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Abstract

We consider an information-theoretic objective function for statistical modeling of time
series that embodies a parametrized trade-off between the predictive power of a model and
the model’s complexity. We study two distinct cases of optimal causal inference, which we
call optimal causal filtering (OCF) and optimal causal estimation (OCE). OCF corresponds
to the ideal case of having infinite data. We show that OCF leads to the exact causal
architecture of a stochastic process, in the limit in which the trade-off parameter tends
to zero, thereby emphasizing prediction. Specifically, the filtering method reconstructs
exactly the hidden, causal states. More generally, we establish that the method leads to a
graded model-complexity hierarchy of approximations to the causal architecture. We show
for nonideal cases with finite data (OCE) that the correct number of states can be found
by adjusting for statistical fluctuations in probability estimates.

1. Introduction

Time series modeling has a long and important history in science and engineering. Ad-
vances in dynamical systems over the last half century led to new methods that attempt to
account for the inherent nonlinearity in many natural information sources (Guckenheimer
and Holmes, 1983; Berge et al., 1986; Ott, 1993; Strogatz, 1994). As a result, it is now well
known that nonlinear systems produce highly correlated time series that are not adequately
modeled under the typical statistical assumptions of linearity, independence, and identi-
cal distributions. One consequence, exploited in novel state-space reconstruction methods
(Packard et al., 1980; Takens, 1981), is that discovering the hidden structure of such pro-
cesses is key to successful modeling and prediction (Casdagli and Eubank, 1992; Sprott,
2003; Kantz and Schreiber, 2006).

Following these lines, here we investigate the problem of predictive modeling of time
series with particular attention paid to discovering hidden variables. Using a framework
(Still and Crutchfield, 2007) inspired by rate distortion theory (Shannon, 1948) and the
information bottleneck method (IB) (Tishby et al., 1999) and using estimation methods
discussed in Still and Bialek (2004), we analyze the trade-offs between model complexity,
approximation accuracy, and the effect of finite-data fluctuations. We apply IB to time
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series prediction, thereby introducing the optimal causal filtering (OCF) method. OCF
achieves an optimal balance between model complexity and approximation. In the limit in
which prediction is paramount and model complexity is not restricted, we prove that OCF
reconstructs the underlying process’s causal architecture, as defined within the framework
of computational mechanics (Crutchfield and Young, 1989).

This shows, in effect, that OCF captures a source’s hidden variables and structure. We
then extend OCF to handle finite-data fluctuations, introducing optimal causal estimation

(OCE). In this case, errors due to statistical fluctuations in probability estimates must be
taken into account in order to avoid over-fitting. We demonstrate how the methods work
on a number of example stochastic processes with known, nontrivial correlational structure.

2. Causal Models of Information Sources

Assume that we are given a process P(
↔
X)—a joint distribution over a bi-infinite sequence

↔
X=

←
X

→
X of random variables. The past, or history, is denoted

←
X= . . . X−3X−2X−1, while

→
X= X0X1X2 . . . denotes the future.1 Here the random variables Xt take on discrete values
x ∈ A and the process as a whole is stationary. The following assumes the reader is familiar
with information theory and the notation of Cover and Thomas (2006).

We can consider any process P(
↔
X) to be a communication channel that transmits infor-

mation from the past to the future, by storing information in the present—presumably in
some internal states, variables, or degrees of freedom. One can ask a simple question, then:
how much information does the past share with the future? A related and more demanding
question is how we can infer a predictive model, given the process.2

The effective, or causal, states S are determined by an equivalence relation
←
x ∼

←
x
′
that

groups all histories together which give rise to the same prediction of the future (Crutchfield

and Young, 1989). The equivalence relation partitions the space
←
X of histories and is

specified by the set-valued function

ε(
←
x) = {

←
x
′
: P(

→
X |

←
x) = P(

→
X |

←
x
′
)} (1)

that maps from an individual history
←
x to the equivalence class σ ∈ S containing that his-

tory and all others which lead to the same prediction P(
→
X |

←
x) of the future. A causal state

has three aspects: a label σ ∈ S; a set of histories
←
Xσ= {

←
x : P(

→
X |

←
x) = P(

→
X |σ)} ⊂

←
X;

and a future morph which is the conditional distribution P(
→
X |σ) of the futures that can be

seen from the state. The causal states along with their transitions T form the ε-machine

representation of the process as specified within computational mechanics (Crutchfield and
Young, 1989; Crutchfield, 1994; Crutchfield and Shalizi, 1999; Ay and Crutchfield, 2005).

1. To save space and improve readability we use a simplified notation that refers to infinite sequences of
random variables. The implication, however, is that one works with finite-length sequences into the
past and into the future, whose infinite-length limit is taken at appropriate points. See, for example,
Crutchfield and Shalizi (1999).

2. Many authors have considered such questions; see, for example, Crutchfield and McNamara (1987) and
Bialek et al. (2001). The review in Crutchfield and Feldman (2003), and references therein, gives an
account of the related literature.
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Any alternative model, rival R, generally gives a probabilistic assignment P(R|
←
x) of

histories to its states ρ ∈ R. Due to the data processing inequality, a model can never
capture more information about the future than shared between past and future (Crutchfield
and Shalizi, 1999):

I[R;
→
X] ≤ I[

←
X;

→
X] , (2)

where I[V, W ] denotes the mutual information between random variables V and W (Cover
and Thomas, 2006).3

The causal states σ ∈ S are distinguished by the fact that the function ε(·) gives rise to
a deterministic assignment of histories to states:

P(σ|
←
x) = δ

σ,ε(
←

x )
(3)

and, furthermore, by the fact that their future morphs are given by

P(
→
X |σ) = P(

→
X |

←
x) , (4)

for all
←
x such that ε(

←
x) = σ.

As a consequence, the ε-machine is an optimal predictor (Crutchfield and Young, 1989).
That is, the causal states, considered as a random variable S, capture the full excess entropy

I[S;
→
X] = I[

←
X;

→
X] , (5)

Said differently, the ε-machine minimizes the uncertainty about the future compared to

any rival R: H(
→
X |S) ≤ H(

→
X |R). Prescient rivals R̂, for which the equality holds, are as

predictive as the causal-state model:

I[R̂;
→
X] = I[S;

→
X] = I[

←
X;

→
X] . (6)

Out of all prescient rivals, the ε-machine has the smallest statistical complexity, Cµ[R] =
H[R] (Crutchfield and Young, 1989; Crutchfield and Shalizi, 1999):

H[R̂] ≥ H[S] . (7)

Importantly, the ε-machine allows for the exact computation of the amount of information
that the process communicates from the past to the future, by storing it in the present:
Cµ = H[S]. In addition, it allows for the exact computation of the process’s entropy rate hµ

which, for example, gives the optimal compression rate for the source and an upper bound
on its predictability (Crutchfield and Young, 1989).

The general conclusion is that the ε-machine captures all of a process’s structure—
symmetry, regularity, and organization. And so, it should be the goal of model inference.

3. The quantity I[
←

X;
→

X] has been studied by several authors and, over the years, assigned various names,
including excess entropy (Crutchfield and Packard, 1983), stored information (Shaw, 1984), predictive

information (Bialek et al., 2001), and others. See Crutchfield and Feldman (2003) and references therein
for a review.
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3. Objective Function For Causal Filtering

Continuing with the communication channel analogy above, models, optimal or not, can
be broadly considered to be a lossy compression of the original data: a model captures
some regularity while making some errors in describing the data. Rate distortion theory
(Shannon, 1948) gives a principled method to find a lossy compression of an information
source such that the resulting model is as faithful as possible to the original data, quantified
by a distortion function.

The specific form of the distortion function determines what is considered to be “relevant”—
kept in the compressed representation—and what is “irrelevant”—can be thrown away.
Since there is no universal distortion function, it has to be assumed ad hoc for each appli-
cation. The information bottleneck method (Tishby et al., 1999) argued for a special dis-
tortion function that allows for explicitly keeping relevant information—defined by Tishby
et al. (1999) as the mutual information that the data share with a desired relevant variable.
However, this relevant variable also has to be specified ad hoc.

In time series modeling, however, there is a natural notion of relevance: the future
data. For stationary time series, moreover, building a model with low generalization error
is equivalent to constructing a model that accurately predicts future data from past data.
These observations lead directly to an information-theoretic specification for reconstructing
time series models. The first step is to introduce general model variables R that can store,
in the present moment, the information transmitted from the past to the future. Any set

of such variables specifies a stochastic partition of
←
X via a (probabilistic) assignment rule

P(R|
←
x). The second step is to require that this partition be maximally predictive. That is,

it should maximize the information I[R;
→
X] that the variables R contain about the future

→
X. However, we do not want to keep all of the historical information. Instead, and this is

the final step, we keep in R as little of the retrodictive information I[
←
X;R] about the past

as possible. This quantity monitors the statistical complexity, or bit cost, of the model R.
Following the information bottleneck method then, the constrained optimization prob-

lem to solve to find the most predictive model at fixed model complexity I[
←
X;R] is4

max
P(R|

←

X)

F [R] (8)

with the objective function:

F [R] = I[R;
→
X] − λI[

←
X;R] , (9)

where the parameter λ controls the balance between prediction and model complexity.
The optimization problem given by Eqs. (8) and (9) has a family of solutions, parametrized

by the Lagrange multiplier λ, that gives the following optimal assignments of histories
←
x

to states ρ ∈ R:5

Popt(ρ|
←
x) =

P(ρ)

Z(
←
x, λ)

exp

(
−

1

λ
D

(
P(

→
X |

←
x)||P(

→
X |ρ)

))
(10)

4. The approach is similar to that taken in Still and Bialek (2006), where both predictive modeling and
decision making are considered. Here we focus only on predictive time series modeling.

5. Formally, the derivation follows Tishby et al. (1999).
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with

P(
→
X |ρ) =

1

P(ρ)

∑

←

x∈
←

X

P(
→
X |

←
x)P(ρ|

←
x)P(

←
x) (11)

P(ρ) =
∑

←

x∈
←

X

P(ρ|
←
x)P(

←
x) , (12)

where D (P ||Q) is the information gain (Cover and Thomas, 2006) between distributions P
and Q. These self-consistent equations are solved iteratively (Tishby et al., 1999) using a
procedure similar to the Blahut-Arimoto algorithm (Blahut, 1972; Arimoto, 1972).

Observe that in the low-temperature regime (λ → 0) the assignments of pasts to states
become deterministic and are given by:

Popt(ρ|
←
x) = δ

ρ,η(
←

x )
, where (13)

η(
←
x) = arg min

ρ
D

(
P(

→
X |

←
x)||P(

→
X |ρ)

)
. (14)

4. Optimal Causal Filtering

We now establish the procedure’s fundamental properties by connecting the solutions it de-
termines to the causal representations afforded by computational mechanics. The resulting
procedure, in effect, transforms the original data to a causal representation and so we call
it optimal causal filtering (OCF).

Note first that for deterministic assignments we have H[R|
←
X] = 0. Therefore, the

retrodictive information becomes I[
←
X;R] = H[R] and the objective function simplifies to

Fdet[R] = I[R;
→
X] − λH[R] . (15)

Lemma 1 The causal-state partition of the ε-machine maximizes Fdet[R̂].

Proof This follows immediately from Eqs. (6) and (7). They imply that

Fdet[R̂] = I[S;
→
X] − λH[R̂]

≤ I[S;
→
X] − λH[S]

= Fdet[S] . (16)

The Lemma tells us that the causal-state partition is the fully predictive model with
the largest value of the OCF objective function. We also know from Eq. (14) that in the
low temperature limit (λ → 0) OCF recovers a deterministic mapping of histories to states.
We now show that this mapping is exactly the causal-state partition of histories.

Theorem 1 OCF finds the ε-machine’s causal-state partition of
←
X in the low-temperature

limit.
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Proof Given that the ε-machine always exists, there are groups of histories
←
Xσ⊂

←
X such

that

P(
→
X |

←
x) = P(

→
X |σ) , ∀

←
x ∈

←
Xσ . (17)

Thus,

σ = arg min
ρ

D
(
P(

→
X |

←
x)||P(

→
X |ρ)

)
, (18)

with

D
(
P(

→
X |

←
x)||P(

→
X |σ)

)
= 0 , (19)

for all
←
x ∈

←
Xσ. Therefore, the assignment of histories to the causal states is recovered:

Popt(R|
←
x) = P(σ|

←
x) = δ

σ,ε(
←

x )
. (20)

Note that we have not restricted the size of the set, R, of model states. Note further-
more, that the Lemma establishes that, other than the causal states, OCF does not find
prescient rival models in the low-temperature limit. The prescient rival models are subopti-
mal, as they have a smaller value of the objective function than the causal states. We now
establish that this difference is controlled by the model size with proportionality constant
λ.

Corollary 1 Non-causal-state, prescient rival models are suboptimal in OCF. The value of

the objective function evaluated for a prescient rival model is smaller than that evaluated

for the causal-state model. The difference ∆Fdet[R̂] = Fdet[S] − Fdet[R̂] is given by

∆Fdet[R̂] = λ
(
Cµ[R̂] − Cµ[S]

)
≥ 0 . (21)

Proof

∆Fdet[R̂] = Fdet[S] − Fdet[R̂] (22)

= I[S;
→
X] − I[R̂;

→
X] − λH[S] + λH[R̂] (23)

= λ
(
Cµ[R̂] − Cµ[S]

)
. (24)

Moreover, Eq. (7) implies that ∆Fdet ≥ 0.

So, we see that for λ = 0, causal states and all other prescient rival partitions are
degenerate. This is to be expected as at λ = 0 the model-complexity constraint disappears.
However, in the very low temperature regime, as λ → 0, OCF finds the deterministic
assignment rule which recovers the causal-state partition of the ε-machine.
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I[
←
X
3;R]

0.00

0.05

0.10

0.15

0.20

0.25
I
[R
;→ X

2
]

2

0.0 0.5 1.0 1.5 2.0

Feasible

Infeasible

Figure 1: OCF’s behavior as monitored in the information plane—I[R;
→
X2] versus

I[
←
X3;R]—for the Golden Mean process. Histories of length 3 were used, along

with futures of length 2. The horizontal dashed line is the full excess entropy

I[
←
X3;

→
X2] = I[σ;

→
X2] ≈ 0.25 bits which, as seen, is an upper bound on I[R;

→
X2].

Similarly, the vertical dashed line is the block entropy H[
←
X3] ≈ 2.25 bits which

is an upper bound on the retrodictive information I[
←
X3;R]. The annealing rate

was 0.952. In this and the following information plane plots the integer labels
Nc(≥ 2) indicate the first point at which the effective number of states used by
the model equals Nc.

5. Examples

We study how OCF works on a series of example stochastic processes of increasing statistical
sophistication. In examples, naturally, one can only work with finite length sequences. The
results established in the previous section hold for finite histories and finite futures; denote
their lengths as tp and tf , respectively. We compute the optimal solutions and visualize
the trade-off between predictive power and complexity of the model by tracing out a curve
similar to a rate-distortion curve: For each value of λ, we evaluate both terms in the
objective function at the optimal solution and plot them against each other. The resulting
curve in the information plane separates the feasible from the infeasible region: we can
find a model that is more complex at the same prediction error, but we cannot find a less
complex model than that given by the optimum. In analogy to a rate-distortion curve, we
can read off the maximum amount of information about the future that can be captured
with a model of fixed complexity. Or, conversely, we can read off the smallest representation
at fixed predictive power.
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P(
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2 |
x
3 )

Figure 2: Golden Mean process future morphs P(
→
X2 |·) conditioned on causal states σ ∈ S

(boxes) and on the OCF reconstructed states ρ ∈ R (circles). As an input to

OCF, morphs P (
→
X2 |

←
x3) calculated from histories of length 3 were used (crosses).

The examples in this and the following sections are calculated by solving the self-
consistent Eqs. (10) to (12) iteratively6 at each value of λ. To lower λ a deterministic
annealing scheme is implemented following Rose (1998).

5.1 Golden Mean Process: Markov Chain

The Golden Mean (GM) process is a Markov chain of order one. As an information source,
it produces all binary strings with the restriction that there are never consecutive 0s. The
GM process generates 0s and 1s with equal probability, except that once a 0 is generated,
a 1 is always generated next. One can write down a simple two-state Markov chain for this
process; see, e.g., Young and Crutchfield (1994).

Figures 1 and 2 demonstrate how OCF reconstructs the states of the GM process. Figure
1 shows the behavior of OCF in the information plane. The curve seen there is traced out
as λ decreases from high to low temperature during annealing. At very high temperature
(λ → ∞, lower left corner of the curve) compression dominates over prediction and the
resulting model is most compact, with only one effective causal state. However, it contains
little or no information about the future and so is a poor predictor. As λ decreases, OCF
reconstructs increasingly more predictive and more complex models. The curve shows that
the information about the future, contained in the optimal partition, increases (along the
vertical axis) as the model increases in complexity (along the horizontal axis). There is a
transition to two effective states: the number 2 along the curve denotes this increase. As
λ → 0, prediction comes to dominate and OCF finds a fully predictive model, albeit one

6. The algorithm follows that used in the information bottleneck (Tishby et al., 1999). The convergence
arguments there apply to the OCF algorithm.
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with the minimal statistical complexity, out of all possible state partitions that would retain
the full predictive information. The model’s complexity is 41% of the maximum, which is

given by H[
←
X

3
] ≈ 2.25 bits.

Figure 2 shows the future morphs, associated with the partition found by OCF, as λ → 0,

corresponding to P(
→
X2 |ρ) (circles), compared to true (but not known to the algorithm)

causal-state future morphs P(
→
X2 |σ) (boxes). These morphs overlap and so demonstrate

that OCF finds the causal-state partition as λ → 0.

5.2 Even Process: Hidden Markov Chain

Now consider a hidden Markov process: the Even process (Crutchfield, 1992; Crutchfield and
Feldman, 2003), which is a stochastic process whose support (the set of allowed sequences)
is a symbolic dynamical system called the Even system (Weiss, 1973). The Even system
generates all binary strings consisting of blocks of an even number of 1s bounded by 0s.
Having observed a process’s sequences, we say that a word (finite sequence of symbols) is
forbidden if it never occurs. A word is an irreducible forbidden word if it contains no proper
subwords which are themselves forbidden words. A system is sofic if its list of irreducible
forbidden words is infinite. The Even system is one such sofic system, since its set F of
irreducible forbidden words is infinite: F = {012n+10, n = 0, 1, . . .}. Note that no finite-
order Markovian source can generate this or, for that matter, any other strictly sofic system
(Weiss, 1973). The Even process then associates probabilities with each of the even system’s
sequences by choosing a 0 or 1 with fair probability after generating either a 0 or a pair of
1s. The result is a measure sofic process—a distribution over a sofic system’s sequences.

As in the previous example, for large λ, OCF applied to the Even process recovers a
small, one-state model with poor predictive quality (Fig. 3). As λ decreases there are
transitions to larger models that capture increasingly more information about the future.
(The numbers along the curve indicate the transitions to more states.) With a three-state
model OCF captures the full excess entropy at a model size of 56% of the maximum.

This model is exactly the causal-state partition, as can be seen in Fig. 4 by comparing
the future morphs of the OCF model (circles) to the true underlying causal states (boxes),
which are not known to the algorithm.

6. Trading model size against prediction error

It is now clear that the Lagrange multiplier λ controls the trade-off between the amount
of structure that the model captures of the past data, on the one hand, and the model’s
predictive power, on the other. That is, it controls how much of the future fluctuations
the model considers to be random; i.e., which fluctuations are indistinguishable. We just
showed that in the limit in which it becomes crucial to make the prediction error very small,
at the expense of the model size, the OCF algorithm captures all of the structure inherent
in the process by recovering the causal-state partition.

What happens, though, if we allow (or prefer) a model with some finite prediction error?
Can we make the model substantially smaller? Is there some systematic ordering of models
of different size and different predictive power given by OCF, as we change the parameter
λ? Naturally, the trade-off depends on, and even reflects, the source’s organization.
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0.0
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←
X ]
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]
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Figure 3: OCF’s behavior inferring the Even process: monitored in the information plane—

I[R;
→
X2] versus I[

←
X3;R]. Histories of length 3 were used, along with futures of

length 2. The horizontal dashed line is the full excess entropy I[
←
X3;

→
X2] ≈ 0.292

bits which, as seen, is an upper bound on the estimates I[R;
→
X2]. Similarly, the

vertical dashed line is the block entropy H[
←
X3] ≈ 2.585 bits which is an upper

bound on the retrodictive information I[
←
X3;R].

00 01 10 11
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0.0
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→ X
2 |
x
3 )

Figure 4: Even process future morphs P(
→
X2 |·) conditioned on causal states σ ∈ S (boxes)

and on the OCF-reconstructed states ρ ∈ R (circles). As an input to OCF,

morphs P (
→
X2 |

←
x3) calculated from histories of length 3 were used (crosses).
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X
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0.10
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Figure 5: Structure versus prediction trade-off under OCF for the random-random XOR
(RRXOR) process, as monitored in the information plane. As above, the hori-
zontal dashed line is full excess entropy (≈ 0.230 bits) and the vertical dashed line
is the block entropy (≈ 2.981 bits). Histories of length 3 were used, along with
futures of length 2. The asterisk and lines correspond to the text: they serve to
show how the predictive power and the complexity of the best four state model,
the morphs of which are depicted in Fig. 7.

6.1 Random Random XOR: A structurally complex process

As an example, we use OCF to model the random-random XOR (RRXOR) process which
consists of two successive random symbols chosen to be 0 or 1 with equal probability and
a third symbol that is the logical Exclusive-OR (XOR) of the two previous. The RRXOR
process can be represented by a hidden Markov chain with five recurrent states and has
a very large number of causal states (36 for semi-infinite past and future), most of which
describe a complicated transient structure (Crutchfield and Feldman, 2003). As such it is a
very structurally complex process that an analyst may wish to approximate with a smaller
set of states.

Figure 5 shows the information plane, which specifies how OCF trades-off structure for
prediction error as a function of model complexity for the RRXOR process. The number
of effective states (denoted) increases with model complexity. At a history length of 3 and
future length of 2, the process has eight underlying causal states, which are found by OCF
in the λ → 0 limit. The corresponding future morphs are shown in Fig. 6.

However, the RRXOR process has a structure that does not allow for substantial com-
pression. The statistical complexity of the causal-state partition is equal to the full entropy

Cµ[S] = H[
←
X3]. With half of the number of states (4), however, OCF reconstructs a model

that is only 33% as large, while capturing 50% of the information about the future. The
corresponding morphs of the (best) four-state model are shown in Fig. 6. They are mixtures
of pairs of the eight causal states.
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Figure 6: Morphs P(
→
X2 |·) for the RRXOR process: the 8-state approximation (circles)

finds the causal states (boxes). Histories of length 3 were used, along with futures
of length 2.
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Figure 7: Morphs P(
→
X2 |·) for the RRXOR process: the 4-state approximation (circles)

compared to causal states (boxes). Histories of length 3 were used, along with
futures of length 2.
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Figure 8: Structure versus prediction trade-off under OCF for the exactly predictable
period-4 process: (0011)∞. Monitored in the information plane. As above, the
horizontal dashed line is the full excess entropy (2 bits) and the vertical dashed
line is the block entropy (2 bits). Histories of length 3 were used, along with
futures of length 2.

The information curve informs us about the (best possible) ratio of predictive power to

model complexity: I[R;
→
X]/I[

←
X;R]. This is useful, for example, if there are constraints on

the maximum model size, or vice versa, on the minimum prediction error. For example, if
we require a model of RRXOR to be 90% informative about the future compared to the
full causal-state model, then we can read off the curve that this can be achieved at 70% of
the model complexity.

6.2 Periodic limit cycle: A predictable process

The RRXOR is a highly complex stochastic process. At the other end of the predictability
spectrum are the exactly periodic processes produced by, for example, limit cycle oscilla-
tions. Figure 8 shows how OCF works on a period-four process: (0011)∞. There are exactly
two bits of information to be captured about future words of length two. This information
describes the phase of the period-four cycle. To capture those two bits, we need exactly
four underlying causal states and two bits. However, if we compress to one bit (using two
states), we can only capture one bit of excess entropy. The information curve falls onto the
diagonal—a straight line which is the worst case for possible beneficial trade-offs between
prediction error and model complexity. Processes of this type cause the algorithm to im-
plement quenching, similar to what happens in Still et al. (2004). This interesting fact, and
the linear interdependence, which can be showed for periodic processes, will be analyzed
elsewhere.

In Fig. 9, we show the best two-state model compared to the full (exact) four-state
model. Each of the two model future morphs captures zero probability events of odd
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Figure 9: Morphs P(
→
X2 |·) for the period-4 process: the 2-state approximation (circles)

compared to the δ-function morphs for the 4 causal states (boxes). Histories of
length 3 were used, along with futures of length 2 (crosses).

{01, 10} or even {00, 11} words, assigning equal probability to the even or odd words,
respectively. This captures the fundamental determinism of the process: an odd word never
follows an even word and vice versa. The overall result, though, illustrates how the actual
long-range correlation in the completely predictable period-4 sequence is represented by
a smaller stochastic model. In the four-state model the morphs are δ-functions. In the
two-state approximate models, they are mixtures of those δ-functions. In this way, OCF
converts structure to randomness when approximating.

7. Optimal Causal Estimation: Finite-data fluctuations

In real world applications, we do not know a process’s underlying probability density, but
instead we have to estimate it from the finite time series that we are given. Let that time
series be of length T and let us estimate the joint distribution of pasts (of length tp) and
futures (of length tf ) via a histogram calculated using a sliding window. Altogether we
have M = T − (tp + tf − 1) observations.

The resulting estimate P̂(
←
Xtp;

→
Xtf) will deviate from the true P(

←
Xtp;

→
Xtf) by ∆(

←
Xtp,

→
Xtf).

This leads to an overestimate of the mutual information:7 Î[
←
Xtp;

→
Xtf ] ≥ I[

←
Xtp;

→
Xtf ]. Eval-

uating the objective function at this estimate may lead to model variations that are due
to the sampling noise and not to the process’s underlying structure; i.e., OCF may overfit.
That is, the process may appear to have a larger number Nc of causal states than the true
number.

7. All quantities denoted with a b· are evaluated at the estimate bP.
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Figure 10: Information captured about the future versus the number Nc of reconstructed
states, with statistics estimated from length T = 100 time series sample from

the Golden Mean process. Upper line: Î[R;
→
X2]λ→0, not corrected; lower line:

Î[R;
→
X2]correctedλ→0 , corrected for estimation error due to finite sample size. His-

tories of length 3 and futures of length 2 were used. The asterisk denotes the
optimal number of effective states.

Following Still and Bialek (2004), we argue that this effect can be counteracted by
subtracting from F̂ [R] a model-complexity control term that approximates the error we
make by calculating the estimate F̂ [R] rather than the true F [R]. If we are willing to

assume that M is large enough, so that the deviation ∆(
←
Xtp,

→
Xtf) is a small perturbation,

then the error can be approximated by (Still and Bialek, 2004, Eq. 5.8):

E(Nc) =
K − 1

2 ln(2)

Nc

M
, (25)

in the low-temperature regime, λ → 0, for fixed Nc. K is the total number of possible
futures. The optimal number of underlying states, N∗

c , is then the one for which the largest
amount of mutual information is shared with the future, corrected by this error:

N∗
c := arg max

Nc

Î[
←
Xtp;

→
Xtf ]correctedλ→0 (Nc) , (26)

with
Î[

←
Xtp;

→
Xtf ]correctedλ→0 (Nc) =

(
Î[

←
Xtp;

→
Xtf ]λ→0(Nc) − E(Nc)

)
. (27)

With this correction we generalize OCF to a new procedure—optimal causal estimation

(OCE)—that simultaneously accounts for the trade-off between structure, approximation,
and statistical fluctuations.

We illustrate OCE on the Golden Mean and Even processes studied in Sec. 5. Figures

10 and 12 show the mutual information I[R;
→
X2] versus the number Nc of inferred states,
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Figure 11: OCE’s best two-state approximated morphs (circles) estimated from a sample
time series of length T = 100 from the Golden Mean process. Compared to
true morphs (squares) from the ε-machine. The OCE inputs are the estimates

of P̂(
→
X2 |

←
x3) (crosses).

with statistics estimated from time series of lengths T = 100. The graphs compare the

mutual information Î[R;
→
X2]λ→0 evaluated using the estimate P̂(

→
X2;

←
X3) (upper curve) to

the corrected information Î[R;
→
X2]correctedλ→0 calculated by subtracting the approximated error

Eq. (25) with K = 4 and M = 96 (lower curve).
We see that the corrected information curves peak at, and thereby select models with,

two and three states, respectively. This corresponds with the true number of causal states,
as we know from above (Sec. 5) for the two processes. Figures 11 and 13 show the OCE
morphs corresponding to the (optimal) two- and three-state approximations, respectively.

The input to OCE are the morphs given the histories P̂(
→
X2 |

←
x3) (crosses), which are

estimated from the full historical information. Those morphs are corrupted by sampling
errors due to the finite data set size and differ from the true morphs (squares).

Compare the OCE output morphs (circles) to the true morphs (squares), calculated
with the knowledge of the ε-machine. (The latter, of course, is not available to the OCE
algorithm.) In the case of the GM process, the OCE output approximates the correct
morphs. For the Even process there is more spread in the estimated OCE output morphs.
Nonetheless, OCE reduced the fluctuations in its inputs and corrected in the direction of
the true underlying morphs.

8. Conclusion

We analyzed an information-theoretic approach to causal modeling in two distinct cases: (i)
optimal causal filtering (OCF), where we have access to the process statistics and desire to
capture the process’s structure up to some level of approximation, and (ii) optimal causal
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Figure 12: Information about the future versus the number Nc of reconstructed states, with
statistics estimated from length T = 100 time series sample from the Even pro-

cess. Upper line: Î[R;
→
X2]λ→0, not corrected; lower line: Î[R;

→
X2]correctedλ→0 (Nc),

corrected for estimation error due to finite sample size. The asterisk denotes the
optimal number of effective states.
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Figure 13: OCE’s best three-state approximated morphs (circles) estimated from a sample
time series of length T = 100 from the Even process. Compared to true morphs

(squares) from the ε-machine. The OCE input are the estimates of P̂(
→
X2 |

←
x3)

(crosses).
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estimation (OCE), in which in addition finite-data fluctuations need to be traded-off against
approximation error and structure.

The objective function used in both cases follows from very simple first principles of
information processing and causal modeling: a good model minimizes prediction error at
minimal model complexity. The resulting principle of using small, predictive models follows
from minimal prior knowledge that, in particular, makes little or no structural assumptions
about a process’s architecture.

OCF stands in contrast with other approaches. Hidden Markov modeling, for example,
assumes a set of states and an architecture. OCF finds these states from the given data. In
minimum description length modeling, to mention another contrast, the model complexity
of a stochastic source diverges (logarithmically) with the data set size (Rissanen, 1989), as
happens even when modeling the ideal random process of a fair coin. OCF, however, finds
the simplest (smallest) models.

The main result is that we proved that OCF reconstructs the causal-state representation
of computational mechanics. This is important as it gives a structural meaning to the
solutions of the optimization procedure specified by the causal inference objective function.
We also gave quantitative comparisons to known cases.

We showed that OCF can be adapted to correct for finite-data sampling fluctuations and
so not over-fit. The reduces the tendency to see structure in noise. OCE finds the correct
number of states. One benefit, not immediately apparent in the examples illustrating OCE,
is that correct causal modeling using OCE employs rather small data sets. Why this is so
will be addressed elsewhere.

Altogether, this allows us to go beyond plausibility arguments for the information-
theoretic objective function. Rather, we showed that this particular way of (mathemati-
cally) phrasing the causal inference problem results in a representation that is a sufficient
statistic and minimal. Moreover, it reflects the structure of the underlying process that
generated the data and does so in a way that is meaningful and well grounded in physics
and nonlinear dynamics—in particular, in computational mechanics. The optimal solutions
to balancing prediction and model complexity take on meaning—they are the causal states
of the ε-machine or coarse-grained mixtures of them. Additionally, the continuous trade-off
allows us to go beyond the purely deterministic history-state assignments of computational
mechanics, by giving a principled way of constructing stochastic approximations of the ideal
causal states. The resulting approximated models can be substantially smaller and so will
be useful in a number of applications.
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