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Abstract. The dynamics of cancer evolution is studied by means of a simple quasispecies model involving
cells displaying high levels of genetic instability. Both continuous, mean-field and discrete, bit-string models
are analysed. The string model is simulated on a single-peak landscape. It is shown that a phase transition
exists at high levels of genetic instability, thus separating two phases of slow and rapid growth. The results
suggest that, under a conserved level of genetic instability the cancer cell population will be close to the
threshold level. Implications for therapy are outlined.
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1 Introduction

Cancer is the result of a system’s breakdown that arises
in a cell society when a single cell (due to a mutation or
set of mutations) starts to display uncontrolled growth [1].
The cooperation that maintains the integrity of a multi-
celular organism is thus disrupted. Further changes in the
population generated by such abnormal cell can lead to
malignant tumor growth, eventually killing the host. From
an evolutionary point of view, tumor progression is a mi-
croevolution process in which tumors must overcome se-
lection barriers imposed by the organism. The emergence
and evolution of tumors involve a number of phenomena
that are well known in physics, from pattern formation
to phase transitions. In this context, suitable theoretical
methods from statistical physics can help to gain insight
into cancer biology. Related areas, such as immunology [2]
and virus dynamics [3–6] have already revealed the power
of physics in exploring complex phenomena within molec-
ular cell biology.

As discussed by Alberts et al. [7] a multicellular sys-
tem is a society or ecosystem whose individual members
are cells, reproduced in a collaborative way and organized
into tissues. In this sense, understanding it requires con-
cepts that are well-known in population dynamics, such as
birth, death, habitat and the maintenance of population
sizes. Under normal conditions, there is no need to worry
about selection and mutation: As opposed to the survival
of the fittest, the cell society involves cooperation and,
when needed, the death of its individual units. Mutations
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Fig. 1. Basic scheme of the population model used in this
paper. Here a slow-growth cell population is indicated as x1,
mutating at a slow rate µ = 1 − Q. Some mutations can lead
to the emergence of a genetically unstable population (box)
involving a very heterogeneous group of cell types, replicating
at different rates (here indicated by means of variable radius)
and many of them unable to survive (white arrows)

occur all the time but sophisticated mechanisms are em-
ployed in detecting them and either repairing the damage
or triggering the death of the cell displaying mutations
[8]. Abnormal cells can be indentified from within (i.e.
through molecular signaling mechanisms operating inside
the damaged cell) or by means of interactions with other
cells. The later mechanism involves immune responses.

Selection barriers (such as the attack from the immune
system or physical barriers of different types) can be over-
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come by a tumor provided that the diversity of mutant
cells is high enough to generate a successful strain. High
mutation rates are thus a way to escape from the host re-
sponses and it is actually known that most human cancers
are genetically unstable [9–11,1,12]. Genetic instability re-
sults from mutations in genes that are implicated in DNA
repair or in maintaining the integrity of chromosomes. As
a result, mutations accumulate at very high rates. RNA
viruses are actually a good example of replicating systems
involving mutation and it was early shown that such sys-
tems involve an error threshold: beyond a critical mutation
rate, a phase transition occurs towards a random replica-
tion phase [14–17]. At the subcritical, low-mutation phase,
the population is able to maintain hereditary information
and a heterogeneous distribution of molecules is observed:
the so-called quasispecies. At the supercritical phase, pop-
ulations experience random drift through sequence space
and no genetic information can be maintained. The nature
of such transition has been well established in terms of a
mapping between replication dynamics and spin lattice
[18–21] and field models [22].

An important implication of the previous observation
is that the threshold-like character of the phase transi-
tion allows to conjecture that non-viable virus populations
might be obtained by slightly increasing the mutation rate
beyond criticality. This has been done in vitro [23] and in
vivo therapies are in progress. A similar scenario has been
suggested within the context of cancer [10,12]. Since can-
cer also displays some common traits with RNA viruses
it has been suggested that unstable cancer populations
might also display threshold levels of mutation parallel to
those observed in viral populations [24]. If true, strategies
based on targeting unstable cancer cells and increasing
their mutation rate would successfully inhibit tumor pro-
gression.

In a recent study, it has been shown that a bifurcation
from slow-growth to rapid growth exists in a continuous
(mean-field) model of cancer evolution [24] involving three
basic cell populations. In this paper we further explore this
result by extending it to a population model involving N
cell types by means of both mean field and bit-string ap-
proaches. An phase transition (and thus a sharp qualita-
tive change in population dynamics) is shown to exist and
several statistical features are analysed.

2 Mean field quasispecies model

The starting point for a model of molecular replicators
involving errors is the general Eigen-Schuster quasispecies
model, defined by the following set of equations:

dxi
dt

=

n
∑

j=1

xjfjQji− < f > xi (1)

where x = x1, ..., xn, and xi indicates the fraction of the
population associated to the i−th mutant genome (here
i = 1, ..., n, where n is very large) so that populations are
restricted to a simplex:

∑n
j xj = 1. Here fj is the growth
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Fig. 2. Phase transition in the mean field model of cancer
quasispecies. The population size of the slow-growing clone is
shown for different values of the genetic instability rate µu.
Here we have f1 = 0.25, µ∗u = 0.05 and µ1 = 0.01. Four differ-
ent values of the selective advantage parameter α have been
used. From left to right, α = 1.5, 2.0, 2.5 and 3.0, respectively.

rate of the j-th mutant, Qij is the probability of having
a mutation i → j and < f >=

∑n
j=1 fjxj the average

fitness.
In its simplest form, we can consider a reduced sys-

tem of equations defining a population as formed by two
basic groups: the master sequence x1 and the other se-
quences, which we assume to be grouped into an ”aver-
age” sequence with population x2 [13]. Let us also assume
that mutations occur from the master to the second com-
partment but not in the reverse sense. The enormous size
of the sequence space makes this assumption a good first
approximation. Now we have [13,24]:

dx1

dt
= f1x1Q− x1Φ(x1, x2) (2)

dx2

dt
= f1x1(1−Q) + f2x2 − x2Φ(x1, x2) (3)

Where it is assumed that f1 > f2. This oversimplified
model allows us to see the error threshold condition under
a mean field argument. The fixed points here are located
on the line x∗1 = 1− x∗2, with

x∗2 =
f1(1−Q)

f1 − f2
(4)

It can be shown, by means of standard stability analysis
that the state where the master sequence gets extinct (i. e.
(x∗1, x

∗

2) = (0, 1)) will be stable if f1Q < f2. otherwise, the
master sequence is able to survive and Darwinian selection
keeps operating. Once the mutation rate exceeds this error
threshold, no stable master sequence can persist.

Within the context of unstable cancer cell populations,
a two-compartment model can also be defined, as dis-
played in figure 1. Here two basic components are con-
sidered: a slow-growing, weakly unstable population (x1,
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with a small mutation rate µ = 1−Q) and a highly hetero-
geneous set of (unstable) clones ({xi2}), indicated in the
right box in figure 1. These unstable clones would exhibit a
high mutation rate µu (tipically µu À µ). Assuming that
x1 +

∑

i x
i
2 = 1, and lumping together the unstable com-

partment so that x2 ≡
∑

i x
i
2, we have a one-dimensional

model for the evolution of x1:

dx1

dt
= f1x1 (ξ1 − ξ2x1) (5)

where ξ1 = Q−f2/f1 and ξ2 = 1−f2/f1. The equilibrium
points for this system are x∗1 = 0 and x∗1 = ξ1/ξ2. Actually
the time-dependent solution is shown to be a sigmoidal
function:

x1(t) =
ξ1
ξ2

[

1 +

(

ξ1/ξ2 − x1(0)

x1(0)

)

exp(−ξ1f1t)

]

−1

(6)

thus showing that the approach to the steady state is a
function of the replication and mutation rates.

Based on experimental evidence, it is known that in-
creasing levels of mutation lead to increased rates of cell
death. A general relationship can be established between
replication rates as follows:

f2(µu, α) = αf1φ(µu) (7)

where α > 1 is a measure of the selective advantage of
x2 over x1 and φ(µu) a decreasing function of the genetic
instability level. Here we choose φ(µu) = exp(−µu/µ

∗

u)
with µ∗u = 0.05. Using these functional forms, we obtain

x∗1(µu) =
Q− αφ(µu)

1− αφ(µu)
(8)

The slow-growing clone will only survive provided that
µ < µc = Q − αφ(µu). For our particular choice, this
leads to a critical mutation rate

µcu = −µ∗u ln

(

1− µ

α

)

(9)

In figure 2 the phase transition behavior predicted by
the mean field model is illustrated by showing the equilib-
rium population of the slow-growing clone x∗1 against the
rate of genetic instability, for different α values. As pre-
dicted by the previous equation (9) a sharp transition oc-
curs from the unstable population phase (where the unsta-
ble clones outgrow the x1 population) and a slow-growth
phase, where genetic instability is too high to maintain a
finite x2 population. It is worth mentioning that the crit-
ical rate depends on the selective advantage parameter
α and thus a trade-off between replication and mutation
rates is at work at the phase transition. In this sense, the
critical boundary can be reached in two different ways (ei-
ther tuning genetic instability levels or replication rates).

The stability of the two fixed points can be determined
by looking at the associated Lyapunov function Φ(µu, x1),
defined from

dx1

dt
= −

∂Φ(x1, µu)

∂x1
(10)
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Fig. 3. Lyapunov function Φ(µu) for the one-dimensional equi-
librium state. Here genetic instability acts as the control pa-
rameter. A shift occurs from the extinction of the x1 clone to
the dominance of it. The two equilibrium states are indicated
as white circles.

i. e. from

Φ(x1, µu) = −f1

∫ x1

0

y1(ξ1 − ξ2y1)dy1 (11)

= −f1

[

1

2
(Q− αφ(µu))x

2
1 −

1

3
(1− αφ(µu))x

3
1

]

(12)

The surface Φ(x1, µu) is shown in figure 3 for µ =
0.01, f1 = 0.25 and α = 2. We can appreciate two well-
defined minima involving the two (exchanging) equilib-
rium fixed points.

The previous mean-field approach allows to conjecture
that a well-defined transition will be observed close to the
error threshold. In order to better understand this phe-
nomenon, we consider in the following section a discrete
string model where each cell is described in terms of a
small “genome” of a given length ν. Mutations are thus ex-
plicitly introduced and the statistical behavior of the cell
population can be followed in more detail. It also allows
to perform comparisons with previous spin-based models
of quasispecies dynamics.

3 Bit string model: single-peak landscape

A much more informative approach to the cancer quasis-
pecies model is provided by a system composed by N bit
strings. Although this models are again an oversimplified
picture of reality, they retain the key features of the un-
derlying evolutionary dynamics [25–27].

Here each string Sk(k = 1, ..., N) is a small genome of
size ν i. e.

Si = (S1
i , S

2
i , ...S

ν
i ) ; i = 1, 2, ..., N (13)
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with Si
k ∈ {0, 1}. A genome under this description is thus

a vertex Sk ∈ H
ν of a ν-dimensional hypercube. Although

a real (RNA or DNA) genome is composed by a four-letter
alphabet, here we use the approach taken by Leuthäusser,
where each bit would represent purines or pirimidines [18,
19].

The sequence ξ = (1, 1, ..., 1) will represent a cell be-
longing to the x1-cell type population. Other strings Sk 6=
ξ will define the unstable compartment, involving 2ν − 1
diferent genomes. The possible transitions allowed here
are summarized as follows:

ξ
f(ξ)Γ
−→ 2ξ (14)

ξ
Wξk

−→ ξ + Sk (15)

Si
f(Si)Γu
−→ 2Si (16)

Si
Wik−→ Si + Sk (17)

Where Γ ≡ (1 − µ)ν and Γu ≡ (1 − µu)
ν , respectively,

where µ and µu will be now mutation rates per bit and
round of replication. Accordingly with the mean-field model,
the replication rates will be f(ξ) = f1 and f(Sk 6= ξ) =
αf(ξ)φ(µu), respectively. Here we will use a constant repli-
cation rate for all strings Sk 6= ξ and thus for µu > µcu
we have f(ξ) > f(Sk 6= ξ) and a single-peaked landscape
will be at work, as in the Swetina-Schuster model [13]. For
µu < µcu the unstable population will dominate on a flat
landscape with a “hole” at Sk = ξ.

The terms Wij correspond to the probabilities of erro-
neous replication and are given by:

Wξk = f(ξ)(1− µ)ν−dH [ξ,Sk]µdH [ξ,Sk] (18)

Wjk = f(Sk)(1− µu)
ν−dH [Sj ,Sk]µdH [Sj ,Sk]

u (19)

where dH [Sj , Sk] is the Hamming distance between the
two sequences:

dH [Sj , Sk] =
1

2

[

N −
ν
∑

l=1

sljs
l
k

]

(20)

It is not difficult to see that the probabilities of erroneous
replication become

Wjk = f(Sk)[µu(1− µu)]
ν/2 exp

(

−K
ν
∑

l=1

Sl
jS

l
k

)

(21)

whereK = log(µu/(1−µu))/2. This expression is identical
to the transfer matrix for the two-dimensional Ising model
[18,19,21]. Strictly, there are here two sources of noise
associated to the model description. The previous spin-
like description would be essentially valid at each phase
separately. In this sense (and given the possibility that
tumors might be close to the transition boundary) this
system opens interesting problems for statistical physics:
here two types of “particles” experience transitions with
two different intrinsic temperatures.

Each generation in the algorithm we repeat N times
the following set of rules:
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Fig. 4. Phase transition in the bit string quasispecies model
involving genomes with small size ν = 4. The dynamics takes
place of a 4-dimensional hypercube (a-b) and the relative pop-
ulation size is indicated by means of the radius of the circles.
In (c) the frequencies of strings Ni (differing i bits from the
ξ-sequence) are shown against the instability level µu. Here
µ = 0.01, N = 102, α = 2, f1 = 0.25 and µ∗u = 0.05. The
mean field critical instability level, as predicted from eq. (9) is
µc

u = 0.035.

1. We take a string at random from the population, say
Si and replicate it with probability f(Si).

2. Replication takes place by replacing one of the strings
in the population (also chosen at random) say Sj 6= Si

by a copy of Si. The copy mechanisms presents error,
at rates µ (x1 clone) and µu (unstable population), per
bit and replication cycle, respectively.

In figure 4 we illustrate the transition occuring in the
model for a small genome length ν = 4. The four di-
mensional hypercube is shown in figure 4(a) and (b) for
µu < µcu and µu > µcu, respectively. Specifically, the num-
ber of strings Ni differing i bits from the ξ-sequence, i.
e.

Ni =

N
∑

k

δdH [ξ,Sk], i (22)

are represented. Here string populations at each node in
the hypercube are indicated by means of circles of differ-
ent sizes. For µu < µcu, given the higher replication rate
of the unstable cells in relation with the ξ sequence, we
have a population of genomes that occupy different zones
of sequence space. Given the homogeneous character of
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replication rates of the unstable clone, the sum of all se-
quences differing k bits from the master ξ will be

(

ν
m

)

with a maximum at k = ν/2. The probability distribution
is thus a binomial, i. e. Pk =

(

ν
m

)

(1 − µu)
mµν−m

u . In fig-
ure 4(c) the population abundances of the ξ-sequence and
those sequences with a Hamming distance dH = i from it
(here indicated as Ni) are shown.

The sharpened character of the transition is clearly il-
lustrated in figure 5(a-b). Here a ν = 16 genome has been
used, with µ = 10−3. A transition is shown to occur at
µcu ≈ 0.037. We can compare this picture with the stan-
dard plots of quasispecies abundance against single-digit
accuracy [15,13]. In spite that the chain is not very long,
a transition from the genetically unstable phase to the
ξ-phase is clearly visible. Increasing genome lengths fur-
ther increase the sharpening, with a wider domain of the
ξ sequence. The time evolution of the ξ-sequence popu-
lation is shown in figure 6(a-c) for three different levels
of instability close to criticality. Very close to the critical
boundary (a-b) wild fluctuations are observed. Once we
slightly increase the instability the ξ sequences dominate
(c).

An additional statistical characterization of the genome
population can be obtained by looking at the frequency
distribution of ξ genomes at different mutation levels. Given
the neutrality of Si ∈ H

ν−ξ and the large size of sequence
space (tipically |Hν | À N ) we take a mean field approx-
imation in which mutations occur among cells in the un-
stable compartment at a rate µu in such a way that any
genome Si ∈ H

ν − ξ can be introduced in the population
as a consequence of mutation. In this way we completely
ignore the correlations imposed by the mutation matrix.
This situation is actually very close to the one considered
in neutral models of biodiversity dynamics [28–30] where
a finite, but large number of species S (here S ≈ 2ν) can
be present in a finite urn of size N . The individuals be-
have as balls in a Polya process and replace each other
at each generation with identical probabilities. Addition-
ally, “mutations” are used in such a way that a different
species from the S-pool is introduced through immigra-
tion at a rate µ. In our system, immigration is replaced
by true mutation (here at a rate µu).

By considering the previous partition into two basic
sets, i. e. ξ and Hν − ξ and indicating as P (n, t) the prob-
ability of finding a ξ-sequence represented by n strings, the
master sequence for the time evolution of this distribution
will be [31]:

dP (n, t)

dt
= rn+1P (n+ 1, t) + gn−1P (n− 1, t)−

−(rn + gn)P (n, t) (23)

where rn = w(n − 1|n) and gn = w(n + 1|n) are the
transition probabilities associated to the one-step process
described by the previous rules.

It is not difficult to compute the transition probabili-
ties to be considered. First, we have

w(n− 1|n) = P (n)f(ξ)µ∗
n

N

(

1−
n− 1

N − 1

)

+
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Fig. 5. Phase transition in the bit string quasispecies model
(here linear (a) and linear-log (b) plots have been used). The
population size is N = 500 and the strings have length ν = 16
(averaged over 102 replicas). Frequencies are calculated over
T = 500 generations after τ = 5000 generations are discarded.
A transition occurs at µu ≈ 0.036, where the master sequence
experiences a sharp population increase once the critical insta-
bility level has been reached.

+P (n)αf(ξ)φ(µu)

[

1−
1

2ν − 1

]

n

N

(

1−
n− 1

N − 1

)

(24)

where two basic terms have been introduced. The first
term in the right-hand side is the contribution to the
n → n − 1 transition due to incorrect replication of the
ξ sequence. The probability of wrong replication is indi-
cated as µ∗ = 1− (1− µ)ν . The second term corresponds
to replication of a Sk 6= ξ sequence that is replicated at
the expense of a ξ copy. The term 1− 1/(2ν − 1) indicates
that the replication event must generate another sequence
Sj 6= ξ. Given the assumed large size of sequence space,
this term will be very close to one.

Similarly, it can be shown that

w(n− 1|n) = P (n)f(ξ)(1− µ)ν
n

N

(

1−
n− 1

N − 1

)

(25)
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Assuming that µ¿ 1, we have the approximate transition
probabilities

rn = P (n)f(ξ)
n

N

(

1−
n− 1

N − 1

)

(1 + αφ(µu)) (26)

gn = P (n)f(ξ)
n

N

(

1−
n− 1

N − 1

)

(27)

A further constraint can be introduced if we consider that
the population is in the µu ≈ µcu boundary and thus x =
n/N is small. The continuous limit of the master equation
gives [32]:

∂P (x, t)

∂t
= f(ξ)φ(µc

u)
∂

∂x
xP (x, t) +

+
1

2
f(ξ)(2 + αφ(µc

u))
∂2

∂x2
xP (x, t) (28)

with a stationary solution

P ∗(x) ∼ x−1 exp(−Φ(µc
u)x) (29)

with Φ(µc
u) = φ(µc

u)/(2+φ(µc
u)). For µu → µcu, the cut-off

will be large and a scaling law P ∗(n) ∼ n−1 will be ob-
served. This prediction is illustrated in figure 7, where the
distribution of ξ-genomes for a N = 102 population with
ν = 16 is shown at the µu ≈ µcu transition (open circles).
Once we move far from the phase transition point (open
circles) the scaling law is quickly replaced by a single-
maximum distribution (filled triangles).

4 Discussion

One particular difference in relation with the standard
problems considered by quasispecies models concerns the
way genetic instability emerges in cancer cells. In RNA
viruses, mutation rates are tuned through evolution in or-
der to reach the error threshold. In this way, the greatest
adaptability emerges close to the order-disorder boundary
defined by the error catastrophe [16].

For unstable tumors, the situation is somewhat dif-
ferent: here we have genes that are involved in preserv-
ing genome integrity that are mutated or simply removed
from the genome (through gene or chromosome loss). As a
consequence, the molecular machinery implicated in main-
taining a correct cellular functioning is absent and muta-
tions accumulate at high levels. Genetic instability is thus
an intrinsic feature of the unstable cell that is carried out
through tumor progression [10]. Different levels of genetic
instability are likely to be present within the population
and those cells with too high levels will probably die out.
Since the critical mutation rates defined by the quasis-
pecies model scale with genome length as µc ∼ ν−1, we
should expect to observe supercritical mutation levels at
least at early tumor progression. Afterwards, it should sta-
bilize close to the critical instability.
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Fig. 6. Examples of the time evolution of the number of ξ

strings close to the transition point. Here three situations are
shown: (a) critical µu ≈ µc

u = 0.036 (b) µu = 0.04 > µc
u, where

the master sequence starts to be dominant, but still highly
fluctuatins and (c) µu = 0.042 > µc

u, where most strings are
ξ-type.. Here we have N = 102, µ = 10−3, ν = 16, f1 = 0.25
and α = 2.0.

Strictly speaking, tumor progression is a coevolution
process in which cancer population responses are mod-
ulated by the host response. In this sense, further work
should consider this host-tumor interaction, which even-
tually might tune mutation and replication rates, as it
seems to be the case with RNA viruses [3,4,6,33].

The present model is an oversimplified picture of can-
cer cells populations. Even for RNA viruses the assump-
tion of a single-peak fitness function is a very strong one,
and experimental evidence shows that the structure of the
landscape is case-dependent [34,35]. Genome sizes are very
small and a more appropriate representation would be to
consider the Si’s as genes themselves. In that case, the
tumor population would evolve through adaptive walks
performed by cells through gene space [36]. Additionally,
the previous analysis is performed under the assumption
of stationarity, i. e. a maximum cell population size is al-
lowed and competition takes place under this population
constraint. Real tumors are nonequilibrium systems and
as such are growing structures. Besides, spatial degrees of
freedom seem to be relevant in maintaining and propa-
gating genetic heterogeneity in such a way that compe-
tition among different clones is effectively reduced under
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Fig. 7. Probability distributions associated to the master se-
quence ξ for (a) the critical region µu ≈ µc

u = 0.036 (open
circles) and for (b) µu = 0.042 > µc

u (filled triangles). Here we
have N = 102, µ = 10−3, ν = 16, f1 = 0.25 and α = 2.0. At
criticality we have a scaling behavior P (n) ∼ n−1, as predicted
by the master equation approach. Once the level of genetic in-
stability is slightly increased, the master sequence starts to
dominate and thus a single peak is obtained.

the local character of cell-cell interactions [37]. Finally,
the evolution of the cell population towards the instabil-
ity boundary should be introduced in an explicit way, by
allowing replication and mutation rates to be self-tuned.
In spite of these drawbacks, current reserach seems to in-
dicate that the previous results are robust (R. V. Solé,
unpublished).

If there is such an error threshold in unstable cancer
populations, perhaps we could take advantage of treat-
ments in which the tumor cells are destabilized by means
appropriate drugs. This possibility has been suggested by
some authors [12,10,24] provided that the tumors operate
close to instability thresholds .The current model strongly
supports the idea that such thresholds exist and indicates
that cell population responses close to such threshold are
expected to be sharp.

The author thanks Isabel González, Thomas Deisboeck and
Josep Costa for useful discussions. This work was supported
by a grant BFM2001-2154 and by the Santa Fe Institute.
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(2002)

23. L. A. Loeb, J. M. Essigmann, F. Kazazi, J. Zhang, K. D.
Rose and J. I. Mullins, Proc. Natl. Acad. Sci. USA 96, 1492
(1999).
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