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Abstract 
 
Organisms live and die by the amount of information they acquire about their 
environment. The systems analysis of complex metabolic networks allows us to ask how 
such information translates into fitness. A metabolic network transforms nutrients into 
biomass. The better it uses information on available nutrient availability, the faster it will 
allow a cell to divide. I here use metabolic flux balance analysis to show that the 
accuracy I (in bits) with which a yeast cell can sense a limiting nutrient’s availability 
relates logarithmically to fitness as indicated by biomass yield and cell division rate. For 
microbes like yeast, natural selection can resolve fitness differences of genetic variants 
smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to 
very high accuracy (>22 bits) to ensure optimal growth. I argue that such accuracies are 
not achievable in practice. Natural selection may thus face fundamental limitations in 
maximizing the information processing capacity of cells. The analysis of metabolic 
networks opens a door to understanding cellular biology from a quantitative, information-
theoretic perspective.  
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Background 
 
 
Organisms need to acquire information about their environment in order to survive and 
reproduce. They need to respond to information about changes in temperature, soil 
conditions, water availability, nutrient supply, predation pressure, and many other factors. 
The ability to acquire and use such information arguably affects organismal fitness [1-6]. 
However, we know nothing about the quantitative relationship between such information 
and fitness.   
 In microbes, an important fitness component is a cell’s growth or cell division rate.  
The selection pressure to grow rapidly during times of nutrient availability has left clear 
traces in the evolutionary record, such as strong microbial codon usage biases that allow 
high translation efficiency of abundant proteins [7, 8]. It has recently become possible to 
make quantitative predictions about a cell’s maximal division rate, based on nearly 
complete information about the metabolic networks that sustain cellular life [9-16]. These 
metabolic networks comprise of the order of 103 chemical reactions for free-living 
organisms. Their structure has been elucidated in several organisms by manual curation, 
aided by functional genomic data [9, 11, 12]. Flux balance analysis allows one to predict 
those flows of matter –metabolic fluxes – through each reaction of a network that are 
consistent with the laws of mass conservation. More precisely, flux balance analysis 
predicts ratios of metabolic fluxes, i.e., values of metabolic fluxes relative to a reference 
flux that needs to be determined independently, for example through experimental 
measurements.  Together with the known biomass composition of an organism, flux 
balance analysis can then also identify the metabolic fluxes that maximize biomass 
production. For organisms such as Saccharomyces cerevisiae and common growth 
substrate compositions, such as minimal media with glucose as a sole carbon source, the 
predictions of flux balance about maximal biomass yield are in good agreement with 
experimental data, where available [14, 17, 18]. For other organisms and more unusual 
environments [19-21] this does not always hold. Strikingly, however, even in this case 
laboratory evolution experiments can produce strains of organisms that show the 
maximally predicted biomass yield within a short amount of time [13, 19, 20, 22]. I here 
use flux balance analysis of the yeast metabolic network to explore the relationship 
between environmental information and how rapidly an organism produces biomass per 
unit time.  

The kind and concentration of available growth substrates influence a cell’s 
maximal biomass yield [23-26]. Cells have developed elaborate nutrient sensing 
mechanisms to respond to changes in nutrient abundances. For example, in yeast, 
dedicated glucose sensor proteins (Snf3, Rgt2) as well as glycolytic intermediates form 
the beginning of a signaling cascade. This cascade produces an integrated cellular 
response that includes the expression of glucose transporter genes (HXT1-HXT7), the 
expression of glycolytic genes, as well as the repression of many other genes [24, 25]. 
Even though long-studied, glucose sensing is still only qualitatively and incompletely 
understood. This holds to an even greater extent for other sensing mechanisms, such as 
those for phosphate and nitrogen [24, 25]. The accuracy of the sensing mechanism is 
clearly important for optimal growth, but there is an important asymmetry: 
Overestimation of a nutrient concentration, e.g. through overexpression of catabolic 
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genes, will not lead to sub-optimal growth due to metabolic undercapacity, because the 
available nutrients can still be maximally used. In contrast, underestimation and the 
resulting undercapacity will lead to reduced growth. Information is thus of greatest value 
from a metabolic perspective if it prevents underestimation of nutrient concentrations, 
and thus undercapacity of a nutrient utilization system. I will thus focus primarily on the 
consequences of sensing errors that lead to underestimates of nutrient concentrations. 
Note that overestimation of nutrient concentration may lead to sub-optimal growth for 
other reasons, reasons that cannot currently be modeled in a metabolic context, and that 
are discussed below. 

Information acquired through nutrient sensing can be represented as follows. 
Consider k nutrients and their actual concentrations Ni (1≤i≤k) in a cell’s environment. If 
a cell underestimates the actual nutrient concentration in the environment for any one 
nutrient, then its “measurement” m

iN of the actual nutrient concentration is such 
that i

m
i NN < . Now subdivide the interval (0, iN ) into ni equal subintervals. If the cell 

can place (measure) the concentration of i within the interval (Ni(ni-1)/ni,Ni) then it has 
Ii=log2 ni bits of information about this nutrient. If the measurement error, when viewed 
as a random variable, has a symmetric or a uniform distribution within this interval, then 
the expected sensing error is Ei= ii nN 2/ . Nutrient information and sensing error thus 
relate to each other as  
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Although Ei  and Ii are equivalent, using Ii  has two advantages. First, its units (bits) are 
canonical measures of information [27]; second, information content is additive, that is, if 
a cell has Ij bits of information on nutrient j (1≤j≤k), then it has ∑= j jII bits of 

information about its entire nutrient environment, if the nutrients occur independently 
from one another, or if the cell measures them independently from each other.    
 Flux balance analysis allows us to immediately assess the fitness value of nutrient 
information for a cell, because a cell’s maximal biomass yield is a function of the 
measured nutrient concentrations ),,( 1

m
k

m NN K and the extent to which these 
concentrations differ from their actual value ),,( 1 kNN K .  
 
 
 
Results 
 
Diminishing returns on improved information acquisition 
  
The relationship between information and fitness is best explored for a defined 
environment, such as a minimal growth medium. The environment I use contains NH3, 
inorganic phosphate (Pi), sulfate, and glucose as the sole carbon source. Oxygen is 
available as a terminal electron acceptor. For simplicity, I first focus on a scenario where 
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information about all substrates except glucose is perfectly accurate. I assume that the 
biomass yield Y per unit time is linearly proportional to a cell’s division rate G, a measure 
of fitness. In other words, Y=cG, c being some constant. I express the effect of 
incomplete information on biomass yield Y as s=1-Y/Ymax=1-G/Gmax, where Ymax and Gmax 
are the maximally achievable biomass yields and cell division rates, respectively, i.e., the 
yields and rates for perfectly accurate glucose information. The quantity s can also be 
thought of as a selection coefficient, as a measure by how far a cell’s fitness w=1-
s=G/Gmax is reduced by incomplete information. Figure 1a shows how a cell’s fitness 
depends on the amount of information the cell can acquire about substrate concentration. 
Specifically, the figure shows that the logarithm of fitness depends linearly on 
information in bits. The relationship of s and information is especially simple if a binary 
logarithm is used to scale s, i.e., -log2(s)=IGLC+1. This simple relationship emerges 
numerically from flux balance analysis, but it also has a straightforward intuitive 
explanation. If zero bits of information are available for a growth-limiting nutrient, then 
under the assumptions used here, the cell’s “guess” about nutrient concentrations will be 
randomly distributed in the interval (0, Ni), with an expected value of Ni/2. At this 
expected value, the division rate of a cell will be half the maximal growth rate, such that 
s=1/2. The above relationship between s and I then holds, because -log2(1/2)=1=I+1. If 
one bit of information is available (I=1), then the cell’s measurement will be randomly 
distributed in the interval (Ni/2, Ni), with an expected value of 3Ni/4, leading to s=1/4, 
and  -log2(1/4)=2=I+1. The same line of reasoning applies to ever increasing values of I. 
The key assumption in this intuitive explanation is that if one nutrient is growth-limiting, 
then cell division rate depends linearly on the cell’s ability to utilize this nutrient. This is 
not obvious a priori, because the nutrient’s metabolic products may be fed into many 
different pathways that produce essential biomass components. The distribution of these 
products among different pathways, and the cell’s final resulting division rate, might in 
principle depend on the concentration of the nutrient and on that of other nutrients. 
However, flux balance analysis shows that the dependency between nutrient 
concentration and biomass yield is quite simple and linear.  

Nutrient sensing has much greater impact if the amount of information acquired 
by a cell is low (Figure 1a). For instance, an increase in available glucose information 
from 1 bit (low-high) to 2 bits (four distinct concentration values) causes a 36% increase 
in growth rate, whereas an increase from 14 to 15 bit causes an increase of 0.0012 percent. 
For the purpose of comparison, the figure also shows the relationship between fitness 
reduction and sensing error in percent. Fitness reduction s decreases linearly with 
decreasing sensing error (note the double-logarithmic scale). Quantitatively very similar 
linear-log and linear relationships hold for the other four nutrients (data for oxygen and 
ammonium are shown in the inset for Figure 1a). In sum, the logarithm of division rate 
scales linearly with nutrient information in bits, and increased information acquisition 
carries diminishing fitness returns. 
 
Even very small sensing errors cause adaptively significant growth-rate differences 
 
How large must a growth rate difference s (due to imperfect nutrient sensing) be in order 
to matter to natural selection? The influence of genetic drift dominates over that of 
natural selection, if a reduction in growth rate is s<1/4Ne for diploid cells, where Ne is the 
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effective population size [28, 29]. Ne, in turn, can be estimated from the synonymous 
nucleotide diversity π in a population, and the per-generation mutation rate μ as Ne=π/4μ. 
Thus, if a growth rate difference is smaller than s=μ/π in a population, then the associated 
growth rate difference is too small to be seen by natural selection. The rate of mutations 
per nucleotide and generation in Saccharomyces cerevisiae has been estimated at 
μ=2.2×10-10 [30]. In the closest wild relative of yeast synonymous π has been estimated 
as π =0.003 [31]. The above parameters yield s=7.33×10-8 as a “critical” growth rate 
difference that can still be seen by natural selection. No data on synonymous nucleotide 
diversity are available for S. cerevisiae itself, but a recent estimate [32] on overall 
nucleotide diversity of π=0.0046 (which is typically smaller than synonymous diversity) 
suggests an upper bound of s=4.78×10-8, rendering the critical s I use here conservative. 
Growth rate differences below this value are more strongly influenced by drift than by 
selection.  
 The critical selection coefficient s is indicated in Figure 1a by a horizontal line. 
Below this line, any gains in information do have negligible effect. Specifically, 
information gains exceeding I=-log2 s-1≈22 bits are selectively neutral for yeast. 
  
Reduced fitness value of information for imperfect sensing of several nutrients. 
  
Thus far, I assumed limited information for only one nutrient, but what if information is 
limited for more than one nutrient? Consider a genotype that systematically 
underestimates the availability of one substrate, such as glucose, because of a poor 
sensing mechanism. The resulting undercapacity to metabolize this substrate renders the 
substrate growth-limiting. In this situation, accurate sensing of the availability of another 
substrate, such as ammonium may not increase fitness. The reason is that growth is 
limited not by a lack of information about ammonium, but by lack of information about 
glucose. As an example, Figure 1b shows how information about ammonium and glucose 
abundance (x- and y-axes) interact to produce observed growth rate differences (z-axis). 
If ammonium sensing is highly accurate, then increasing information about glucose 
concentrations causes a linear increase in fitness (the plane parallel to the yz-axes, at an 
accuracy of 24 bits for ammonium availability) exactly as in Figure 1a. However, if 
ammonium sensing is poor (the same plane, but at zero bits of ammonium information) 
then good glucose sensing yields no growth-rate gain, because it is the poor ammonium-
sensing that effectively limits growth. If ammonium-sensing accuracy is intermediate, 
then an improvement in glucose sensing causes a growth-rate increase (smaller s) up to 
some number of bits. From that point on, additional glucose-information has no effect, 
because ammonium-sensing has become growth-limiting.  Exactly the same 
considerations hold if the places of ammonium or glucose are interchanged (or for any 
other two nutrients), which causes the symmetry of the piecewise linear surface in Figure 
1b. 
 Figure 1c shows a different representation of the relationship between the fitness 
value of information about one growth substrate, and variation in information about 
another growth substrate. The figure shows how increasing information about glucose 
concentration (horizontal axis) affects biomass yield and thus fitness (vertical axis), if at 
the same time information measured about one or more other nutrients varies randomly. 
For example, the black bars correspond to a situation where only one other substrate, 
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oxygen, is measured at accuracies randomly and uniformly distributed between 0 and 16 
bits. For increasing glucose information, the growth rate loss becomes smaller, but never 
as small as when only glucose information limits growth (note the logarithmic and linear 
vertical axes in Figures 1a and 1c, respectively). Even at glucose information of 16 bits, 
the biomass yield loss by a cell relative to the maximal growth rate is of the order of 
s=0.02 (2 percent, Figure 1c, black bars), several orders of magnitude greater than the 
s≈10-8 observed if oxygen sensing is perfectly accurate. This means that inaccurate 
sensing of one growth substrate severely limits the value of information about other 
growth substrates. This limitation becomes more severe as the number of growth 
substrates for which uncertainty exists increases (black to white bars in Figure 1c). 
Although the data is shown for specific growth substrates, the results are insensitive to 
the kind of nutrients for which imprecise information is available.  

Figure 1d, finally, shows the effect on biomass yield of the total amount of 
information available, i.e., summed over five key growth substrates in a minimal glucose 
medium, where information on each growth substrate can vary between 0 and 16 bits. 
Biomass yield increases (s decreases) only slightly as the amount of available information 
increases, until much information (>60 bits) becomes available, at which point every 
additional bit has a large effect. This means that the benefits of growth substrate 
information are limited by the poorest sensing process in a metabolic system. Only if 
every substrate-sensing process has high accuracy, does increasing information about any 
one substrate provide large benefits.  
 
 
Discussion 
 
The notion that cells process information is not new [33]. However, it is usually 
expressed qualitatively, without reference to the amounts of information involved and 
what exactly is being processed. Using metabolic flux balance analysis, I here take a 
small step towards a quantitative approach to information processing in cells. Specifically, 
I show that nutrient sensing inaccuracy is translated into reduced cell growth. In the 
simplest possible case of information limitation in only one nutrient, the relationship 
between cell growth and information (in bits) is best expressed as -log2(s)=I+1, where s is 
a selection coefficient, the difference between the maximal growth rate with perfect 
sensing and the actually attained growth rate.  
 Population genetic considerations show that very small selection coefficients of 
s<10-6 are still visible to natural selection in microbes like yeast. Very small inaccuracies 
(≈0.0001 percent measurement error; Figure 1a) can thus still lead to growth rate loss 
with evolutionary consequences. Yeast cells would need to sense nutrients at accuracies 
greater than 22 bits to ensure optimal growth. Organisms with larger population sizes 
would need even greater accuracies.  

Although nutrient sensing mechanisms are only incompletely understood [23-25], 
several lines of evidence suggest that the needed accuracies are unlikely to be achievable 
in practice. First, with an average volume of 9.5×10-14 liter for a yeast cell [34], a typical 
nutrient concentration of 10 mmol l-1 translates into 5.72×108molecules. Temporal 
random fluctuations scale as the square root of the number of molecules [35], and will be 
of the order of 0.004 percent, more than an order of magnitude greater than the necessary 
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accuracy. At physiological nutrient concentrations, the needed sensing accuracy thus is 
greater than random fluctuations in molecule numbers.  

Second, although it is generally unknown how accurately cells can sense molecule 
concentrations, some benchmarks come from the accuracy with which cells can sense 
concentration differences. Eukaryotic cells, including yeast, can detect concentration 
differences of 1-10% across the length of a cell [36]. Much smaller E. coli cells can 
detect concentration differences of 0.01% by integrating information over time during 
chemotactic swimming [37-41]. However, these accuracies are two orders of magnitude 
or more smaller than the measurement error associated with 22 bit sensing accuracy of 
absolute nutrient concentrations.  

A third line of evidence comes from measurements of gene expression noise.  
For optimal utilization of a nutrient, several classes of molecules need to be expressed at 
a minimum level determined by the nutrient concentration. These include the nutrient 
sensors, the signaling molecules needed to communicate the sensing information to 
regulators of gene expression, and the nutrient utilization enzymes themselves. Sensing is 
suboptimal if any one of these classes of molecules is expressed at too low a level. 
Concentrations of all gene products fluctuate in a cell due to gene expression noise [38-
42]. Although highly expressed proteins show low expression noise, even highly 
expressed yeast proteins may fluctuate in concentration by about 10% around their mean 
[41]. If concentrations of sensing and utilization molecules need to be fine-tuned for high 
sensing accuracy, then sufficiently high sensing accuracy is not realistic. In sum, 
fluctuations of nutrient concentrations, limits to detection of concentration differences, 
and gene expression noise will conspire to prevent high-accuracy sensing of nutrient 
concentrations needed for optimal growth.    
  A number of caveats to this approach are in order. First, I have here emphasized 
sensing errors that lead to underestimation of substrate availabilities, because only such 
errors lead to an undercapacity to metabolize nutrients. Overestimation would lead to 
overcapacity of nutrient utilization systems, which in itself would still lead to maximal 
growth. However, if overestimation causes a systematic overexpression of signaling or 
utilization molecules, overestimation could carry an increased cost of gene expression. 
Even though few genes might be involved, these costs are not necessarily low. For 
example, in case of the lactose operon of E. coli, overexpression of only three lactose 
utilization genes in the absence of lactose leads to a 5% reduction in growth rate (s=0.05) 
[26], which is a very large fitness loss compared to the small values visible to natural 
selection [43]. Hundreds of genes can change expression in response to nutrient 
availability in yeast [44]. Because many of these genes do not encode metabolic enzymes, 
it is not straightforward to predict the ensuing change in expression cost from a metabolic 
model.  In addition, available quantitative information about expression changes for such 
genes has very limited accuracy for mRNA, and is generally unavailable for proteins. 
Thus, although it would be highly desirable to understand both the growth cost of 
underestiming and overestimating nutrient concentrations [44], a quantitative analysis of 
such costs must await more complete characterization of sensing pathways and gene 
expression changes therein.  
 A second caveat is that selection may act concurrently on multiple attributes of a 
metabolic system, not only on nutrient sensing. One example comes from glucose 
limitation experiments in chemostats, where a population’s environment is held constant 
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for hundreds of generations. Consider a nutrient whose actual concentration is N, and the 
value of its concentration sensed by a cell (possibly with some inaccuracies) is S(N). If 
the import system for this nutrient is far from being saturated, which is likely if the 
nutrient is at concentrations sufficiently low to be growth limiting, then the cell’s uptake 
rate U of this nutrient is likely to be proportional to S(N), with some proportionality 
constant c, i.e., U=cS(N). In this paper, I focus on the value of improved nutrient sensing 
S(N). However, in addition, the proportionality constant c itself may be subject to 
selection pressure, thereby increasing the efficiency of uptake for a given S(N). For 
example, in yeast populations cultivated during several hundred generations in a 
chemostat, such increase in uptake efficiency occurs through gene duplication and 
increased expression of hexose transporter genes [45, 46]. Note, however, that the 
constant chemostat conditions of such experiments are likely to be rare in the wild, where 
an exponentially growing population rapidly exhausts any limiting nutrient source.  
 A final caveat is that it may not always be possible to sense the availability of two 
compounds independently from one another. One example is the sensing of glucose and 
protons (H+), where in yeast the glucose sensor Snf3p is known to activate the proton 
pumping plasma membrane ATPase [47].  

Nutrient sensing systems are only as strong as their weakest link: Inaccurate 
sensing of one nutrient may strongly reduce the fitness benefits of high quality sensing of 
other nutrients. However, it is easy to see how multiple independent mutations, each in a 
different nutrient sensing system, may favor incremental improvements in the sensing of 
all nutrients through natural selection. The reason is that an allele that increases sensing 
quality for one nutrient will increase fitness whenever that nutrient is limiting, and be 
driven to fixation during such times. This increases the value of better information for 
other nutrients, and favors alleles that improve information acquisition for these nutrients, 
thus increasing the respective mutations in frequency, and so on. At the end point of 
many such evolutionary cycles stands a cell that achieves the best possible nutrient 
sensing, given biophysical and population size constraints. 
    Recent work suggests that the lens of natural selection can see seemingly 
minute changes in transcriptome and proteome composition, such as single amino acid 
changes and small changes in the expression of one gene [48]. The observations made 
here likewise emphasize the importance of natural selection to shape nutrient sensing 
accuracy. In addition, they suggest the existence of biophysical constraints that may 
severely limit the outcome of selection on high-accuracy nutrient sensing to biophysically 
achievable, but suboptimal solutions. This perspective only becomes possible through a 
system-wide analysis of a metabolic network. An important task of future work would be 
to quantify the constraints natural selection faces in optimizing how cells acquire 
information.  
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Methods 
 
 
Flux balance analysis [49] uses information about the stoichiometry of all enzymatic 
reactions known to occur in an organism, which is encapsulated in a stoichiometry matrix 
S. At a metabolic steady-state, the vector of allowable metabolic fluxes v describing the 
rates through each reaction in the network must fulfill the condition Sv=0 so as to not 
violate mass conservation. For each v that is a solution of this equation, cv (c being some 
real constant) is also a solution, such that one can think of v as specifying relative ratios 
of fluxes through a metabolic network. Further constraints, such as irreversibility of some 
reactions, and experimentally measured uptake fluxes of external substrates can reduce 
the number of allowable fluxes v in steady-state. Within the space of allowable fluxes 
one can then use linear programming to determine the fluxes that maximize or minimize 
any quantity that can be expressed as linear combinations of individual metabolic fluxes. 
An especially important such quantity is the biomass growth flux itself.  

The following substrate uptake fluxes (mmol substrate /h /g dry weight) were 
used here (rounded to two significant digits): Glucose: 15.3; O2: 2.4; Sulfate: 0.034; 
inorganic phosphate Pi: 0.09; ammonium NH3: 2.45. Among these values, the glucose 
uptake flux vG and oxygen uptake flux vO2 stem from experimental measurements in an 
aerated batch culture of S. cerevisiae [50]. I constrained these two fluxes and then 
determined the maximal growth flux vmax given these constraints, where the stoichiometry 
of the growth flux is given in [12]. I then constrained the growth flux to vmax (while still 
constraining vG, vO2 to the above values), and minimized the sulfate uptake flux for which 
this growth flux could be observed. The resulting sulfate uptake flux (see value above) is 
the smallest sulfate uptake flux that can sustain the observed vmax with the given glucose 
uptake flux. I subsequently carried out analogous minimization procedures for the 
remaining two growth substrates, thus arriving at the values listed above. This 
combination of values has the advantage that reduction in any one nutrient uptake flux 
will lead to a reduction in growth rate. In other words, no nutrient is in excess, and 
accurate nutrient availability estimation is critical to sustain maximal growth. All 
analyses were carried out with a publicly available yeast metabolic model [12] and with 
the FBA package “sbrt” (Wright and Wagner, unpublished), using the commercial linear 
programming package CPLEX (ILOG, Mountain View, CA.). To estimate expected 
growth rates for an amount of information Ii available for a given nutrient i, I translated Ii 
into the appropriate number of measurement intervals ni, according to the relation Ii=log2 
ni discussed in the main text. The expected measured nutrient value then calculates as 
Ni(2ni-1)/2ni, where Ni is the actual nutrient concentration represented through one of the 
uptake fluxes listed above. Flux balance analysis was carried out with this expected value 
to determine the growth rate achievable for the corresponding amount of information.  

As stated, nutrient concentrations are here represented through nutrient uptake 
rates. That is, I implicitly assume that if the concentration of a limiting nutrient changes 
by x%, then a cell with access to perfect nutrient sensing would also change its uptake 
rate of the nutrient by x%. However, it must be clarified that nutrient uptake rates are not 
necessarily proportional to nutrient concentrations, even if cells have perfect information. 
Specifically, if there is so much of a nutrient that the nutrient uptake transporters are 
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saturated, changes in extracellular nutrient concentrations will have no effect on nutrient 
uptake. However, this scenario is very different from my focus here, namely an 
environment where the concentration of individual nutrients limits growth, and where 
information about such nutrients matters to the cell.   
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Figure Legends 
 
Figure 1a: Increased glucose information (bits, lower horizontal axis, filled circles) and 
reduced sensing error (percent, upper horizontal axis, open symbols) cause an increases 
in fitness (1-s) as estimated through biomass production in the yeast metabolic network 
via flux balance analysis. The vertical axis shows the selection coefficient s, the 
difference to the maximal biomass yield at perfectly accurate information. Results are 
nearly identical for the other four substrates, and are shown for O2 and NH3 in the inset. 
The dashed horizontal line demarcates a neutral zone, below which (s<7.33x10-8; see text) 
growth rate increases are selectively neutral. b) Dependency of the selection coefficient s 
on glucose information and ammonium information. c) Effect of glucose information 
(bits) on the selection coefficient s, if sensing accuracy for a varying number of other 
substrates (differently shaded bars) varies uniformly in the interval (0,16) bits. At zero 
bits glucose information, the lack of glucose information limits growth, regardless of how 
much information is available on other growth substrates.  d) The selection coefficient s 
depends nonlinearly on the total amount of information available for all five substrates. 
Information about each substrate was varied in the interval (0,16) bits. All data are for a 
minimal, aerobic medium with glucose as the sole carbon source and the following five 
substrates: glucose, O2, phosphate, sulfate, and NH3.    
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Figure 1B
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Figure 1D
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