes.

We can classify cancer genes into three basic cate-
gories [3]: (a) oncogenes, (b) tumor suppressor genes
and (c) stability-related genes. These groups corresponds
to genes that (a) increase replication due to mutation,
(b) increase cell growth when the gene is silenced or
lost and (c) modify genome stability due to failures in
cell division, repair and maintenance mechanisms [4-9].
Although most classic models of cancer evolution deal
with those factors associated with growth and competi-
tion among clones, a specially important characteristic of
most tumors is precisely the increased levels of instability
associated to progression.

Instability can be understood in terms of mutations
but also of losses and gains of genetic components that
modify genome stability, making cells more prone to er-
rors while replicating [10]. Mutations have been an in-
trinsic part of all evolutionary models of population dy-
namics (including cancer) but it is typically assumed that
mutation rate remains constant over time. In genomi-
cally unstable tumors, the failure of the repair mecha-
nisms, along with the generation of aneuploidy, makes
possible to damage key components associated to the
maintenance of genome integrity [4,10].

With their loss or failure, further increases of insta-
bility are expected to occur, since other genes linked to
stability and repair are more likely to be damaged. As a
consequence, instability itself can evolve over time. Such
evolvable trait raises the question of how much instability
can accumulate through carcinogenesis. It has been sug-
gested that optimal instability rates [4] as well as thresh-
olds to instability exist. The latter define the transition
boundaries between viable and non-viable cancer pop-
ulations [11-14]. They are actually examples of phase
transitions similar to those described in RNA viruses [15-
20]. RNA virus populations are quasispecies [12,20] i.e.
highly heterogeneous cloud of related genotypes. Criti-
cal thresholds of mutation have been predicted and later
experimentally tested [21-23]. Such thresholds define the
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boundaries of viability of the viral population.
The similarities between unstable cancer and RNA

viruses suggests a therapeutically very interesting possi-
bility: the use of additional instability as anticancer ther-
apy [13,24]. Due to the qualitatively sharp change asso-
ciated to the presence of instability thresholds, a physics
approach to phase transitions in cancer quasispecies can
be successfully used [13,14,25-27]. In this paper we ex-
plore the dynamics and phases of unstable cancer by con-
structing an analytical model of tumor progression to be
defined as a front propagation problem [28] in the space
of instability. By using this approximation we provide a
better and easily extendable formal description of tumors
that allows to characterize both the presence of transi-
tions and the population structure that emerges in each
phase. It also provides a well defined, formal approach
to predict the speed of cancer propagation.

The paper is organized as follows. In section II we
present the rationale for the presence of a phase tran-
sition phenomenon separating a phase where the tumor
will fail to succeed due to a high instability from another
phase where it is expected to win. In section III we revisit
the previous linear, discrete model of cancer cells dynam-
ics and we explain some of its limitations. Section IV is
devoted to present the integral model of unstable cancer,
that improves the previous mathematical description of
the disease. In section VI we derive an approximate,
analytical expression for the tumor front speed on the
instability space, and we compare it with some numer-
ical solutions for the model equations. The last section
is devoted to discuss the potential implications of our
results.

II. TRANSITIONS IN TUMOR INSTABILITY

In order to provide a rationale for the existence (and
potential implications) of instability thresholds, let us
first consider mean field model of unstable cancer dy-
namics. Considering that two populations of both nor-
mal and cancer cells are at play, the model assumes two
homogeneous populations, and thus no cell variability is
allowed in each compartment. Each population is char-
acterized by a set of constant parameters which can be
interpreted in terms of average rates. If we indicate as rn
and rc the rates of growth of normal (host) and cancer
cells, respectively, we can write a minimal model:

dH

dt
= rnH −Hφ(H,C) (1)

dC

dt
= rcC − Cφ(H,C) (2)

for the evolution of host (H) and cancer (C) populations,
respectively.

We can assume that the growth rate rc of the cancer
cell population depends on the instability µ of such popu-
lation. Here µ will be a probability. For low µ we should
expect to observe an increase in the growth rate since

growth-related genes will have been hit. If we indicate as
Nr the number of such genes, and label as µk and δrk the
probability of damaging (or deleting) the k−th one and
its effect on cell replication, respectively, we can guess
that the growth rate will increase due to such events as

f1(µ) = rn +
Nr∑
k=1

µk[δrk] (3)

where δr gives the increase in growth for each hit. Simi-
larly, we should expect a decrease in the growth rate due
to the potential damage produced if a house keeping gene
is damaged or lost. If Nh indicates the number of such
genes, the probability that no one is damaged will read

f2(µ) =
Nh∏
k=1

(1− µk) (4)

If we assume that mutation and replication rates are the
same for all genes, i. e. µk = µ and δrk = δr, then the
final rate of replication will be the product:

rc(µ) = f1(µ)f2(µ) = (rn + µNrδr) (1− µ)Nh (5)

The above function (5) has a maximum at a given op-
timal instability rate. This is shown in Fig. 1, where
we plot rc(µ) for a given combination of parameters.
The maximum is achieved at an optimal instability level
µo ≈ 1/Nh.

FIG. 1: Optimality and lethality in unstable cell populations.
The vertical axis indicates the cancer replication rate against
instability, as predicted from equation (5). The replication
rate of normal cells is r0 = 0.01 (in arbitrary units). The
cancer population is assumed to be homogeneous. At low
instability rates, competition between the two cell populations
is symmetric and cancer coexists or slowly grows. The peak
at the optimal rate µo is associated to the fastest potential
growth of cancer. The grey area indicates the lethal phase,
where excessive instability leads to cell death,

The competition between both populations is intro-
duced in (1-2) through the function φ(H,C). If we con-
sider that the overall cell population H + N is constant
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FIG. 2: Linear model of competition between normal cells
(H) and a heterogeneous population of cancer cells, indicated
as C1, C2, ..., Ci which replicate with increasing rates fi and
mutate also at faster rates µi, as highlighted by the increas-
ingly thick arrows. The effective replication rate of a given
Ck compartment is fk(1 − µk).

(because cells fill a given fixed space) the function φ reads
φ = rnH + rcC which is actually the average rate of
growth. It is possible to see that the equation describ-
ing the dynamics of the cancer cell population is now
captured by a logistic-like nonlinear equation:

dC

dt
= rn(Γ(µ)− 1)C(1− C) (6)

Two fixed points are present: the zero-population one
C∗ = 0 and the maximum population state, here C∗ = 1.
It is easy to see that the first is stable if Γ(µ) < 1 and
unstable otherwise. By properly defining the function
Γ(µ) we might be able to define the conditions under
which genetic instability allows cancer growth to occur
and overcome the host tissue. The critical mutation rate
separating the two scenarios is sharp and defines a phase
transition.

The presence of a phase transition in this toy mean
field model involving competition between two homoge-
neous populations offers an interesting prediction: fur-
ther increases of instability can force cancer cells to enter
the lethal phase. However, understanding how such shifts
can occur requires a better understanding of the ways
cancer cell populations evolve. Cancer cell populations
are highly heterogeneous [29,30] and that means that we
need to depart from the previous model approach.

III. LINEAR MODEL OF UNSTABLE CANCER

In an early paper [31] a discrete, sequential model of
unstable cancer was introduced. The model considered a
population of cancer cells having different levels of insta-
bility and competing among them and with the normal
tissue (figure 2). Specifically, the model was defined in
terms of a system of M+2 differential equations, namely:

dCi
dt

= fi−1µi−1Ci−1 + fi(1− µi)Ci − CiΦ(H,C) (7)

with C = (C1, ..., CM ) and H indicating the host
(healthy) population, whose dynamics would be de-
scribed by an additional equation dH/dt = fµ(H,C)
which takes the general form

dH

dt
= G(H)−Hφ(H, c) (8)

Here G(H) introduces the explicit form of growth char-
acterizing the normal tissue. A constant population con-
straint (CPC) was also introduced, namely a total con-
stant population size H +

∑
i Ci = 1. This leads to an

explicit form of the competition φ function, namely

φ(H, c) = G(H) +
M∑
k=1

fkCk (9)

which is nothing but the average replication rate.
A numerical analysis of this system was performed for

some parameter values, showing that the population dy-
namics of the cancer population spread over mutation
space as a wave until a stable distribution (showing a
single peak) around high instability levels was observed.
However, no systematic analysis was performed in order
to characterize potential phases and their implications.
In particular, it was not studied the behavior exhibited by
the heterogeneous population close to the optimal/lethal
thresholds. Moreover, the linear model above is an over-
simplification and a better description is needed in order
to make reliable predictions.

IV. INTEGRAL EQUATION EXPANSION

The linear instability model reveals an important dy-
namical feature of unstable dynamics: a propagating
front is formed and moves through instability space.
Fronts (and their propagation dynamics) are a well
known characteristic of many relevant biological pro-
cesses [28-30] and can be analyzed in a systematic way
through well known methods. Our first step here will
be to convert the discrete model presented above into
a more general, analytically tractable integral equation
form. Such model will allow us exploring the phase space
of our system and to make some analytic estimates of
propagation speed.

An integral equation model can be derived starting
from the previous linear model. Let us first notice that
the equations (7) for Ci can be re-written as

dCi
dt

=
M∑
1

fjCjwj − CiΦ(H,C), (10)

This is done by introducing the following notation:

wj = δj,i−1µj + (1− µj)δij . (11)

An integral equation can be now constructed, using the
continuous variable Ci(t) = ∆µ · c(µ, t). Moreover, we
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need to generalize the functional connection between dif-
ferent instability levels, which was assumed to be a simple

function in (7) but could adopt different forms. A general
integral equation can be constructed, namely:

c(µ, t+ T ) = c(µ, t) + T

0∫
−µ

f(µ+ ∆µ)c(µ+ ∆µ, t)ω(∆µ)d∆µ − c(µ, t)Tφ(H, c), (12)

Where we have used a continuous dispersal kernel ω(∆µ)
[28,32,33] which provides the probability density that
cancer cells in c(µ − |∆µ| , t) produce offspring, after a
given time T , within the µ-coordinate i.e. further cells
within the c(µ, t+ T ).

The constant population requirement (defined above
as C+N = 1 for the mean field model) can be expressed
here as

H(t) +
∫ M

0

c(µ, t)dµ = 1 (13)

H(t+ T ) +
∫ M

0

c(µ, t+ T )dµ = 1 (14)

and we assume that M is large enough so that we can
ensure that c(M, t) = 0.

In this paper we will use this integral equation ap-
proach to describe our cancer quasispecies model. This
model allows us to properly study the way the instabil-
ity wave can (or cannot) propagate and some other phe-
nomena including the catastrophic collapse of the cancer
population once the unstable wave crosses some given
thresholds.

Using the previous condition and definitions, it is pos-
sible to develop our model equation. If we indicate as
φ = φ(H,C), fµ = G(H)−Hφ and use

Λ(µ, t) =
∫ M

0

c(µ, t)dµ (15)

it is possible to see that our system is described by the
following mathematical expressions:

Tfµ +H + Λ(µ, t) + T

M∫
0

0∫
−µ

c(µ+ ∆µ, t)f(µ+ ∆µ)ω(∆µ)d∆µdµ− Tφ(H, c)Λ(µ, t) = 1 (16)

⇒ 1 + THφ+ TφΛ(µ, t) = TG(H) +H + Λ(µ, t) +

M∫
0

T

0∫
−µ

c(µ+ ∆µ, t)f(µ+ ∆µ)ω(∆µ)d∆µdµ, (17)

The last term in the right hand side of the above equa-
tion (17) can be rewritten as:

T

∫ M

0

∫ 0

−µ
c(µ+ ∆µ, t)f(µ+ ∆µ)ω(∆µ)d∆µdµ,

from which we derive the following expression for the
average fitness of the population (that includes normal

tissue and tumor cells):

φ(H, c) = G(H)+

M∫
0

0∫
−µ

c(µ+∆µ, t)f(µ+∆µ)ω(∆µ)d∆µdµ.

(18)

It is worth to note that the integro-difference equation
(12) permits to analyze several dynamical properties of
the system which cannot be attained by means of the
previous linear model (10). In the linear model, the off-
spring of tumor cells in a given stage i may grow either in
the same stage i or in the subsequent i+ 1. A desirable
feature of the continuous description from (12) is that
the dispersal kernel can easily model different forms of
instability-driven spread in the genetic landscape. In the
following section, we analyze a simple case in which mi-
gration probability decays exponentially with the jump-
ing distance ∆µ. The linear model can also be recovered
from Eq. (12) by introducing a dispersal kernel that re-
stricts mutations to discrete points in the µ-space. In
order to derive some analytical solutions of the system,
such simplified dispersal kernels will be shown to be spe-
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cially useful.

V. WAVE FRONTS IN INSTABILITY SPACE

In this section, we present several scenarios in which a
tumor can either collapse or succeed over a healthy tissue.
According to the integral model [Eqs. (12) and (18)],
tumor evolution is mainly governed by competition. As
explained above, this competition involves not only the
fight between cancer cells and healthy cells, but also the
struggle within cancer cell clones.

In the previous section we have presented a model that
is mainly based on two dynamical features of tumors:
replication (introduced by the growth function f(µ)) and
mutation (given by the dispersal kernel ω(∆µ)). Con-
cerning the replication process, below we consider some
specific growth functions involving a constant reproduc-
tion rate for healthy cells, so that G(H) = rnH. For
tumor cells, the growth function depends on instability
as f(µ) = rn (1 + αµ) exp(−µ/µc). This was derived in
[13] from the probabilistic condition defined by equation
(5). The rate α introduces a selective advantage for can-
cer cells over healthy cells. The constant µc refers to a
characteristic instability rate.

In order to model the mutant trend of cancer cells,
let us consider the following continuous function for the
dispersal kernel:

ω(∆µ) =
1

µdisp
exp

(
−∆µ

µdisp

)
. (19)

According to Eq. (19), a parent cell generates offspring
at similar instability domains (i.e. situated at ∆µ → 0)
with higher probability than new cells presenting much
higher instability (i.e., living at ∆µ >> 0). The param-
eter µdisp represents a characteristic (within generation)
instability increment. Since we have∫ ∞

0

ω(∆µ) = 1

the dispersal kernel distributes the cells of the new gen-
eration in the instability space, but it does not modify
the total number of cancer cells in the system.

A. Tumor wins phase

Figure 3a shows the evolution of a population of cancer
cells which initially composes the 0.001% of the cells in
the system. Cancer cells at t = 0 have been equally
distributed within a range of low instability (namely,
µ ∈ (0, 2 · 10−4]). We observe an early stage (t ∈ [0, 150])
in which tumor cells remain at low values of the popu-
lation density c(µ, t). Within this initial period, cancer
cells do not overcome healthy cells because their selective

advantage is not significant (i.e., f(µ) ' G(H) because
µ ' 0).

The dispersal kernel ω(∆µ) pushes forward the tumor
population towards higher instability domains. In other
words, at each time step a fraction of the cancer cells off-
spring becomes sensibly more unstable than their parent
cells. A rapid increase in cancer cells population den-
sity is observed about t = 200 generations. The rapid
growth affects cells whose genetic instability is above a
certain threshold (see the region above µ = 1.5 · 10−2).
This indicates that such degree of instability provides for
significant selective advantage over other cells in the sys-
tem. During the fast growth phase, the population not
only attains a large fraction of the total population, but
it also continues migrating (see the left to right dispersion
of the population wave). At the end of the time series in
Fig. 3a, the concentration of cancer cells in the system
is about 50% (we consider this condition is enough to
cause the death of the host). This is an example of the
dynamics at the cancer expansion phase.

B. Tumor failure phase

It seems reasonable to think that increasing the charac-
teristic migration distance µdisp should accelerate tumor
proliferation, because cancer cells will reach optimal in-
stability domains faster. However, increasing µdisp does
not necessarily lead to the tumor-win phase. It can actu-
ally jeopardize cancer propagation even when an already
established population is formed. If a tumor cell produces
highly mutant descendants (i.e., new cells accumulating
many new mutations) with high probability, it follows
that the probability of generating descendants without
additional mutations cannot be very large.

Figure 3b depicts an example of the tumor-failure
phase. In this case the selective advantage present lower
values (namely, α = 10) than that for the tumor in the
previous scenario. Here we observe a tumor population
wave diffusing in the instability space, always coexist-
ing with normal cells. Due to the moderate selective
advantage α, cancer cells cannot grow fast. The tumor
moves towards excessive instability, and cancer replica-
tion becomes smaller than that of the host tissue. These
conditions define the tumor extinction phase.

C. Catastrophic tumor decay

A qualitatively different and somewhat unexpected
outcome is displayed in Fig. 3c, where we have set a
higher value of µdisp. As a result, a faster extinction
of healthy cells occurs and cancer cells invade all the
available space before t = 200. Here we let the system
evolve beyond the absence of healthy cells. Despite this
situation typically involves the elimination of host cells,
it could be observed in cell culture conditions. More-
over, we need to consider a potentially relevant situation,
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a b

c c

µµ

µ

FIG. 3: The three major dynamical patterns of dynamical behaviour displayed by our mathematical model. Here the population
density for different instability levels is plotted against instability and time. In (a), unstable tumours expand, evolving towards
a stable, high instability rate. Time evolution for r = 0.25, α = 20, µc = 0.08 and µdisp = 3 · 10−4. Each time step is equivalent
to a generation of cells. Cancer cells diffuse through the instability space as a wave. At early stages (t < 200), the fraction
of cancer cells in the system is low. However, when cancer cells reach high enough instability (slightly above µ = 0.015 in
this example), a rapid increase in cancer population density is produced. (b) Tumor fails to get established. The following
parameter values have been used: r = 0.25, α = 10, µc = 0.08 and µdisp = 3 · 10−4. (c) Population collapse. Here expansion is
followed by collapse after a long transient, as shown in (d). Here we have used r = 0.25, α = 50, µc = 0.08 and µdisp = 1 ·10−3.

namely when a given tumor has expanded within large
parts of the organ, as it occurs with many malignant
cancers. After the rapid increase in cancer cells popula-
tion density (t ' 200), the tumor continues its migration
towards higher instability.

Since the value of µdisp is relatively high, the tumor
population is unable to stay within the optimal region.
At every new generation, a large fraction of the progeny
accumulates new mutations. The final outcome is very
interesting: a collapse finally occurs. This is illustrated
in figure 3d, where we plot the total cancer population
and the average instability (inset) for the examples of
figure 3c. Around 1700 generations, cancer cells have
accumulated so many mutations that they are almost
unable to produce viable descendants. After t = 2000
there is no significant cancer cells population.

Despite the slow growth of 〈µ〉, a catastrophic shift oc-
curs, with a rapid decay of the tumor. Catastrophic shifts
have been previously described within ecological and so-

cial systems [34] and are characterized by sudden system
responses triggered by slow, continuous changes of given
external control parameters. The novelty of our observa-
tion is that the changing parameter is affected by (and
affects) population dynamics and thus is not externally
tuned but internally increased.

D. Phase space

A systematic exploration of the parameter space pro-
vides a picture of the two main phases, as shown in Fig.
4. The two axes involve a wide range of values for both α
and µdisp. In the first phase (gray squares), the tumor is
driven to extinction. Extinction arises as a combination
of two components: i) an insufficient fitness advantage of
the early cancer cells (the cancer population progressively
decays without reaching enough instability to develop),
or ii) the tumor inability to keep the optimal instabil-
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FIG. 4: Phases in the tumor growth model. The main plot
(a) shows the two phases associated to the extinction (gray)
of propagation (white) of the cancer cell population. The
transition separating the two phases can be characterized by
the transient dynamics exhibited by the model. The inset
(b) displays the number of time steps (or cancer cells genera-
tions) to reach the corresponding final state represented in a).
Darker (lighter) zones are associated to longer (shorter) tran-
sients. As expected from a phase transition phenomenon, long
transients are observed close to the boundary between both
phases.

ity (when this happens, a moderate population growth
precedes the tumor failure). The second region (white
area) stands for tumors that grow enough to overcome
the healthy tissue.

The transition between the two regions is also marked
by a rapid increase in the transient time. In Fig. 4b we
have depicted the transient time steps (i.e., generations
of cancer cells) to reach either the extinction or stable ex-
pansion to equilibrium values by the tumor. As expected,
longer times are needed near the phase transition.

VI. TUMOR FRONT SPEED

In the previous section, we have seen how some tu-
mor population waves diffuse in the instability space. A

relevant feature of propagating fronts, with direct impor-
tance for tumor growth, is the propagation speed of the
front. Such speed has been actually calculated for spa-
tially growing tumors [35-37] and the front is thus a spa-
tially defined one. Although we are here considering front
propagation through instability space, the same reason-
ing applies. Here we derive an analytical, approximate
solution for the front speed of the tumor. This will pro-
vide a quantitative measure of how fast cancer instability
propagates. Since deriving an exact analytical expression
for the front speed can be extremely cumbersome, some
approximations are required.

First, let us consider early stages in tumor development
(such as the first 150 in Fig. 3). Here the system is mostly
composed of healthy cells, and few of cancer cells. This
permits to approximate the complex expression for the
average fitness [see Eq. (18)] as the reproduction rate of
healthy cells, i.e.,

φ(H, c) ' G(H) ' rn. (20)

The second approximation we will consider refers to the
dispersal kernel. According to Eq. (19) in the previ-
ous section, the dispersal kernel is a continuous function
defined in the interval [0,+∞]. In this section we will
consider the following simpler, discrete dispersal kernel:

ω(∆µ) = peδ(∆µ) + (1− pe)δ(∆µ + µdisp), (21)

where δ(∆µ) corresponds to the Dirac delta function cen-
tered at ∆µ. The above discrete kernel (21) considers
that every new cell can either stay at the same instability
µ of the parent cell (with probability pe, which is called
persistence) or jump into a higher instability µ + µdisp
[with probability (1− pe)]. Although the discrete kernel
(21) is much simpler than the continuous kernel (19), it
also models a major feature in cancer cells replication
(see the previous section), that is: the stronger the mu-
tant trend of cancer cells, the weaker the ability of the
population to keep an optimal instability.

Thus, according to Eqs. (20) and (21) above, our ap-
proximation to Eq. (12) reads:

c(µ, t+ 1) = c(µ, t) +

0∫
−µ

f(µ+ ∆µ)c(µ+ ∆µ, t)(peδ(∆µ) + (1− pe)δ(∆µ + µdisp))d∆µ − c(µ, t)rn. (22)

Taking into account the integrative properties of the
Dirac delta function δ(∆µ), the above equation 22 can

be rewritten in terms of a much simpler functional form:
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c(µ, t+ 1) = c(µ, t) + pec(µ, t)f(µ) + (1− pe)c(µ− µdisp, t)f(µ− µdisp)− c(µ, t)rn. (23)

The front speed from reaction-dispersal integro-difference
equations such as (12) can be obtained under some gen-
eral assumptions [32,37] associated with the shape to be
expected for the propagating front.

Here we are interested in the simplified version (23) of
the model. Thus we only need to assume that there exist
constant shape solutions of the form

c(µ, t) = c0 exp [−λz]

for large values of the coordinate z ≡ (µ− vt).

If we require that λ > 0, it yields the following approx-
imate, analytic solution for the tumor front speed of our
system as it propagates through instability space:

v = min
λ>0

{
1
λ

ln
[
pef(µ) + (1− pe)f(µ− µdisp)eλµdisp − rn + 1

]}
(24)

where the standard, marginal stability condition [32] has
been applied.

The approximate front speed (24) should not be taken
as a general trend in tumor evolution, since it is subject
to the approximations explained above. Indeed, for cases
in which healthy cells overcome the tumor it eventually
predicts negative values of the front speed. However,
predicting a negative front speed can also be seen as the
retreat (i.e., the death) of the cancer population (which
at early times is only composed by a few cancer cells
with µ→ 0). Nevertheless, Eq. (24) provides remarkably
good results for the front speeds of lethal tumors (i.e., for
tumors within the parameter region in which the tumor
succeeds), as we show in Fig. 5.

Fig. 5 shows a comparison between the numerical and
the approximate analytical solution [Eq. (24)] for the
tumor front speed as a function of the characteristic dis-
persal distance µdisp. Numerical solutions for the front
speed have been computed by numerically solving [38]
the model Eqs. (12) and (18) using the discrete ver-
sion of the dispersal kernel (21). For both the numer-
ical and the approximate analytical solutions, the front
speed monotonically increases with the characteristic dis-
tance µdisp. As far as the order of magnitude is con-
cerned, the approximate analytical expression (24) is able
to predict the more exact numerical results for the tumor
front speed. Furthermore, relative differences (which are
typically above 15%) between the analytical results and
the numerical solutions are approximately independent
of µdisp.
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FIG. 5: Front speed of the cancer population travelling on the
instability space, as a function of the characteristic dispersal
distance µdisp. The line and the circles stand for the numerical
results and the approximate analytical solution [Eq. (24)] for
the front speed, respectively. The rest of the parameters used
to compute the front speed are: rn = 0.25, α = 20, pe = 0.85
and µc = 0.08.

VII. DISCUSSION

In this paper we have presented an integral model for
the evolution of unstable tumors. Our model improves
a previous compartment description of the cancer cells
population, because we consider the genetic instability
as a continuous variable that characterizes the state of
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the cell. The model considers a population of tumor
cells that replicate and migrate (mutate) in the insta-
bility space, while competing for available resources (a
limited population constraint has been applied). This
model is based on several simplifying assumptions, from
the linear nature of interactions between instability levels
to the dispersal kernels used.

We have presented an extended analysis of unstable
cancer evolution over the two most relevant parameters of
the model: the selective advantage of cancer cells over the
healthy cells population, and the characteristic migration
distance within instability space (which determines the
mutant tendency of cancer cells). Several outcomes of
the process have been found. Two of them are expected:
either the growth or the failure of cancer to succeed are
predicted by the simplest mean field model that can be
defined, as discussed in section II. The integral equation
approach confirms such prediction, although it allows to
substantiate it in more accurate ways, providing a for-
mal framework to calculate useful quantities, particularly
the front speed of our population through the µ-space.
Moreover, this formal approach provides a natural way
to properly introduce population heterogeneity.

An additional scenario has also been found, namely the
catastrophic shift phase, where the tumor grows, eventu-
ally expanding over a significant part of the total avail-
able space, with a steady growth of instability. How-
ever, at some point the excessive instability level leads
to a population collapse, with no cancer cells in the end.
This scenario reminds us a well known problem in can-
cer research, that has some deep connections with phase
transitions: spontaneous regression [39]. This scenario is
tied to cancer progression entering malignancy and thus a
wide spreading of the tumor mass. Despite the typically
bad prognosis, in a small percentage of cases a strong
immune response is capable of getting rid of all tumor
cells.

Our model does not consider immune components and
instead the factor responsible for the tumor collapse is
high instability. This result provides further support to
the original proposal that lethal thresholds of instabil-
ity exist in cancer [13,14] which could be exploited for
therapeutic purposes, even when major success of the
cancer population is observable. Future work should fur-
ther explore this observation, adding also other known
threats to cancer progression, such as starvation or hy-
poxia, which could further enhance the frequency and
sharpness of these thresholds.
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