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Abstract

One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous
learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic mo-
tivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we
investigate the predictive information (the mutual information of the past and future of the sensor stream)
as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that
the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex
behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-
dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve
any given task. Three different experiments are presented and their results lead to the conclusion that the
linear combination of the one-step PI with an external reward function is not generally recommended in an
episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an
asymptotic performance lost.

Keywords: information-driven self-organisation, predictive information, reinforcement learning, embodied artifi-
cial intelligence, embodied machine learning

1 Introduction

One of the main challenges in the field of embodied artificial intelligence (EAI) is the open-ended autonomous
learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation
to support task-dependent learning in the context of reinforcement learning (RL) and EAI. The work presented
here is a first step into this direction. RL is of growing importance in the field of EAI, mainly for two reasons.
First, it allows to learn the behaviours of high-dimensional and complex systems with simple objective functions.
Second, it has a well-established theoretical [Sutton and Barto, 1998, Bellman, 2003] and biological foundation
[Dayan and Balleine, 2002]. In the context of EAI, where the agent has a morphology and is situated in
an environment, the concepts of the agent’s intrinsic and extrinsic perspective rise naturally. As a direct
consequence, several questions about intrinsic and extrinsic reward functions, denoted by IRF and ERF, follow
from the EAD’s point of view. The questions that are of interest to us are: what distinguishes an IRF from an
ERF, what is a good candidate for a first principled IRF, and finally, how should IRFs and ERF's be combined?

The first question of how to distinguish between IRF and ERF is addressed in the second section of this
work, which starts with the conceptual framework of the sensorimotor loop and its representation as a causal
graph. This leads to a natural distinction of variables that are intrinsic and extrinsic to the agent. We define an



IRF that models an internal drive or motivation as a task-independent function which operates on the agent’s
intrinsic variables only. In general, an ERF is a task-dependent function that may operate on intrinsic and
extrinsic variables.

The main focus of this work is the second question, which deals with finding a first principled IRF. We
propose the predictive information (PI) [Bialek et al., 2001] for the following reasons. Information-driven
self-organisation, by the means of maximising the one-step approximation of the PI has proved to produce
a coordinated behaviour among physically coupled but otherwise independent agents [Zahedi et al., 2010, Ay
et al., 2008]. The reason is that the PI inherently addresses two important issues of self-organised adaptation,
as the following equation shows: I(S¢; Siy1) = H(Si+1) — H(S:+1|St), where S; is the vector of intrinsically
accessible sensor values at time ¢. The first term leads to a diversity of the behaviour, as every possible sensor
state must be visited with equal probability. The second term ensures that the behaviour is compliant with the
constraints given by the environment and the morphology, as the behaviour must be predictable. This means
that an agent maximising the PI explores behavioural regularities, which can then be exploited to solve a task.
In a differently motivated work, namely to obtain purely self-organising behaviour, a time-local version of the
PI was successfully used to drive the learning process of a robot controller [Martius et al., 2013]. A similar
learning rule was obtained from the principle of Homeokinesis [Der and Martius, 2012]. In both cases a gradient
information was derived to pursue local optimisation. For the integration of external goals a set of methods has
been proposed by Martius and Herrmann [2012], which however cannot deal with the standard reinforcement
setting of arbitrary time-delayed rewards that we study here. Prokopenko et al. [2006] used the PI, estimated
on the spatio-temporal phase-space of an embodied system, as part of fitness function in an artificial evolution
setting. It was shown that the resulting locomotion behaviour of a snake-bot was more robust, compared to the
setting, in which only the travelled distance determined the fitness.

The third question, which deals with how to combine the IRF and ERF, is in the focus of the ongoing
research that was briefly described above and of which this publication is a first step. As the PI maximisation
is considered to be an exploration of behavioural regularities, it would be natural to exchange the exploration
method of a RL algorithm by a gradient on the PI. The work presented here is a preliminary step in which
we concentrate on the effect of the PI in a RL context to understand for which type of learning problems it is
beneficial and in which it might not be. Therefore, we chose a linear combination of IRF and ERF in an episodic
RL setting to evaluate the PI as an IRF in different experiments. Combining an IRF and an ERF in this way
is justified as ERFs are often linear combinations of different terms, such as one term for fast locomotion and
another for low energy consumption. Nevertheless, the results of the experiments presented in this work show
that the one-step PI should not be combined in this way with an ERF in an episodic policy gradient setting.

We are not the first to address the question of IRF and ERF in the context of RL and EAI. This idea goes
back to the pioneering work of Schmidhuber [1990] and is also in the focus of more recent work by Kaplan and
Oudeyer [2004], Schmidhuber [2006], Oudeyer et al. [2007] based on prediction progress or prediction error [Barto
et al., 2004]. In Storck et al. [1995], Yi et al. [2011] an intrinsic reward for information gain was proposed (KL-
divergence between subsequent models), which results in their experiments in a state-entropy maximisation. A
different approach [Little and Sommer, 2013] uses a greedy policy on the predicted information gain of the world
model to select the next action of an agent. However only discrete state/action spaces have been considered
in both approaches. A similar work [Cuccu et al., 2011] uses compression quality as the intrinsic motivation,
which was particularly beneficial because it performed a reduction of the high-dimensional visual input space. In
comparison to our work only one experiment (comparable to the self-rescue task below) with a one-dimensional
action-space was used without considering asymptotic performance, which is where we found most problems.

This paper investigates continuous space high-dimensional control problems where random exploration be-
comes difficult. The PI, measured on the sensor values, accompanies (and might eventually replace) the ex-
ploration of a RL method such that the policy adaptations are conducted compliant to the morphology and
environment. The actual embodiment is taken into account, without modelling it explicitly in the learning
process.

The work is organised in the following way. The next section gives an overview of the methods, beginning
with the sensorimotor loop and its causal representation. This is then followed by a presentation of the PI and
the episodic RL method PGPE [Sehnke et al., 2010]. The third section describes the results received by applying
the methods to three experiments, and the last section closes with a discussion.
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Figure 1: The sensorimotor loop. Left: schematic diagram of a cognitive system with its interaction with the
world. Right: Corresponding causal graph.

2 Methods

This section describes the methods used in this work. It begins with the conceptual framework of the sensorimotor
loop. This is then followed by a discussion of the PI and entropy, which both are used as IRF in all presented
experiments. Finally, the RL algorithm utilised in this work is introduced as far as it is required to understand
how the results were obtained.

2.1 Embodied Agents and the Sensorimotor Loop

There are three main reasons why we prefer to experiment with embodied agents (EA). First, scalability: EA are
high-dimensional systems which live in a continuous world. Hence, the algorithms face the curse of dimensionality
if they are evaluated on different EAs. Second, validation: we are interested in understanding natural cognitive
systems by the means of building artificial agents [Brooks, 1991]. Using EA ensures that the models are validated
against the same (or similar) physical constraints that natural systems are exposed to. Third, guidance: there
is good evidence that the constraints posed by the morphology and environment can be used to reduce the
required controller complexity, and hence, reduce the size of the search space for a learning algorithm [Zahedi
et al., 2010, Pfeifer and Bongard, 2006]. Consequently, understanding the interplay between the body, brain
and environment, also called the sensorimotor loop (SML, see Fig. 1), is a general focus of our work. The next
paragraph will introduce the general concept of the SML and discuss its representation as a causal graph.

A cognitive system consists of a brain or controller that sends signals to the system’s actuators, which then
affect the system’s environment. We prefer the notion of the system’s Umwelt [von Uexkuell, 1934, Clark,
1996, Zahedi et al., 2010, Zahedi and Ay, 2013], which is the part of the system’s environment that can be
affected by the system, and which itself affects the system. The state of the actuators and the Umuwelt are
not directly accessible to the cognitive system, but the loop is closed as information about both, the Umwelt
and the actuators are provided to the controller by the system’s sensors. In addition to this general concept,
which is widely used in the EAI community [see e.g. Pfeifer et al., 2007], we introduce the notion of world to
the sensorimotor loop, and by that we mean the system’s morphology and the system’s Umwelt. We can now
distinguish between the agent’s intrinsic and extrinsic perspective in this context. The world is everything that
is extrinsic from the perspective of the cognitive system, whereas the controller, sensor and actuator signals are
intrinsic to the system.

The distinction between intrinsic and extrinsic is also captured in the representation of the sensorimotor loop
as a causal or Bayesian graph (see Fig. 1, right-hand side). The random variables C, A, W, and S refer to the
controller state, actuator signals, world and sensor signals, and the directed edges reflect causal dependencies



between the random variables (see [Klyubin et al., 2004, Ay and Polani, 2008, Zahedi et al., 2010]). Everything
that is extrinsic to the system is captured in the variable W, whereas S, C, and A are intrinsic to the system.

In this context, we distinguish between internal and external reward function (IRF, ERF) in the following
way. An ERF may access any variable, especially those that are not available to an agent by its sensors,
i.e. anything that we summarised as the world state W. An IRF may access intrinsically available information
only (S¢,A4¢,C, see Fig. 1). We are interested in first principled model of an intrinsic motivation, i.e. a model
that requires as few assumptions as possible. The idea is that IRF should not depend on a specific task but
rather be a task-independent internal driving force, which supports any task-dependent learning. This is why
we refer to it as task-independent internal motivation or drive. This closes the discussion of embodied agents
and their formalisation in terms of the sensorimotor loop. The next section describes the information-theoretic
measures that are used in the remainder of this work.

2.2 Predictive Information

The predictive information (PI) [Bialek et al., 2001], which is also known as excess entropy [Crutchfield and
Young, 1989] and effective measure complexity [Grassberger, 1986] is defined as the mutual information of the
entire past and future of the sensor data stream:

Tprea(S) := 1(Sp; Sy) (1)

where S, = {S1,5,...,5;} is the entire past of the system’s sensor data at some time ¢ € N and Sy =
{St41,St42,...} its entire future. The PI captures how much information the past carries about the future.
Unfortunately, it cannot be calculated for most applications because of technical reasons. Hence, we use the
one-step PI, which is given by

pred(S) = I(Si415 5t)

= H(St+1) —H(5t41]5), (2)
—_————— - —
diversity compliance

which was previously investigated in the context of EAI [Ay et al., 2008] and as a first principle learning rule
[Zahedi et al., 2010, Martius et al., 2013]. A different motivation for the PI is based on maximising the mutual
information of an intention state S;, which is internally generated by the agent, and the next sensor state Sti1
[Ay and Zahedi, 2013]. The Equation (2) displays how maximising the PI affects the behaviour of a system.
The first term in Equation (2) leads to a maximisation of the entropy over the sensor states. This means that
the agent has to explore its world in order to sense every state with equal probability. The second term in
Equation (2) states that the uncertainty of the next sensor state must be minimal if the current sensor state
is known. This means that an agent has to choose actions which lead to predictable next sensor states. This
can be rephrased in the following way. Maximising the entropy H(S11) increases the diversity of the behaviour
whereas minimising the conditional entropy —H (St41|S:) increases the compliance of the behaviour. The result
is a system that explores its sensors space to find as many regularities in its behaviour as possible.

For completeness we will also maximise the entropy H(S;) only and compare the results to the maximisation
of the PI. This concludes the presentation of the PI (and entropy) as a model for a task-independent internal
motivation in the context of RL. The next section presents the utilised RL algorithm.

2.3 Policy Gradients with Parameter-Based Exploration (PGPE)

We chose an episodic RL method named PGPE [Sehnke et al., 2010] to investigate the effect of the PI as an
IRF, because it is not restricted to a specific class of policies. Any policy, which can be represented by a vector
1 € R™ with fixed length n € N* can be optimised by this method. In the work presented here, we use it to learn
the synaptic strengths and bias values of neural networks with fixed structures only. Nevertheless, we can apply
the framework to other parametrisations, in particular to stochastic policies, which is why PGPE attracted our
attention for ongoing the project in which this work is embedded.



The algorithm can be summarised in the following way (for details, see [Sehnke et al., 2010]). In each roll-out
or episode, two policy instances are drawn from p by adding and subtracting a random vector € ~ A (0,0) to
it. The resulting two policy parametrisations ©F = pu + ¢ and ©~ = u — € are then evaluated and their final
rewards r, 7~ are used to determine the modifications on p and o according to the following equations
ae(rt —r7)

n __ n—-1 _+,n ,.—n
m"” = max(m" ™, r" r 3 Apy=—"— - 5
( ) . 3) M= o —rt — - 5)

“+.,n -
n_ (1 sypn—l rot4rT - 2_ 2
b = (1 6)b +52n:72 (4) N (7’ r —b) (6 ”Z>. (6)

m—>b 2 ag;

Roll-outs can be repeated several times before a learning step is performed. Every learning step concludes a
batch. PGPE requires an initial pnit, an initial oy, a learning rate «, baseline b, baseline adaptation parameter
0, and an initialised maximal reward m = mj,;;. We have set § to the recommended value of 0.1, p;n;e = 0, and
we have achieved the best results in all experiments by setting mj,;; small enough that m is definitely overwritten
in the first roll-out (see Eq. (3)). The other parameters are evaluated in each experiment, such that the best
results were achieved when no IRF was used and then fixed for the remaining experiments.

3 Results

This section presents three different experiments and their results. The first experiment is the cart-pole swing-
up, a standard control theory problem that is also widely used in machine learning [Barto et al., 1983, Geva
and Sitte, 1993, Doya, 2000, Pasemann et al., 1999]. The cart-pole experiment is also chosen because balancing
a pole minimises the entropy, and hence, it contradicts the maximisation of the PI. The second experiment is
the learning of a locomotion behaviour for a hexapod and it was chosen to demonstrate the effect of the PI
maximisation on a more common, well-structured experimental setting. By well-structured we mean that the
controller, morphology, environment, and ERF are chosen such that they result in a good hexapod locomotion
without any additional support by an IRF in only a few policy updates. The third experiment is designed
to be challenging, as it combines a high-dimensional system, an unconventional control structure, an unsteady
ERF with an unsteady environment. We believe that these three experiments span a broad range of possible
applications for information-theoretic IRF in the context of episodic RL.

3.1 Cart-Pole Swing-Up

The cart-pole swing-up experiment is ideal to investigate the effect of the PI on an episodic RL task, mainly for
two reasons. First, the experiment is well-defined by a set of equations and parameters, that are widely used in
literature [Barto et al., 1983, Geva and Sitte, 1993, Doya, 2000, Pasemann et al., 1999]. This ensures that the
results are comparable and reproducible by others with little effort. Second, the successful execution of the task
contradicts the maximisation of the PI. The task is to balance the pole in the centre of the environment, and
hence, to minimize the entropy of the sensor states. The maximisation of the PI demands a maximisation of the
entropy (see Eq. (2)). The remainder of this section first describes the experimental and controller setting and
then closes with a discussion of the results.

The experiment was conducted by implementing the equations that can be found in [Barto et al., 1983, Geva
and Sitte, 1993, Doya, 2000]. The state of the cart-pole is given by z,4,9,9, which are the position of the
cart, the speed of the cart, the pole angle and the pole’s angular velocity. The cart is controlled by a force
F € [-10N, 10N] that is applied to its centre of mass. The four state variables and the force define the input
and output configuration of our controllers for this task. The initial controller (see Fig. 2A) was chosen from
[Pasemann et al., 1999], where network structures were evolved for the same task. To ensure that the evolved
structure is not especially unsuitable for RL, different variations were chosen for evaluation too (see Fig. 2B-D).
In this approach, the input neurons are simple buffer neurons, with the identity as transfer-function, whereas
all other neurons use the hyperbolic tangent transfer-function.

The evaluation time was set to T' = 2000 iterations, which corresponds to 20 seconds (c.f. [Doya, 2000]).
Different values, starting from the values proposed in [Sehnke et al., 2010], for the learning rate o € {0.1,0.2,0.5},
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Figure 2: Controller architectures for the cart-pole swing-up task. The input neurons are bare buffer neurons
whereas the hidden and output neurons have tanh transfer-function. (A) from [Pasemann et al., 1999]; (B) with
4 hidden neurons and fully connected; (C,D) recurrent variations without and with lateral connections

the initial variation oinie € {2,5}, and the initial maximal reward min;; € {—00, 10,100, 1000} were evaluated in
experiments without applying an IRF to the learning of the task. The underlined values showed the best results,
and hence, are chosen for presentation here. Each experiment consisted of B = 10000 batches, i.e. updates of u
and o (see Egs. (5) and (6)) with two roll-outs each (i.e. four evaluated policies 6, ;). The results are obtained
by conducting every experiment 100 times. To ensure comparability among the experiments with different
parameters and controllers, the random number generator was initialised from a fixed set of 100 integer values
for each experiment.

The presentation of the reward function is split into two parts. The first part handles the ERF, whereas the
second part handles the IRF. We use the terms intrinsic/internal and extrinsic/external with respect to the
agent’s perspective, as discussed in the previous section (see Sec. 2.1). The controller has access to the full state
of the system, and hence, the separation into internal and external is artificial in this case. Nevertheless, we
keep this terminology for consistency, as the next experiments will reflect this distinction in a natural way. We
denote IRF by R;, and ERF by Ry, where a super-script is added to distinguish between the different reward
functions (PI and entropy).

The ERF for the cart-pole swing-up task is defined such that it is not a smooth gradient in the reward space,
and therefore, does not directly guide the learning process. The controller is only rewarded if the pole is pointing
upwards and the reward is scaled with the distance of the pole to the center of the environment, which is given
by

2= Jx(®)| if |9()| < 5°
Rex(t) := { 0 otherwise. (7)
The IRF is calculated at the end of each episode based on the recordings of the pole angles {S; = V(¢t)|t =
1,2,...,T}. We use a discrete-valued computation of the PI, and hence, the data is binned prior to the calcu-

lation. All IRFs are normalised with respect to their theoretical upper bound of I(S;y1;S:) < H(S:) < log|S]
(see [Cover and Thomas, 2006]). This leads to the two following IRFs:

R = |1(S41;8)|  and Rl :=|H(S)|. (8)
The overall reward functions are then given by

T T
R =" Rex(t) + B(v)RE, R":= " Reu(t) + B(v) R, B() =7 T -max{Re(t)}  (9)

z,9,t
t=1 t=1

where B(7) is a factor to scale the IRF with respect to the maximal possible value of the ERF. This allows us
to compare the effects of RET and RIL across different experiments.
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Figure 3: Results for cart-pole experiments. Each row shows the results for one controller architecture, see
Fig. 2. The corresponding connection matrix is provided in the first column (gray: connection, black: no
connection). For simplicity only the row for the second controller is discussed in detail. (A,B) ERF and IRF for
PI maximisation — small values of 4 > 0 are advantageous. (C,D) ERF and IRF for entropy maximisation — all
values of v > 0 have positive effect.

The results are discussed only for the fully connect feed-forward network (see Fig. 3A-D) in detail as this
controller shows the most distinguishable results with respect to the variation of the IRF scaling parameter
~v € {0%,1.25%,2.5%,3.75%,5%}. It is important to note that the plots only show the averages of the 100
experiments and not the standard deviation for the following reason. Few controllers succeed early, others later
during the process. Due to the unsteady ERF the resulting standard deviation is very large, as those controllers
that succeed receive significantly higher reward compared to those not succeeding (which remain close to zero, as
a rotational behaviour is not permitted). We intentionally chose an unsteady ERF, that returns zero for almost
all states, and hence, we know beforehand, that the standard deviation is large and no further information is
provided if it is plotted.

Figures 3A and 3B show the progress of the ERF RE! and IRF RE! for the PI maximisation. It is shown
that there is a significant speed-up in learning during the first 4000 batches for all v > 0% (see Fig. 3A). At this
point in time the average ERF of v = 0% succeeds that of v = 5%. After approximately 5000 batches the ERF
for v = 2.5% and v = 3.75% are very close to or slightly succeeded by the ERF for v = 0%, whereas the ERF
for v = 1.25% remains higher. The conclusion from this experiment is that small values of v < 5% are beneficial
in this learning task as less batches are required to solve this task and the asymptotic learning performances are
almost identical to v = 0%. The results, however, are not significant and the choice of v is critical. This leads
to the conclusion that the one-step PI is not significantly beneficial in the learning of this task.

Figures 3C and 3D show the progress of the ERF R and IRF R!! for the entropy maximisation. The results
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Figure 4: Hexapod for locomotion task and controller set-up. (A) Hexapod robot with marked actuated joints
and sensors; (B) leg module of controller; (C) entire controller; and (D) schematic pairings for PI and entropy
calculation.

show a different picture. Any parameter v > 0% speeds up the learning and improves the overall performance.
The comparison of entropy and PI is addressed in the discussion again.

3.2 Hexapod Locomotion

If a specific task should be learned by an embodied agent, it is more common to choose an environment, mor-
phology, control structure and a smooth ERF which are well-suited for the desired task. In order to investigate
which effect the PI has on such a well-defined learning task, the set-up of the experiment presented in this
section is chosen such that all components are known to work well if there is no IRF present. The goal is
to learn a locomotion behaviour of a hexapod, where the maximal deviation angles ensure that it cannot flip
over. The controller is known to perform well in a similar task [Markelié¢ and Zahedi, 2007] and its modularity
significantly reduces the number of parameters that must be learned. The ERF defines a smooth gradient in the
reward space, ensuring that small changes in the controller parameters show an immediate effect in the ERF.
The environment is an even plane without any obstacles.

The experimental platform (see Fig. 4) is a hexapod, with 12 degrees of freedom (two actuators in each leg)
and with 18 sensors (angular positions of the actuators and binary foot contact sensors). The two actuators of
each leg are positioned in the shoulder (Thorax-Coxa or ThC joint) and in the knee (Femur-Tibia or FTi joint)
of the walking machine, similar to the morphology presented in [von Twickel et al., 2011]. We omit the second
shoulder-joint (CTr) because it is not required for locomotion. Each joint accepts the desired angular position
as its input and returns the actual current angular position as its output. The simulator YARS [Zahedi et al.,
2008] was used for all experiments conducted in this section.

Different values for the PGPE parameters were evaluated. The best results for v = 0 (see Eq. (9)) were
achieved with oj,;; = 2 and « = 0.1. To ensure comparability with the previous experiment, two roll-outs were
chosen here, although it is not required to obtain the following results. The evaluation time was set to T" = 1000
and B = 250 batches were sufficient to observe a convergence of the policy parameters u. The values for v were
chosen from the previous experiment.

The ERF is calculated once at the end of each episode and it is defined as the Fuclidean distance between
the hexapod at time T" and its initial position (0,0) projected onto the zy-plane:

Rex = \/ ‘T% + y’?ﬁ (10)

where (z7,yr) are the coordinates of the centre of the robot in world coordinates at time ¢ = T.

The IRF is calculated differently compared to the previous experiment. In a high-dimensional system as the
hexapod, it is not possible to compute the PI of the entire system with a reasonable effort, as the computational
cost of I(St; Sty1) grows exponentially for every new sensor. It would be natural to reduce the computational
cost by calculating the PI based on a model of the morphology, but this would violate our claim that the PI
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Figure 5: Results for hexapod locomotion task. ERF and IRF with PI maximisation (A,B) and entropy max-
imisation (C,D). No significant effect is observed.

incorporates the morphology without the need of explicitly modelling it. Hence, we decided to use the following
method to approximate the PI and the entropy H (see Fig. 4D). Let S;(¢),7 = 1,2,...,12, be the angular
position sensors for the 12 actuators. We then chose two sensors k,I with 1 < k,1 < 12,k # [, randomly from
the 12 possibles sensors, and calculated

PI, = I(Sk(t + 1), Si(t + 1); S (8), (1)) Hy = H(Sk(1), Si(2)). (11)

The overall PI and entropy are then calculated as the sum of n randomly chosen PI,, and H, pairings, with the
additional constraint that each sensor pair k, [ appears only once in the approximations. The resulting IRF's