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We show that size-rank distributions with power-law decay (often
only over a limited extent) observed in a vast number of instances in a
widespread family of systems obey Tsallis statistics. The theoretical
framework for these distributions is analogous to that of a nonlinear
iterated map near a tangent bifurcation for which the Lyapunov ex-
ponent is negligible or vanishes. The relevant statistical-mechanical
expressions associated with these distributions are derived from a
maximum entropy principle with the use of two different constraints,
and the resulting duality of entropy indexes is seen to portray phys-
ically relevant information. While the value of the index « fixes
the distribution’s power-law exponent, that for the dual index 2 — «
ensures the extensivity of the deformed entropy.

size-rank distributions | Tsallis statistics | duality of entropy

Z ipf’s law refers to the (approximate) power law obeyed by
sets of data when these are sorted out and displayed by
rank in relation to magnitude or rate of recurrence [1]. The
sets of data originate from many different fields: astrophysi-
cal, geophysical, ecological, biological, technological, financial,
urban, social, etc., suggesting some kind of universality. Over
the years this circumstance has attracted much attention and
the rationalization of this empirical law has become a com-
mon endeavor in the study of complex systems [2, 3]. Here
we pursue further the view [4, 5] that an understanding of
the omnipresence of this type of rank distribution hints to
an underlying structure similar to that which confers systems
with many degrees of freedom the familiar macroscopic prop-
erties described by thermodynamics. That is, the quantities
employed in describing this empirical law obey expressions
derived from principles akin to a statistical-mechanical for-
malism [4, 5]. The most salient result presented here is that
the reproduction of the data via a maximum entropy princi-
ple indicates that access to its configurational space is severely
hindered to a point that the allowed configurational space has
a vanishing measure. This feature appears to be responsible
for the entropy expression not to be of the Boltzmann-Gibbs
or Shannon type but instead it takes that of the Tsallis form
[6], while the extensivity of entropy is preserved. It is perhaps
worth clarifying that our study is set in discrete space and it
does not consider any formal Hamiltonian system.

In Fig. 1 we show three examples of ranked data that ap-
pear to display power-law behavior along a considerable large
interval of rank values. In the top panels of this figure we
show data for the wealth of billionaires in the US [7], in the
middle panels data for the energy released by earthquakes in
California [8], and in the bottom panels data for the intensity
of solar flares [9]. In the left panels logarithmic scales are used
for both size and rank, whereas the right panels show the same
data in log-linear scales. The left panels indicate approximate
power law decay for large rank and a clear deviation from this
for small to moderate rank. As we shall show below the theo-
retical description reproduces the data in Fig. 1 for the entire
rank interval.

In Section II we recall [4, 5, 10] the concise stochastic ap-
proach for raw data generated by a power-law distribution
P for the size random variable N that yields an analytical
expression for the size-rank distribution N (k). This analyti-
cal expression involves a deformed exponential that has been
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shown to reproduce quantitavely real data and has as a limit-
ing form the classical Zipf law [4, 5, 10]. We also recall [4, 5] the
analogy that exists between the stochastic approach and the
deterministic nonlinear dynamics at and close to the tangent
bifurcation. This analogy allows for a convenient description
of finite-sized data that deviates from power-law behavior for
both small and large rank. In Section III we derive the rank
distribution N (k) from a maximum entropy principle (MEP)
and this allows us, via a well-known deformation index duality,
to discuss two different entropy expressions of the Tsallis type
obtained from two different sets of constraints [11, 12, 13]. The
values of the two entropy expressions coincide but they yield
different information for the set of data under consideration.
In Section IV we use this duality to discuss entropy extensivity
of the ranked data and the presence of a strong phase-space
contraction. This is shown to be the source of a generalized
entropy that departs from the usual Shannon expression. This
departure is extreme for the classical Zipf case, implying that
the data can sample only a set of zero measure. Finally, in
Section V we discuss and summarize our results.

The distribution functions that generate Zipf’s law

A basic approach for the study of ranked data consists of three
simply related distribution functions [4, 5, 10]. The input is
the distribution P(N) of the data N under consideration, that
is, it is assumed that the data is generated by a source de-
scribed by P(N) such that N can be thought of as a random
variable. With no loss of generality we restrict N to take posi-
tive values within an interval Npin < N < Nmax, where we al-
low for the limiting possibilities Nmin = 0 and/or Nmax — 00.

Significance

The contents presented are of prime importance to the field
of generalized statistical mechanics. We fulfill a longstanding
need of exhibiting the kind of abundant real world data that
matches the formal developments in this subject. These are
size-rank distributions for which we provide a solid bridge be-
tween experimental data and theory. Also, this work delivers
a working explanation for the existing duality between the two
Tsallis-type entropy expressions that generalize the canonical
expression. One relates to the distributions power-law exponent
whereas the other ensures entropy extensivity. The generalized
entropies arise from a drastic reduction of configurations avail-
able to the system. We argue that this phase-space contraction
is farthest for ranked data of the Zipf type.
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The total number of data extracted from P(N) is denoted
by N. Next, the (complementary) cummulative distribution
II(N, Nmax) is determined from P(N),

NIY\&X
II(N, Nmax) = P(N")dN’, (1]
N
where the normalization of P(N) implies II( Nmin, Nmax) = 1.
We can recover P(N) from II(N, Nmax),
P(N) = — 211N, Novw) [2]
= 8N 5y 4Vmax ).

By construction, the distribution II(N, Nmax) sorts out data
according to its magnitude: As N is decreased from Npax
the distribution II increases monotonically taking values from
IT( Nmaxs Nmax) = 0 t0 II(Nmin, Nmax) = 1, so it can be identi-
fied with k/A/, where k is the rank and JV is the total number
of data extracted from P(N), and kmax = N. The last and
third distribution is the size-rank function N (k) and can be
obtained by solving

Nmax
k ’ /
— = P(N")dN 3
v [ e (3]
N (k)

for N(k). If k is to be an integer the possible lower limits in
the integral in Eq. (3), N(1), N(2), ..., N(kmax) are such that
the integral takes values 1/N, 2/N, ..., kmax/N.

If we make use of a power law form for P(N),

P(N)~N"% 1< a< oo, (4]
we have [10, 4, 5]

Nmax

II(N(k), Nmax) = N™%dN

= m [err);)? - N(k)lia] ’ [5]

or, in terms of the ¢-deformed logarithmic function Ing(x) =
(1 — ) '2'"? — 1] with ¢ a real number,

Ing N(k) = Ing Nupax — N k. [6]
The size-rank distribution N (k) is explicitly obtained from
the above with use of the inverse of Ing(z), the g-deformed
exponential function exp, (z) = [1+ (1 — @)x]V/ D this is

N (k) = Nuax exp,, (—=N2mi N7'E). (7]
When a =1 Eq. (7) acquires the ordinary exponential form

N(k') = Nmax eXp(_N_lk)7 [8]

whereas in the limit Nmax — 00 Eq. (7) becomes the power
law N(k) ~ k(=% that when a = 2 gives the simple classi-
cal Zipf’s law form N (k) ~ k™ .

An explicit analogy between the generalized law of Zipf
and the nonlinear dynamics of intermittency has been studied
[4, 5]. We recall the renormalization group (RG) fixed-point
map for the tangent bifurcation. The trajectories x:, t =
1,2,3, ..., produced by this map, comply (analytically) with:

In. z; = In, o + ut [9]
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or

zy = zoexp, [z ut] [10]

where the o are the initial positions. The parallels between
Egs. (9) and (10) with Egs. (6) and (7), respectively, is clear,
and therefore, we conclude that the dynamical system repre-
sented by the fixed-point map operates in accordance to the
same g-generalized statistical-mechanical properties discussed
below. We notice that the absence of an upper bound for
the rank k in Egs. (6) and (7) is equivalent to the tangency
condition in the map. Accordingly, to describe data with fi-
nite maximum rank, we look at the changes in N (k) brought
about by shifting the corresponding map from tangency, i.e.,
we consider the trajectories, x, with initial positions xo of the
map:

' =zexp, (ur® ) +e 0<e< 1 [11]

with the identifications k = ¢, N™* = —u, N(k) = z; + z*,
Nmax = 2o +2* and a = z, where the translation, 2™, ensures
that all N(k) > 0. The capability of this approach to repro-
duce quantitatively real data for ranked data with deviations
from power law for large rank has been discussed [4, 5].

Rank distributions from maximum entropy principle

The rank distribution N (k) described in the previous section
can be obtained from a maximum entropy principle (MEP),
and, as we shall see, this allows to put forward important in-
terpretations regarding the nature of the systems that give
rise to it. But first we adjust our interpretation of N (k). This
quantity is actually the size or magnitude of the data under
consideration, the number of units that, in a microcanical en-
semble description, is the number of configurations that take
place for a fixed value of k. Therefore its inverse, pr, = 1/N(k),
is the (uniform) probability for the occurrence of each unit that
constitutes N (k). The probability py is normalized for fixed
k, and we denote its limiting values by pmin = 1/Nmax and
Pmax = l/Nmirn Nmin < N(k) < Nmax.

A formal investigation of the possible entropy expressions
that generalize the Boltzmann-Gibbs or Shannon canonical
form has been systematically carried out with the use of the
MEP under the assumption that only three of the Shannon-
Kinchin axioms hold [11, 12, 13]. (Inclusion of the fourth,
composability, uniquely defines the canonical form). Here we
focus only on the Tsallis expressions [14].

Consider the entropy functional @1 [py] with Lagrange mul-
tipliers a and b,

kIIlaX kl[lax
Dy [pr] = Si[px] + a Zpk—P +b Zk:pk—lC , [12]
k=0 k=0

where the entropy expression Si[px] has the trace form [11]

kEmax

Silpr] = D s1(pw).

k=0

Optimization via 0®1[px]/dpr =0, k=0,1,2, ...

(13]

, Kmax, gives
s1(px) = —a — bk. [14]
Now, the choices

si(pr) = alnapy' =1, a = —alng pyi,+1, b=aN ', [15]

lead to
In, p;' =Inapoi, — N k. [16]
or

Pr = Drmin €XPo (—Pmin N E). [17]
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from which we immediately recover Egs. (6) and (7).

We repeat the same optimization procedure but with a con-
straint change [11]. Consider the functional ®3[ps] with La-
grange multipliers ¢ and d,

kmax kmax
Oa[pi] = Salpl +¢| D pr—P| +d | D kpi —Kar |,
k=0 k=0
(18]
and where the entropy expression Sa[pi] has also a trace form
klnax
Salpr] = D s2(pr)- [19]
k=0

Optimization via 0Pz [pi]/Opkr =0, k = 0,1, 2, ..., kmax, gives

so(pr) = —c — dk. [20]
And this time the choices
so(pr) = —(2—a') Ing pr—1, ¢ = (2—a/) Ings pmin+1, [21]
d=2-ad )N, [22]
give the expressions

Iny pr = Ny Pmin + N k. [23]

or )
Pk = Pmin expa’(pﬁxiinlj\/ilk’)' [24]

A comparison of Egs. (6) and (7) with Eqgs. (23) and (24),
respectively, indicates that they become equivalent with the
identifications

pr = 1/N(K), Pmin = 1/Nax, &' =2 — a.

Furthermore, s5(pr) = si(pr) (as given by Eqs. (14), (15),
(20) and (22)) and therefore

Sa2[pr] = S1[px, [25]
where their optimized expressions are
kmax
Silpr] = D pelna pi [26]
k=0
and
kmax
[27]

Sz[pk] = — Z Pk Ings pi.
k=0

Under the assumption of validity of only the first three
Shannon-Kinchin axioms it has been shown [11, 12] that there
are only two ways to construct entropy expressions via the
MEP procedure. These correspond to the constraints used in
Egs. (12) and (18) and the resulting entropy expressions are
those in Eqgs. (26) and (27). The two approaches are related
via the deformation index duality o' = 2 — «, and, for the
same distribution pg, their values are equal as in Eq. (25).
For an earlier account of this duality property see Ref. [15].
See also [16]. From our earlier discussion we know that the
index « fixes the shape of the rank distribution N(k) and
that its departure from unity generates its power-law feature
and that the value a = 2 reproduces the classic Zipf law. To
complete the picture we need to clarify the role of the dual
index o’ and the distribution p, and from this obtain an un-
derstanding of the dual entropy expressions in Egs. (26) and
(27). Interestingly, when a = o’ = 1 the duality collapses into

Footline Author

the Boltzmann-Gibbs or Shannon entropy expressions and the
exponential form for N(k), but for & = 2 we have o/ = 0 and
pr grows linearly with k.

In Fig. 2 we show the same three sets of data in Fig. 1
in log-linear scales. This time we fit them with Egs. (7) and
(24) and observe that the data are well described with values
of the deformations a = 2 and o’ = 0.

Statistical mechanics of contracted configuration space

The function N (k) has the properties of a microcanonical par-
tition function [4, 5]. That is, the size N (k) is the result of
N (k) equally-probable configurations, and the probabilities py
are correspondingly normalized for fixed k. However, these
probabilities are not normalized if the rank k runs across its
values k = 0, ..., kmax, and we do not make an attempt here
to do so. Instead, we look at the rank dependence Eq. (24),
that we identify as the system’s size dependence. As it can be
observed in the right panels of Fig. 2 the probabilities py rises
sharply and then saturates as k increases. The pure deformed
exponential

2

Pk max o’—1 pr—1
= = Y . k
Prin N(k €XPy (pmm N )

(28]

~

measures the change in the number of microcanonical config-
urations with the size of the system k. We define the size-
dependent entropy

_ Nmax
S(k) = Ing ( N

) , k fixed, [29]

and from Egs. (28) and (29) we observe that S(k) is exten-
sive, doubling the numbers of billionaires, earthquakes or solar
flares in the data sets doubles the value of S(k), and it can be
seen to be so because the deformation index o has the precise
value to ensure this property. The constraint

kmax

S kp =Kar [30]
k=0

in Eq. (18) for entropy maximization indicates that the phase
space, Nmin < N < Nnax, is highly constrained since the
probabilities pr < 1 need to be enhanced up to p‘il, a’<1,in
order to obtain a meaningful average of k. In relation to this,
notice that N(k) is a monotonously decreasing function with
a power law feature. This phase-space contraction is extreme
for the case of Zipf law because o'reaches its minimum value of
zero. For a system with normal occupation of phase spase, the
number of configurations grow exponentially and S(k) above
becomes extensive in k for index value o = 1 whereas the phase
space in the most contracted stage the number of configura-
tions grow only linearly and and this linearity is preserved in
S(k) when o/ = 0.

In Fig. 3 we show the same data in Figs. 1 and 2 but this
time plotted in deformed logarithmic scales with deformation
indexes a ~ 2 and o'~ 0. Data in these scales are displayed
linearly and should be fitted by the theoretical expressions
Egs. (7) and (24) if these equations represent the behavior of
the data.
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Discussion

We have shown that size-rank distributions with power-law
decay for moderate and large values of rank obey Tsallis statis-
tics. The small-rank behavior that departs from the power law
is also well reproduced by the deformed exponential expression
in Eq. (7) for N(k). For the specific data we presented (US
billionaires, California earthquakes and solar-flare intensities)
the values of the exponential deformations were found to be
«a ~ 2, the value needed to obtain the classical Zipf law. In or-
der to advance further in the characterization of the apparent
relationship between rank distributions and generalized statis-
tical mechanics, such as that of Tsallis, we rederived Eq. (7)
for N(k) from a maximum entropy procedure. This was done
in accordance to the consideration of validity of only the first
three Shannon-Kinchin axioms [11, 12]. Under these condi-
tions duality of entropy expressions appears according to the
use of two different constraints. In doing this we introduce
the (unormalized) distribution pr = 1/N(k), actually N (k) is
the number of data for the same rank & (playing the role of a
partition function) [4, 5]. We obtain equality of the entropy
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expressions S1[px] = S2[px] in Egs. (26) and (27) and a com-
panion rank distribution expression for px, Eq. (24). As it is
known [11, 12] the two entropies S1[px] and Sa[pk] correspond
to the dual deformation indexes o and o’ = 2 — a. We have
enquired as to the different roles of the two entropy expres-
sions and identify the physically relevant information carried
by each one. We found that the value of the index « fixes
the distribution’s power-law exponent for N (k) and that the
dual index o = 2 — « ensures the extensivity of the deformed
entropy. Finally, we argued that the value o = 2, that cor-
responds to the classical Zipf law, manifests as o’ = 0 that
we interpret as a extreme contraction of the phase space from
which the data originates.
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Three examples of ranked data that appear to display power-law behavior along an interval of rank values. The top panels show data for the wealth of billionaires

in the US [7]. The middle panels present data for the energy released by earthquakes in California [8]. The bottom panels provide data for the intensity of solar flares [9]. In
the left panels the data is shown in logarithmic scales, whereas the right panels show the same data in log-linear scales. See text for description.
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Fig. 2. The same three examples in Fig. 1 are fitted with the expressions in Eqs. (7) and (20). As it can be seen in the figure the values of v needed for fitting are close
toa~2and o’ =2 — a ~ 0. The value o = 2 gives the classical Zipf law exponent, whereas the value &’ = 0 indicates extreme configuration-space contraction. See
text for description.
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Fig. 3. The same three examples in Figs. 1 and 2 plotted in Ina (N (k)/Nmax) (left) and Ing/ (g /Pmin) (right) scales. Data plotted in these scales are designed to
display linear behavior if the theoretical expressions in Egs. (7) and (20) are fulfilled by the data.
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