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ABSTRACT

Equilibrium analysis pervades mathematical social science.
This paper calls into question the explanatory significance of
equilibrium by offering an extremely simple game, most of
whose equilibria are unattainable in principle from any of its
initial conditions. Moreover, the number of computation steps
required to reach those (few) equilibria that are attainable is
shown to grow exponentially with the number of players—
making long-run equilibrium a poor predictor of the game's
observed state. The paper aso poses a number of
combinatorially challenging problems raised by the model.
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Much of game theory and mathematical economics is concerned
with equilibria’. Nash equilibrium is an important example.
Indeed, in many quarters, “explaining an observed social pattern”
IS understood to mean “demonstrating that it is the Nash
equilibrium of some game.” But, there iIs no explanatory
significance to an equilibrium that is unattainable in principle.
And there is debatable significance to equilibria that are
attainable only on astronomical time scales. Yet, in a great many
Instances, the social pattern to be explained is simply shown to be
an equilibrium. The questions, “Is the equilibrium attainable?”
and “On what time scale is it attainable?” are not raised.

There is a literature on unattainability— or uncomputability— of
equilibria, undecidability in games, and related topics. But it is
quite technical’. The aim of the present paper is to offer an
extremely simple game— easily played by school children— that
drives home the core distinction between attainable and
unattainable equilibria. Indeed, the overwhelming preponderance
of this game’s equilibria are unattainable from any initial
configuration of the game.

We hope this arresting example stimulates skepticism about the
explanatory significance of equilibrium®. As we will show, the
game— despite its surface simplicity— also raises a number of
combinatorially very challenging questions.

Description of the Game

The game’s ingredients are few and simple:

[1] Events transpire on a linear array of sites, extending from an
origin (the leftmost site) to the right.

[2] Agents are numbered consecutively from 1 to n. These
numbers do not change in the course of the game.

' See Kreps (1990), p. 405

? See, for example, Foster and Y oung (2001), Saari and Simon (1978), Prasad (1991), Jordan (1993), and
Nachbar (1997)

° For an insightful discussion of thisissue in the context of chaos and evolutionary games, see SKyrms

(1997)
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[3] Initially, we require that agents be arrayed in a contiguous
row, beginning at the origin, in some arbitrary order. Figure 1
gives one such admissible initial configuration for three agents.
Each agent is represented as a number, and each empty site is
represented as an asterisk.

Figure 1. An Initial 3-Agent Configuration
3 2 1 * k% %

[4] The agents’ only rule of behavior is as follows:

AGENT RULE: If there is a lower-numbered agent anywhere to
your right, go to the head of the line (the site immediately to the
right of the rightmost agent).

The rule is reminiscent of the Schelling segregation model
Schelling (1971, 1978) and the variant of Young (1998)°. In each
case, agents have some preference for immediate neighbors. In
our case, agents hate living anywhere with a lower-numbered
agent to their right. And (with bounded rationality) they move to
the one site that is certain to remove the problem, at least in the
iImmediate term— the front site.

[5] In any given round, agents are queried in order from highest
numbered to lowest numbered. As we shall see below, not all
agents may wish to move. The first agent who does wish to move
does so, resulting in a new configuration. That ends the round.
Play continues until equilibrium is reached, where:

[6] An equilibrium is a configuration from which no agent would
move further under the rule. Itis a fixed point. An equilibrium is
termed attainable if there is some initial configuration (see under
[3]) from which it can be attained. An unattainable equilibrium is
an equilibrium for which no such initial configuration exists.

That is the complete model specification

“ Note, however, that the model is not a Cellular Automaton, because it involves a non-local operation
(agents go to the head of the line, and are queried in sequence order). We thank Jim Crutchfield for this
observation. On Cellular Automata, see: Wolfram (1986), and Toffoli and Margolus (1987).



Child’s Play

One can imagine the model as a children’'s game, played on a
linear sequence of hopscotch squares. Assume the kids differ by
height. They form a line extending out from the school wall into
the playground, one in front of the next, in some random order by
height. Then they move, as specified under [5] above, each
according to the simple rule:

If there’'s a shorter kid anywhere in front of you, jump to the very
head of the line (the square immediately in front of the front kid).

The game ends when equilibrium is attained— when no kid would
move further under the rule®’. (This equilibrium notion is Nash-
like: no agent has any incentive to unilaterally depart under the
rule).

A Numerical Example

As a simple illustration of how the configurations progress, let us
walk the game forward from the Figure 1 configuration.

Table 1. A Complete Game

Configuration Number Configuration
1 321***
2 *213**
3 **132%*
4 **1* 23

Starting in Configuration 1, agent “3” (the highest numbered) is
queried first. Since there is a lower numbered agent to her right,
she jumps to the rightmost position—leaving a space in her
former position— yielding Configuration 2. That ends the round.
So, we begin a new round. As before, we query agent “3” (the
highest numbered) first. This time, she declines to change
position. So, we query the next highest numbered agent: “2.” Since
there is a lower numbered agent to her right, she now jumps to
the rightmost position— leaving a space in her former spot—

*In effect, the kids have invented atype of decentralized (albeit highly inefficient) sorting algorithm.
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yielding Configuration 3. This, of course, upsets agent “3”, who
moves when queried at the beginning of the next round, and so it
goes. In Configuration 4, agent 3 does not wish to move, so agent
2 is queried. She declines, so agent 1 is (at last) queried, but
declines as well (as the lowest numbered agent always does).
Configuration 4 is therefore an equilibrium. It is obviously
attainable. Notice that it requires 6 spaces in total.

Space and Time Requirements for Attainable Equilibria

For n agents, how many spaces are required to ensure enough
space for all attainable equilibria? Perhaps surprisingly, the
answer is:

n-2
[1] S’nax(n) =N+ 22‘ = (n _1) 4+ 2D
i=0

This space requirement grows exponentially in n. Values of s__ (n),
for various n values are given in Table 2.

Table 2. Maximum Space Requirements for
Attainable Equilibria, VVarious n

n Sites

3 6

4 11

5 20

20 524,307
25 16,777,240
30 5.37 x 10°
50 5.63 x 10*
100 6.34 x 10®

Regarding time (i.e., number of computation steps), the
equilibrium of Table 1 required 3 rounds to compute, from the
initial configuration 321***. In general, equilibria occupying
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S.(N) (as In equation 1) spaces will be obtainable in s_(n)-n
rounds, which, quite notably, is also exponential in n. Daunting
numerical examples are left to the reader.

As prosaic examples with kids, assume each hopscotch square is 2
feet deep, and that the games begin on a playground in
Cambridge, Massachusetts. Then, for 20 kids (an average
kindergarten class), there are initial line-ups such that, when
(after 524,287 moves) equilibrium is attained, the tallest kid is
standing in Central Park. For 25 kids, there are initial line-ups
such that, when (after about 17 million moves) equilibrium is
attained the tallest kid is standing in Tokyo. For 30 kids, there
are initial line-ups such that, when (after more than 500 million
moves) equilibrium is attained, the tallest Kkid has
circumnavigated the earth ten times. For 50 players, there are
attainable equilibria extending over roughly 563 trillion sites.
And for games involving 100 agents— a standard population size
in the literature of n-person games and agent-based models— even
the set of attainable equilibria is uncomputable on all practical
time scales. And, In fact, most equilibria are unattainable in
principle.

Unattainable Equilibria

A full treatment of the n=3 case will be instructive. There are 3!
acceptable initial configurations, and 5 distinct attainable
equilibria, as shown in Table 3.

Table 3. The 5 Attainable Equilibria for n=3

Initial Configuration Resulting Equilibrium
123*** 123***
132*** 1*23**
231*** **1*23
213*** *1*23*
312*** *123**

321*** **1*23
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Notice that the equilibrium **1*23 is attainable from the initial
configurations: 231*** and 321***. In general, a given attainable
equilibrium may be attainable from multiple initial
configurations’.

Unattainable Equilibria

While (as shown in Table 3) there are 5 distinct attainable
equilibria for the n=3 case, there are 20 equilibria in total (see
equation 2). Ipso facto, there are 15 unattainable equilibria! They
are listed below:

Table 4. The 15 Unattainable Equilibria for n=3

1. 1*2**3
2. *12**3
3. 1**2*3
4. *1*2*3
5. **12*3
6. 1***23
7. *1**23
8. ***123
9. 12*3**
10. 12**3*
11. 1*2*3*
12. *12*3*
13. 1**23*
14. 12***3
15. **123*

In each of these configurations, every agent is happy with her
iImmediate neighborhood, but none of these configurations are
attainable from any initial configuration.

® In this connection, the reader might find it interesting to consider the following general problem:
Give aformula, f(n), for the number of distinct equilibria attainable from the n! distinct initial
configurations of the n-agent game.
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For n=3, then, unattainability is the norm among equilibria. This
pattern only gets more dramatic as n increases. Indeed, the ratio
of attainable to unattainable equilibria approaches zero very
quickly. For n=4, there are 330 equilibria, of which 12 are
attainable, a mere 4%. For n=5, there are 15,504 equilibria, of
which 41 are attainable, or 0.2%. For n>5, the attainable
percentage is effectively zero.

The formula for the total number of equilibria, T(n) , even for the
n=4 case, turns out to be quite complex. Itis:

T(4)= (ﬂ4+1)+il+ziZJ +222k,

i=1 i=1 j=1 i=1 j=1k=1

2
where f,=s.(@-4=>2=7". For n agents, the appropriate
i=0

generalization is as follows. First, the index variables will run
from v, to v, ,.Then,

21 TM)=(5 +1)+2v+22v2+ +ZZ Z

v, =1 v,=1v,=1 v;=1lv,=1 v, ;=1

where 3 =5 (n)- nziz‘, as before.

i=0
Now, for n agents, the number of distinct initial configurations is
n!, but the number of attainable equilibria is less than n! (as
iIllustrated in Table 4) Hence, the fraction of attainable to total is
bounded above by —( - Since —— (n) — 0 extremely fast, so does the
fraction of attainables. Hence the generic equilibrium is, in fact,
unattainable from any initial conditions®.

" A closed form representation of the result would obscure the iterative nature of the solution. Hence, the
iterated summations shown.

8 Whether or not an equilibrium can be easily diagnosed as unattainable is beside the point we are making
here. But, to discuss this briefly, some cases are clear on inspection. For example, the equilibrium ***123
is unattainable, since the digit “1” never moves (as noted earlier) and appears too far to the right to be
permissible initially. Similarly, the equilibrium *1*2*3 can be easily identified as a Garden of Eden
configuration (see below), and is therefore not attainable. However, some cases are not so obvious: **123*
is unattainable. Now, in principle, one can classify equilibria as unattainable by brute force. For each of



Clearly, restricting the space of permissible initial configurations
Is important to this result. While, at first glance, such restrictions
may seem artificial, they are the norm in games and contests
generally. Chess, checkers, and many other board games possess
required initial set-ups. Straight pool, 9-Ball, and 8-Ball (stripes
and solids) each begin with the billiard balls “racked” in a
specified way. In racquet sports, such as tennis, squash, and ping-
pong, players are not permitted to serve (i.e., begin a point) from
“just anywhere.” Football prohibits certain line-ups and allows
others. Jousts and pistol duels had highly stylized initial
positions, as do fencing matches. Further examples will come
readily to mind. Indeed, on reflection, some restriction on initial
configurations would seem to be the rule across formalized
contests, rather than the exception. In this light, our restriction
seems natural enough.

Equilibrium and Explanation

Here, then, is an extremely simple playground game that admits a
huge number of equilibria, virtually all of which are not attainable
from any initial configuration, once there are 5 or more players.
So, returning to the central issue of explanatory significance,
Imagine being a theoretical playgroundologist. Your colleagues,
the empirical playgroundologists, have documented a powerful
regularity: They observe kids all over the world lined up from
shortest to tallest on playgrounds; they are spaced in all sorts of
bizarre ways, but they're lined up in order by height. What is the
explanation? This is the central empirical puzzle of
playgroundology.

Now, given an analogous empirical regularity, the standard and
ostensibly explanatory practice in the formal social sciences is as

the n! initial conditions, one simply grinds out the attainable equilibria. Then, for any candidate
equilibrium, one “simply” checks—by bitwise comparison—whether it isin the list of attainables or not.
However, the number of required comparisons grows exponentially in n. Mechanical “space counting”
tests for unattainability, while more direct, nonetheless require inspection of 8, sites, and will be
computationally prohibitive in practice for agent populations of any significance.
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follows: Provide a game for which the observed regularity is an
equilibrium.

But, this is easily done for playgroundology— the game we’ve just
been exploring fits the bill. Any line-up from shortest to tallest
observed by our empiricists in the field will, indeed, be an
equilibrium of this game. As we have shown, however, it will
almost certainly not be attainable: kids could not have arrived
there from any initial line-up. Clearly, then, the rules of this
particular game are supremely unlikely to be those followed on
real playgrounds.

Nonetheless, under the standard practice above, these rules would
be regarded as explanatory! This seems unsatisfactory for
playgroundology because the generic equilibrium of the game is
not attainable even in principle, much less on time scales of any
plausibility. So why, absent demonstrations of attainability,
should the same practice be accepted as explanatory in social
science? We believe it should not be.

An acceptable notion of "explanation” should include attainability.
A candidate is the generative notion advanced in Epstein (1999),
in which a set of individual rules, a microspecification, is regarded
as explanatory only if it suffices to generate the observed
regularity—incorporating the requirement of attainability.

Beyond its explanatory shortcomings, equilibrium may be a bad
predictor of observed configurations’. Obviously, unattainable
equilibria (since they will never be observed) are not predictive of
the game’s state on any time scale. But even attainable equilibria
(given the exponential time complexity of the process) are, in
almost all cases of this game, poor predictors on time scales of any
interest to humans.

Conclusion

For the social sciences more broadly, there would appear to be two
lessons of this simple exercise. First, implicit claims that

° Explanation and prediction are different matters: plate tectonics explains earthquakes, but does not predict
when they’ Il occur. Similarly, electrostatics explains lightning, but doesn’t predict where it will strike.
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equilibrium analysis is explanatory or predictive should be
challenged, and require the most careful defense. Second, a
successful defense of any such claims must include a
demonstration of attainability, on time scales of interest, by
agents employing plausible rules®.

By plausible rules, we have in mind those involving bounded information and bounded individual
computing capacity. See Simon (1982).
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APPENDIX: FURTHER COMBINATORIAL QUESTIONS

While the playground game was contrived as a stark illustration
of these points, it happens to raise a number of interesting
combinatorial questions.

Garden of Eden Configurations

First, by way of definition, if there exists no previous configuration
from which a given configuration can be attained, then the latter
is termed a Garden of Eden (GE) configuration®. For example,
the following configuration is GE:

*1*2*3

If 3 had been located anywhere to the left of 2 (or 1), it would have
jumped to the site immediately to 2’s right, not to the position
shown. This is both an equilibrium and a GE state.

We know that there are unattainable equilibria (i.e., unattainable
from any admissible initial configurations). Now, for many of
these, there are prior configurations. So, beginning with such an
unattainable equilibrium, if we back-calculate, we must stop short
of the origin (i.e., the set of permissible initial configurations)
since otherwise the equilibrium would have been attainable.
Where we stop must therefore be a Garden of Eden configuration!
So,

Proposition: For every non-GE unattainable equilibrium, there
exists (at least one) GE non-equilibrium preceding configuration.

For example, consider the string: 1**23*. It is an equilibrium.
But it is not attainable from any permitted initial condition. The
non-equilibrium configurations from which it is derivable,
however, are: 1*32** and 13*2**, both of which are GE, since
neither one has a predecessor that could occur initially.

* According to E.F. Moore (1962), this term was first suggested by John Tukey.
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The set of GE configurations from which a given configuration is
attainable shall be referred to as its basin of attraction.
Naturally, this suggests the following (evidently hard) question:
For any equilibrium configuration not attainable from an initial
configuration, determine its basin of attraction. Or, since all
initial conditions are themselves GE, the general problem is
simply:

Problem 1. For any equilibrium (attainable or not), determine its
basin of attraction.

In pondering the computational complexity of this general
problem, bear in mind that even for n=50 players there are many
unattainable equilibria consuming 563 trillion sites— in general,
S (N) Sites.

For the sake of completeness, it would be of further interest to
solve the following:

Problem 2. From each “point” of a given equilibrium’s basin, how
many computation steps are required to attain the equilibrium?
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