An Entropic Proof of Chang’s Inequality

Russell Impagliazzo
Christopher Moore
Alexander Russell

SFI WORKING PAPER: 2013-05-018

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may be reposted only with the explicit permission of the copyright holder.

www.santafe.edu
An Entropic Proof of Chang’s Inequality

Russell Impagliazzo∗ Cristopher Moore† Alexander Russell‡

May 17, 2012

Abstract
Chang’s lemma is a useful tool in additive combinatorics and the analysis of Boolean functions. Here we give an elementary proof using entropy. The constant we obtain is tight, and we give a slight improvement in the case where the variables are highly biased.

1 The lemma
For \(S \in \{0,1\}^n \), let \(\chi_S : \{\pm 1\}^n \to \mathbb{R} \) denote the character

\[
\chi_S(x) = \prod_{i \in S} x_i.
\]

For any function \(f : \{\pm 1\}^n \to \mathbb{R} \), we can then define its Fourier transform \(\hat{f} : \{0,1\}^n \to \mathbb{R} \) as

\[
\hat{f}(S) = \mathbb{E}_x f(x)\chi_S(x) = \frac{1}{2^n} \sum_x f(x)\chi_S(x).
\]

For characters of Hamming weight 1, we will abuse notation by writing \(\hat{f}(i) \) instead of \(\hat{f}({i}) \).

Chang’s lemma [1, 2] places an upper bound on the total Fourier weight, i.e., the sum of \(\hat{f}^2 \), of the characteristic function of a small set on the characters with Hamming weight one.

Lemma 1. Let \(A \subseteq \{\pm 1\}^n \) such that \(|A| = 2^n \alpha \), and let \(f = 1_A \) be its characteristic function. Then

\[
\sum_{i=1}^n \hat{f}(i)^2 \leq 2\alpha^2 \ln \frac{1}{\alpha}.
\]

Proof. Suppose that we sample \(x \) according to the uniform distribution on \(A \). Since the mutual information is nonnegative, the entropy \(H(x) \) is at most the sum of the entropies of the individual bits,

\[
H(x) \leq \sum_{i=1}^n H(x_i).
\]
This gives
\[n \ln 2 + \ln \alpha \leq \sum_{i=1}^{n} h(p_i^+) \]
where \(p_i^+ \) denotes the probability that \(x_i = +1 \),
\[p_i^+ = \frac{1}{2} \left(1 + \mathbb{E}_{x \in A} x_i \right) = \frac{1}{2} \left(1 + \frac{\tilde{f}(i)}{\alpha} \right). \]
and where \(h \) denotes the entropy function
\[h(p) = -p \ln p - (1 - p) \ln (1 - p). \]
The Taylor series around \(p = 1/2 \) gives
\[h\left(\frac{1 + x}{2} \right) = \ln 2 - \sum_{t=2,4,6,...} \frac{x^t}{t(t-1)} \leq \ln 2 - \frac{x^2}{2}, \]
so (1) becomes
\[\ln \alpha \leq -\frac{1}{2} \sum_{i=1}^{n} \frac{\tilde{f}(i)^2}{\alpha^2}, \]
Rearranging completes the proof. \(\square \)

2 Variations

The lemma (and our proof) apply equally well to the Fourier weight \(\sum_{S \in B} \widehat{f}(S)^2 \) of any basis \(B \) of \(\mathbb{F}_2^n \), since the set of parities \(\{ \prod_{i \in S} x_i \mid S \in B \} \) determines \(x \). This gives the following commonly-quoted form of Chang’s lemma.

Lemma 2. Let \(A \subseteq \{ \pm 1 \}^n \) such that \(|A| = 2^n \alpha \), and let \(f = \mathbb{1}_A \) be its characteristic function. Fix \(\rho > 0 \) and let \(R \subseteq \mathbb{F}_2^n \) be the set \(\{ S : |\widehat{f}(S)| > \rho \alpha \} \). Then \(R \) spans a space of dimension less than \(d = 2\rho^{-2} \ln(1/\alpha) \).

Proof. If \(R \) spans a space of dimension \(d \) or greater, there is a set of \(d \) linearly independent vectors in \(R \). Completing to form a basis \(B \) gives \(\sum_{S \in B} \widehat{f}(S)^2 > 2\alpha^2 \ln(1/\alpha) \), violating Lemma 1. \(\square \)

For any integer \(k \geq 1 \), there are bases consisting entirely of vectors of Hamming weight \(k \). Fixing \(k \) and averaging over all such bases gives
\[\sum_{S : |S| = k} \widehat{f}(S)^2 \leq \frac{2^n}{n} \binom{n}{k} \alpha^2 \ln \frac{1}{\alpha} \leq \frac{2n^{k-1}}{k!} \alpha^2 \log(1/\alpha). \]
This also follows immediately from Shearer’s lemma. However, this is noticeably weaker than the “weight \(k \) bound”
\[\sum_{S : |S| = k} \widehat{f}(S)^2 = O(\alpha^2 \log^k(1/\alpha)). \]
Figure 1: The entropy function $h(p)$ where $p = (1 + x)/2$ and $x \leq 0 \leq 1$, with the upper bounds (2) (which is tight when $|x|$ is small) and (3) (which is tight when $|x|$ is close to 1).

Finally, we note that if some bits are highly biased, i.e., if $|\hat{f}(i)/\alpha$ is close to 1, we can replace (2) with the bound

$$h(p) \leq p(1 - \ln p),$$

which is tight when p is small. Combining this with the corresponding bound for p close to 1 gives

$$h\left(\frac{1 + x}{2}\right) \leq \frac{1 - |x|}{2} \left(1 - \ln \frac{1 - |x|}{2}\right).$$

We compare this bound with (2) in Figure 1. This gives another version of Lemma 1:

Lemma 3. Let $A \subseteq \{\pm 1\}^n$, let $f = 1_A$ be its characteristic function, and let

$$\delta_i = \frac{1}{2} \left(1 - \frac{|\hat{f}(i)|}{\alpha}\right) = \min\left(p_i^+, 1 - p_i^+\right).$$

Then

$$\sum_{i=1}^{n} \delta_i (1 - \ln \delta_i) \geq \ln |A|. \quad (4)$$

This is nearly tight, for instance, if A is the set of vectors with Hamming weight 1. Then $|A| = n$, $\delta_i = 1/n$, and (4) reads $1 + \ln n \geq \ln n$.

Acknowledgments

We thank Ryan O'Donnell for a wonderful set of lectures on the analysis of Boolean functions at the Bellairs Research Institute, and Ran Raz for helpful communications. C.M. and A.R. are supported by NSF grant CCF-1117426 and ARO contract W911NF-04-R-0009.
References
