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Regardless genome polarity, during viral replication intermediaries of complementary sense must be syn-
thesized and used as templates for the synthesis of new genomic strands. Depending on whether the newly
synthesized genomic molecules become themselves templates for producing extra antigenomic strands, thus
giving rise to a geometric growth, or only the firstly synthetized antigenomic strands can be used to this end,
thus following Luria’s stamping machine model, the abundance and distribution of mutant genomes will be
different. Mathematical models of virus replication have largely ignored this fact and generally assumed a pure
geometric growth. Here we propose mathematical and bit string quasispecies models that allow to distinguish
between linear and geometric replication and also incorporating the existence of antigenomic intermediates of
replication. We have observed that the error threshold increases as the mechanism of replication switches from
purely geometric to stamping machine. We also found that for a wide range of mutation rates, large effect mu-
tations do not accumulate regardless the scheme of replication. However, mild mutational effects accumulate
more in the geometrical mode. Furthermore, at high mutation rates, geometric growth leads to a sooner popu-
lation collapse for intermediate values of mutational effects at which the stamping machine still produces non
mutated genomes. Finally, at increasing mutation rates, the highest production of virions is found for close-
to-linear replication and high replicase production. In conclusion, we have shown that by selecting a stamping
machine replication strategy, RNA viruses may increase their robustness against the accumulation of deleterious
mutations.

The mode of RNA virus replication has important conse-
quences for understanding the rates at which deleterious mu-
tations accumulate and the statistical properties of the cloud
of mutants around the master sequence (1, 2). For the sake
of illustration, let’s assume that the infecting virus has a
mRNA sense (positive strand) genome, such as for example
the picorna-like viruses. The different steps of the infectious
cycle are illustrated in Figure 1. The first step of infection
would be the uncoating of the RNA molecule, followed by its
translation to produce viral proteins, including one or more
required to generate the RNA-dependent RNA polymerase
(RdRp) that serves as replicase. The replicase then copies
the genomic strand to make antigenomic (negative polarity)
strands. These are used as templates to produce the posi-
tive strand progeny that will accumulate in the cell, serve as
templates for translation and, following encapsidation by coat
proteins, form new virions. If the antigenomic strands pro-
duced during the first round of synthesis are the only templates
for producing the entire progeny of genomic positive strands,
the distribution of mutations per genome within an infected
cell is expected to be Poisson because mutants do not repli-
cate. Consequently, the fraction of mutation-free genomes
produced is given by the Poisson null class e−µL, where µ
is the per site mutation rate and L the genome length. This
scheme of replication corresponds to the linear stamping ma-
chine model first proposed by Luria (3).
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However, if all positive strand progeny can also immedi-
ately serve as templates for additional rounds of antigenomic
strands synthesis, the replication model is effectively geomet-
ric and the distribution of mutant genomes per cell increases in
variance because mutant progeny is producing itself more mu-
tant viruses. In this case, the distribution of mutant genomes
conforms to the Luria-Delbrück distribution (4). The frac-
tion of mutation-free genomes produced would depend on
the number of replication rounds experienced, k, according
to e−kµL. If only a fraction of the positive strand progeny
replicates, then the replication model will be a mixture of ge-
ometric growth and stamping machine that deviates from the
Poisson expectation as much as the geometric growth contri-
bution. The effect of replication mode in virus mutational load
can be better understood with the following example. The
genomic mutation rate of the positive strand Tobacco mosaic
virus (TMV) was estimated in the range 0.043 ≤ µL ≤ 0.063
per replication round and about 40 viral particles produced
per infected tobacco cell (5). For a pure stamping machine
model, the fraction of mutation-free genomes would be in the
range 0.939 − 0.958, whereas for a pure geometrical growth
(k = 5.322) this fraction would lie between 0.795 and 0.715.
Therefore, geometric replication produces 4.666−4.860 times
more mutants than a stamping machine model.

Experimental data suggest different models of replication
for different viruses. For example, bacteriophage T2 is
thought to replicate mostly following a geometric model be-
cause the number of mutants per infected cell fails to fit a
Poisson distribution (3). However, phage φX174 data fit well
the Poisson distribution and, hence, is thought to replicate ac-
cording to a stamping machine model (6). Lying within these
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FIG. 1: Schematic representation of the virus infectious cycle. During infection, the viral particle enters into the host cell and after uncoating,
the positive-sense RNA (acting as mRNA) forms the translational complex, Tc, by binding with ribosomes, that directs the synthesis of the
viral polyprotein precursor, p, which is converted to both structural and RdRp proteins, at rates 1− β and β, respectively. The RdRp is used to
synthesize more copies from the viral RNA templates. We distinguish between master and mutant genomic (+) and antigenomic (−) strands.
We simulate linear replication with Γ+ ¿ Γ− (where the initial genomic RNA directs the synthesis of one or very few negative copies which
are used as templates for the synthesis of new genomic strands). To model geometric replication we use Γ+ = Γ−, where all the synthesized
strands replicate at the same rate. We also model the formation of mature viral particles from genomic strands and the structural proteins (see
Table I for a description of the variables and the parameters used in the model).

two extremes, phage φ6 slightly deviated from the Poisson
expectation, an observation interpreted as result of a mixed
model in which some progeny was also able of replicating (1).
Plant positive strand RNA viruses are also thought to repli-
cate mostly according to a stamping machine model (2, 7).
Despite the apparent importance of the model of RNA virus
replication on the accumulation of mutant genomes, most of
the mathematical models proposed to study the dynamics of
RNA virus populations rely on the assumption of geomet-
ric growth. For example, the most commonly used theoret-
ical paradigm for the study of virus evolution, Eigen’s quasis-
pecies model (8, 9), assumes geometric growth without mak-
ing specific mention to the genomic-antigenomic duality.

How to model viral replication is a current subject of re-
search in virology. The growth of a virus in its host cell
is a complex process. In seeking to understand this process
and the effect of the interactions between the macromolecules
involved in viral growth, the crossing of disciplines as bio-
chemistry, molecular biology, population genetics and nonlin-
ear dynamical systems might provide a powerful way to study

the overall behavior of virus dynamics. In this sense, models
play a crucial role for a qualitative and a quantitative study
of virus replication, being also useful to predict the system’s
behavior time evolution as well as to analyze its sensitivity
with respect to parameter changes. Furthermore, insights into
interactions of viruses with host cells might help us to im-
prove our understanding of virus-mediated diseases and to de-
velop antiviral strategies (10). Several models of intracellular
viral growth kinetics can be found in the literature, ranging
from simple (unstructured) models capturing the basic repli-
cation processes (11–14) to the so-called structured models
that consider replication in different cellular compartments
such as membranes, endosomes, cytoplasm or nucleus. Some
examples of structured models have been developed for bac-
teriophage T7 (15, 16), Human immunodeficiency virus type
1 (17), subgenomic Hepatitis C virus (18), Influenza A virus
(10) or Vesicular stomatitis virus (19). However, to the extent
of our knowledge and despite its relevance, none of the above
theoretical models incorporate antigenomic strands synthesis
as intermediates of replication considering the effect of non-



3

Category Notation Description
Parameters β Fraction of the viral polyprotein used as replicase, being 1− β, the fraction used as structural proteins

ε Strand’s degradation rate
εT Degradation rate of the translational complex*
εp Degradation rate of the viral polyprotein*
Γ± Replication rate for the positive (+) (genomic) and negative (−) (antigenomic) master strands
Λ± Replication rate for the positive and negative mutant strands
K Cellular carrying capacity or maximum populations size of strands per cell*
kp Effective interaction rate between the master genomic strands and the available ribosomes*
k1 Dissociation rate of the genomic master strand from the translational complex*
k2 Encapsidation rate of positive-sense strands
m Number of monomers of structural protein used for building up a virion*
Q Average copying fidelity, being µ = 1−Q the mutation rate

Rtot Constant number of cellular ribosomes inside the cell*
σ Rate of elimination of mature virions (either by degradation or by licking out of the cell)

State variables x±0 Relative concentration of genomic and antigenomic master strands
x±1 Relative concentration of genomic and antigenomic mutant strands
Tc Relative concentration of translational complexes composed of master genomic strands and ribosomes
p Relative concentration of the non-processed polyprotein
V Relative concentration of mature virions

TABLE I: Notations used in the ODEs model. Asterisks indicate the fixed parameters (see the end of the mathematical model description for
exact values).

geometric modes of replication on viral mutational load.
In this work we first analyze a quasispecies struc-

tured model describing the single-cell reproductive cycle of
positive-sense RNA viruses that make no subgenomic mR-
NAs and encodes a single polyprotein that is self-processed
into structural and non-structural proteins, sensu picorna-like
viruses (see Figure 1). Our model describes the dynamics of
cytoplasmatic intracellular amplification of the viral strands
considering the main mechanisms involved in the infection
cycle inside the host cell (see (20) and references therein).
Our main goal is to analyze the effect of linear and geometric
replications under a single-peak fitness landscape (21). We are
especially interested in the error threshold and the sensitivity
to mutations for each replication mode. The model considers
explicitly both genomic and antigenomic master and mutant
strands, the viral polyprotein precursor, the translational com-
plexes and the mature virions.

Our results show that geometric replication is more sensi-
tive to the error catastrophe, as opposed to the Luria’s stamp-
ing machine strategy, which is shown to occur at higher mu-
tation rates. We confirmed the validity of the results obtained
with the mathematical deterministic model by using a stochas-
tic model involving digital genomes.

MATERIALS AND METHODS

Mathematical model. Our quasispecies mathematical model of in-
tracellular viral replication is based on the replication scheme shown
in Figure 1 (see Table 1 for details on notation used hereafter). The
model is used to analyze the dynamics of replication of positive-
sense RNA viruses that make no subgenomic mRNAs. We explic-
itly define the polarity of the strands constituting the quasispecies,

studying its dynamics using the so-called Swetina-Schuster land-
scape (21), which assumes that all mutations have the same deleteri-
ous effect on virus fitness. In such scenario we may divide the pop-
ulation in either master or mutant positive and negative viral strands.
The pool of mutant strands of each polarity is thus grouped in an av-
erage sequence different from the master one. Therefore, the state
variables (which have real positive values) of this dynamical system
are given by the genomic (+) and antigenomic (−) viral strands,
x±0,1, being the master ones indicated with subindex 0 and the mu-
tants with subindex 1. Moreover we also consider as state variables
the viral polyprotein precursor, p, the translation complex, Tc, and
the virions, V .

Our model assumes that all the interacting macromolecules are
homogeneously mixed, also assuming that mutant genomic RNAs
(x+

1 ) are not translated to produce the polyprotein precursor and
thus they do not compete for the available ribosomes. This may
happen because mutations could produce a stop codon or a sort
of conformational change in the secondary structure of the RNA
hindering its binding with the ribosomes. Next we proceed to give
a detailed explanation of the processes described by our model. We
mainly differentiate four steps, (a) to (d) below, which correspond to
the main phases of viral replication inside the host cell (Figure 1).

(a) Translation complex kinetics. Upon entry and uncoating of
the viral genome, it binds with the cellular ribosomes forming the
translational complexes. Following Dahari and co-workers (18), the
amount of free available ribosomes, Rav , is used as an upper bound
to the formation of the translation complexes, Tc, and is given by
Rav = Rtot−Tc. Note that here we assume that the total number of
ribosomes, Rtot, is constant, and the number of available ribosomes
decreases due to the formation of the translational complexes. The
dynamics of the translational complex is then defined by

dTc

dt
= kpx+

0 Rav − k1Tc − εT Tc. (1)



4

0

0,3

0,6

0 2000 4000 6000
0

0,2

0,4

0

0,3

0,6

0 2000 4000 6000
0

0,2

0,4

2,5

3

3,5

4

0 2500 5000

0,8

1

0 7500 15000
0

0,3

0,6

0 2000 4000 6000
0

0,2

0,4

time time
lin

ea
r

C
on

ce
nt

ra
tio

n
C

on
ce

nt
ra

tio
n

lin
ea

r

(a)

(c)

time time

(d)

(b)

+ / −

+ / −

ge
om

et
ric

ge
om

et
ric

FIG. 2: Solutions of the ODEs model. Time series for master (black) and mutant (red) strands at different mutation rates and with ε = 10−3.
The mutation rates analyzed are: (a) µ = 0.1; (b) µ = 0.3; and (c) µ = 0.75. Positive and negative-sense strands are indicated, respectively,
with solid and dashed lines. We also show the ratio of positive to negative strands for the case µ = 0.3. In all the plots we show the time
evolution for linear (upper panel, with Γ+ = 0.1) and geometric (lower panel, with Γ+ = 1) replication modes.

Here the parameter kp is the effective interaction rate between the
RNA and the available ribosomes. The second term denotes the
dissociation of the translation complex and the master genomic
RNA strands (k1Tc), after which the ribosomes and the genomic
RNA become again available for the replicative cycle. We consider
that the translation complex is degraded at rate εT .

(b) Viral polyprotein precursor dynamics. The dynamics of
the viral polyprotein precursor, p, is dependent on the presence of
the complexes, Tc, the formation of mature virions and its intrinsic
degradation. An appropiate description reads

dp

dt
= k1Tc −

X
i=0,1

ϕ(x+
i )− εpp. (2)

The ϕ term, which corresponds to the formation of virions due to
the encapsidation of the positive-sense strands, is chosen here as
ϕ(x+

i ) = k2[(1 − β)p]mx+
i , with i = 0, 1. Here k2 is the encap-

sidation rate, and m the number of monomers of structural protein
used for the encapsidation of the genomic strands.

The viral polyprotein precursor is proteolitically self-processed
giving place to the formation of both structural (capside proteins)
and non-structural (replicase) proteins, which are synthesized,
respectively, at rates 1 − β and β (12). The last term indicates the
degradation of the viral polyprotein proportionally to εp.

(c) RNA synthesis and degradation. Four different classes of
RNA sequences defined as xj ∈ {x+

0 , x−0 , x+
1 , x−1 } = x, are

considered and their growth is limited by a logistic-like term given
by

L(x) = 1− 1

K
X

i=0,1

(x+
i + x−i ),

together with a linear degradation −εxj , describing the decay of vi-
ral strands due to the action of the cellular endonucleases, which is
assumed to be the same for all strands. The constant K corresponds

to the cellular carrying capacity or the maximum population of vi-
ral strands that can be produced inside the host cell. The RdRp uses
a given strand as template to synthesize its perfectly complemen-
tary sequence at a rate Γ±Q , being Q the average quality factor of
replication and Γ± the replication rate of the master strands. Hence,
master sequences will generate mutant complementary sequences at
a rate Γ±µ, being µ = 1 − Q, the average mutation rate. Mutant
strands replicate at rates Λ± ¿ Γ± because we assume that mu-
tants are deleterious. Note that backward mutations are not allowed
to occur due to the enormous size of sequence space.

The concentration of free x+
0 strands will grow following:

dx+
0

dt
= r+L(x)− εx+

0 + k1Tc − ϕ(x+
0 )− kpRavx+

0 , (3)

where the three last terms in the right-hand side correspond to the
dissociation from the translation machinery (k1Tc), the sequestration
rate ϕ(x+

0 ) due to the formation of new viral particles, and the cap-
ture from free ribosomes to produce new translational complexes,
respectively. The growth rate r+ incorporates the presence of x−0
templates, the fraction of the viral polyprotein, p, used as replicase
(βp), and the quality factor of replication, Q, with r+ = Γ−Qx−0 βp.
For the strands x−0 , the dynamics is now given by

dx−0
dt

= r−L(x)− εx−0 , (4)

where now r− = ζ(x−)Γ+Qx+
0 βp, (see below for the expression

of ζ(x−)). Similarly, we can build the equations for the mutant pop-
ulations as follows

dx+
1

dt
= r′+L(x)− ϕ(x+

1 )− εx+
1 , (5)

and
dx−1
dt

= r′−L(x)− εx−1 , (6)
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FIG. 3: Equilibrium concentrations for master (x±0 ) and mutant (x±1 )
strands against mutation rate, µ = 1 − Q, for linear (a) and geo-
metric (b) replication with ε = 0.01. The inset displays the initial
amplification phase of the genomic RNA strands (x+ = x+

0 +x+
1 , in

linear-log scale) undergoing geometric (solid line) and linear (dotted
line), using Q = 0.9 and ε = 10−4. As initial conditions we used
x+

0 (0) = 0.01 and x−0 (0) = x±1 (0) = p(0) = Tc(0) = 0. For
linear replication we used, in all the plots, Γ+ = 0.1, while for ge-
ometric replication we used Γ+ = 1. In all these analyses we used
β = 1 and σ = 0.

with their replication rates now given by r′+ = [Γ−(1 − Q)x−0 +
Λ−x−1 ]βp, and r′− = ζ(x−)[Γ+(1 − Q)x+

0 + Λ+x+
1 ]βp, consis-

tently with the reactions outlined in Figure 1.

(d) Formation of viral particles. The new virions are pro-
duced from both master and mutant genomic strands combined with
the structural proteins. From the previous steps, we can see that the
formation of mature virions, V , will follow

dV

dt
=
X

i=0,1

ϕ(x+
i )− σV. (7)

Where the left-hand side term represents the encapsidation of pos-
itive strands and the last term (σV ) is introduced to control the
amount of virions (e.g., degradation of viral particles and elimina-
tion of mature particles that may lick out the cell).

Note that the differences in the replication rates of both genomic
and antigenomic strands allow us to analyze linear (stamping ma-
chine) and geometric replication kinetics. To model geometric repli-
cation we set Γ+ = Γ−, i.e., all the synthesized strands are allowed
to replicate. For linear kinetics, however, we use Γ+ ¿ Γ−, that is,
the infectious genomic RNA entering into the host cell synthesizes
one or very few negative copies which are then used as the only tem-

plates for the synthesis of new ssRNA+ strands in a Luria’s stamping
machine strategy. Indeed, to further stress the assumption that at the
beggining of the infectious cycle only the antigenomic strands need
to be produced but as infectious progresses, this production has to be
shut off to favor production of genomic strands, we assume a neg-
ative feedback of antigenomic strands concentration on its own rate
of production. In mathematical terms, this contraint can be incorpo-
rated by setting ζ(x−) = 1/(1 + x−0 + x−1 ) in the production of
antigenomic strands from genomic ones. For geometric replication
ζ(x−) = 1.

For the sake of simplicity we hereafter will use (by default):
Γ− = 1, Λ± = Γ±/10 (i.e., assuming that mutants are largely
deleterious and have reduced replication rate in a factor of 1/10),
kp = 0.04, k1 = 0.02, εT = 10−5, εp = 0.0015, m = 2, Rtot = 1

and K = 1. The other parameters will be explored in this work.
Hereafter we will also assume that a strand extincts if x±0,1 < 10−18.
The initial conditions for the seven state variables are set to
x+

0 (0) = 0.1 and x−0 (0) = x±1 (0) = p(0) = Tc(0) = V (0) = 0 (if
not otherwise specified).

Stochastic digital genomes. During the first stages of the in-
fection and due to the stochastic nature of transmission events,
cells are usually invaded by one or few viral particles. Therefore,
a stochastic description of the replication process would better
capture the fluctuations due to small population sizes (see (13)
and references therein). We use an unstructured discrete model
of in silico genome evolution considering a bit string description
of the population structure (22, 23) which allows us to explicitly
simulate the complex and heterogeneous structure of populations
of replicators. Although a real RNA is composed by a four-letter
alphabet, we use Leuthäusser approach by considering that each bit
would represent purines or pyrimidines (24, 25). Our digital strands
will thus be represented as chains of bits. Each chain will have
ν = 32 bits and a maximum population size of N = 1000 chains
will be allowed.

We define a population of strings, Ω, representing digital
genomes. We indicate as S+

i and S−i positive and negative
strands, respectively. A given string will be defined as S±i =
(S±i1, S

±
i2, ..., S

±
iν), with S±ik ∈ {0, 1}. The genomic and antige-

nomic master sequences in our model (indicated as Sm) are chosen
to be S+

m = (11...1) and S−m = (00...0), respectively. We ini-
tially “inoculate” our system with N(0) genomic replicating strings,
S+

m. These strings can now replicate (generating complementary
strands) and mutate. For instance, each bit in S+

i can mutate, i.e.,
S+

ik

µb−→ 1 − S+
ik = S−ik, with a given mutation probability per bit

µb and replication cycle. They also degrade with probability ε. The
master sequences have the highest fitness: their replication proba-
bilities are Γ± whereas all other strings replicate with a probability
Λ± = 0.1). This defines a sharp, single-peak fitness landscape (21),
as used in the previous mathematical model. The simulation algo-
rithm repeats, at every generation τ , N = 103 times the replication
and degradation rules. This updating ensures that, on average, the
rules are applied to all the population of strings.

To differentiate between both types of replication we follow the
next strategy: when a positive strand replicates producing a negative
one, the latter will always keep replicating (unless degraded). On the
contrary, when a negative strand replicates, the synthesized positive
strand will become a replicator with probability ρ ∈ [0, 1]. Note
that with ρ = 1 all the progeny strands copied from the negative
templates will replicate in the following generations and replication
will be purely geometric. However, with ρ ¿ 1, the negative strands
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FIG. 4: Severity of mutations and accumulation of strands. Relative effect of mutations on the equilibrium concentration of the strands using
the ratio Λ+/Γ+ (with 0 ≤ Λ+/Γ+ ≤ 1) as control parameter, with ε = 0.01, β = 1, and: µ = 0.15 (a); µ = 0.25 (b); and µ = 0.35 (c).
In all the plots we represent (upper) linear replication using Γ+ = 0.1 (with 0 ≤ Λ+ ≤ 0.1) and (lower) geometric replication with Γ+ = 1
(with 0 ≤ Λ+ ≤ 1).

will be mainly used as templates while the positive ones will not
replicate. With this second strategy the kinetics will be closer to the
Luria’s stamping machine. Indeed, to potentiate the effect of linear
replication, the non-replicating positive strands are not degraded, and
the degradation probability for the replicating sequences is kept very
low. We also consider differential replication rates for each strategy
of replication, by using δΓ+ and δΛ+. For linear replication we
set δ = 0.1, where the positive-sense strands will synthesize few
negative ones. For geometric replication we use δ = 1, and all the
synthesized strands will be used as templates for further replication.

All numerical analysis of the ODEs model were done using a C
program implemented to solve the differential equations with the
standard fourth order Runge-Kutta method (26) using a constant time
step size of ∆t = 0.1. The stochastic bit string model was also im-
plemented in a C program whose code is available upon request.

RESULTS

Mathematical model

Quantitative differences in the accumulation of master
and mutant genomes of both polarities The effects of muta-
tion rate in each replicating strategy is first illustrated in Fig-
ure 2. We show the time evolution of all the viral strands
for each replication strategy using three different mutation
rates. The genomic strands (solid line) achieve higher equilib-
rium concentrations than the antigenomic ones (dashed line)
for the stamping machine kinetics. For geometric replication,
however, the genomic and antigenomic strands asymptotically
achieve identical equilibria. With µ = 0.1 (Figure 2a) the
master strands (black trajectories) achieve population equilib-
ria higher than the mutant strands. If mutation is increased
(µ = 0.3; Figure 2b), the concentration of the mutant strands
grows and master strands concentration decreases. For lin-
ear replication, the concentration of mutant genomic strands
achieves a higher value than the antigenomic master strands.

For geometric replication, both master strands achieve
higher populations than the mutant strands. If mutation
rate is increased (µ = 0.75) mutant strands dominate the
population and the master ones have low population values
(Figure 2c). We also computed the time evolution of the

V0

1V

V0 1V
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+

0V

1V
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β Γ +

Γ +β

(a)

β Γ +

(a)

Γ +
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β

FIG. 5: Two different phases are present for the model, here defined
on the (Γ+, β) parameter space. The upper row shows the equilib-
rium of master and mutant virions, Vi. The lower row shows the frac-
tion of virions containing non-mutated genomes. Parameters were
set to k20 = 0.75, k21 = 0.1, ε = 0.01 and σ = 10−4. Data are
shown for values of mutation rate (a) µ = 0.2 and (b) µ = 0.5.

positive to negative strands ratio considering the master and
the mutant strands of each polarity (see Figure 2d). For
linear replication such a ratio is larger than one, indicating
that there is much more production of positive-sense strands
from the antigenomic templates. For geometric replication,
this ratio evolves towards the unity value indicating that both
positive and negative strands are synthesized at the same rates.

The stamping machine has a higher critical muta-
tion rate. As expected, for linear replication the equilibrium
concentration for both master genomic and antigenomic
strands is asymmetric (Figure 3a and 3b). This actually
means that we have a higher production of positive strands
from the negative ones. On the contrary, the equilibrium
concentrations for the master and the mutant strands are the
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FIG. 6: Average equilibrium concentration of positive-sense strands
in the bit string model. The per-bit mutation rate, µb, was used as
tunable for linar (upper) and geometric (lower) modes with ε = 0.01
and N(0) = 50. In all the diagrams we show the normalized
population numbers (averaging over 50 independent replicas when
τ = 5000) for genomic master strands (thick line) and their mutant
spectrum (thin lines) containing the strands differing in one to twenty
mutations from the master one.

same for both genomic and antigenomic sets. The critical
mutation rate involving the entry into error catastrophe and
the extinction of the master sequences is shown to be higher
for linear replication (Figure 3a). For geometric replication,
however, such a critical value is lower indicating that the viral
strands are more sensitive to mutation (Figure 3b). The inset
in Figure 3b illustrates the initial growth kinetics for each
replication mode for the positive-sense strands (in linear-log
scale). For geometric replication the initial growth phase is
exponential. For the stamping machine strategy we obtain a
subexponential growth kinetics.

The stamping machine is more robust to the accu-
mulation of slightly deleterious mutations. Next, we
sought to explore the effect of the severity of mutational
effects on the accumulation of master and mutant strands
of both polarities. The severity of mutations was computed
as the ratio between the average replication rates of mutant
strands Λ+ and of the master strand Γ+. This ratio will be one
for neutral mutations (Λ+ = Γ+), and zero for lethal ones.
Figure 4 shows the equilibrium population densities for each
genomic class and their dependence on mutational severity.
At relatively low mutation rates (µ = 0.15) the positive
master sequence remains dominant regardless the replication
mode. As expected, strong effect mutations accumulate
less than mild effect mutations irrespective of the mode of

replication. However, geometric replication is more sensitive
to the accumulation of mild mutations than stamping machine
replication (Figure 4a), as indicated by the steeper slope
for the positive master strands. A similar situation occurs
at intermediate mutation rates (µ = 0.25; Figure 4b): both
replication modes accumulate more mild than strong effect
mutations, with the geometric accumulating more mild muta-
tions. At higher mutation rates (µ = 0.35; Figure 4c) results
remain similar for the stamping machine replication, that
is, positive master genomes are still numerically dominant
for all the range of mutation severities; however, geometric
replication collapses at intermediate severities (Λ+ = 0.5)
and all genotypes get extinguished due to the excessive
accumulation of small effect mutations.

Another difference between linear and geometric growth
is that the second-most abundant genotype for lineal repli-
cation is the negative-sense master strand at low mutation
rates irrespective of the severity of mutational effects, whereas
negative-sense mutants are the second most abundant class
for the geometric growth. At intermediate mutation rates,
the positive-sense mutants become the second most abundant
class when replication occurs via a stamping machine, and
their frequency raises up as mutation rate increases. These re-
sults are in agreement to those presented in the previous sec-
tion and support the notion that a stamping machine model of
virus replication is not only compatible with higher mutation
rates but also it is more robust to the severity of mutations.

Mature virion production. Our model also allows explor-
ing other important features. For instance, we can analyze the
production of viral particles using Γ+ as control parameter
thus analyzing different degrees of linear replication in mature
virions production. We represent the mature viral particles, V ,
in the parameter space (β, Γ+) for several mutation rates (Fig-
ure 5). We specifically differentiate between master, V0, and
mutant, V1, virions, separating equation (7) in two new equa-
tions that account, respectively, for the formation of virions
encapsidating either master or mutant genomic strands:

dVi

dt
= ϕ(x+

i )− σVi, i = 0, 1,

where the term ϕ(x+
i ) = k2i[(1 − β)p]mx+

i , being k2i the
encapsidation rate for the virions containing master (i = 0)
and mutant (i = 1) strands. This distinction allows us to con-
sider that the encapsidation rate is affected by mutation, set-
ting k20 = 0.75 > k21 = 0.1. For this case equations (2),
(3) and (5) are also modified to distinguish whether master
or mutant genomes encapsidate at different rates. We show
that when mutation rate is not very high (µ = 0.2; upper row
of Figure 5a), the maximum production of virions is mainly
found for low values of Γ+ and then the stamping machine
replication is better than the geometric replication. Neverthe-
less, geometric replication is also producing virions at values
of β ≈ 0.3. This is not the case if mutation rate is increased,
where the equilibrium concentration of virions is drastically
reduced and confined to low values of Γ+ (linear replication)
and high values of β (upper row in Figure 5b).

We notice that increases in mutation rate are associated to
decreases in the stationary concentration of the mature viri-
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FIG. 7: (Left) Frequency distributions at equilibrium of the number of mutations per positive-sense strings, f(S+
i ), and (right) statistical

properties of the mutational load for several per-bit mutation rates. Four different frequency distributions are plotted as examples: (a) µb =
0.025, (b) µb = 0.0625, (c) µb = 0.07 and (d) µb = 0.1. In these histograms, both stamping machine and geometric replication strategies
are represented in black and red, respectively. Each data point is the average (± standard deviation) taken over 102 independent replicas. In
(e) and (f) we show, respectively, the mean and the standard deviation of the number of mutations per genome obtained from the frequency
distributions of mutant classes. In both plots linear and geometric replication modes are represented with black and open circles, respectively.
Other relevant paramteres: ε = 0.01 and N(0) = 50.

ons. Moreover, the surface shown in the parameter space of
Figure 5 considering V and thus same encapsidation rates for
both master and mutant virions (i.e., without distinguishing
between master and mutant virions and using equation (7))
has the same shape (results not shown). The lower row in
Figure 5 shows the ratio of virions containing non mutated
genomes, V0/(V0 + V1), also in the parameter space (β, Γ+)
for µ = 0.2 and µ = 0.5. It is shown that at increasing
mutation rate this ratio decreases due to the higher production
of mutant virions. Moreover, the region where no virions
are produced is enlarged as mutation rate is increased and
replication is closer to the geometric mode of replication.

Digital genomes
Geometric and linear replication show different transi-
tions towards the error threshold. To analyze the effect
of mutations in a Swetina-Schuster fitness landscape for both
replication modes, we compute the equilibrium concentration
for the master positive sequences and its mutant spectrum us-
ing the per-bit mutation probability, µb, with a degradation

rate of ε = 0.01. The critical mutation probability, µc
b, is de-

fined as the lowest mutation value involving the extinction of
the master genomic strands, which is assumed to occur when
[S+

i ] < 10−4. We analyze two different initial conditions, a
starting population with N(0) = 50 and N(0) = 1 positive-
sense replicating master strands. The results are shown in Fig-
ure 6 for the analyses obtained using N(0) = 50. For both ini-
tial conditions linear replication displays a higher critical mu-
tation, given by µc

b ≈ 0.157 and µc
b ≈ 0.136 for N(0) = 50

and N(0) = 1, respectively. For geometric replication this
critical values are µc

b ≈ 0.071 (for an initial population of
N(0) = 50) and µc

b ≈ 0.069 (N(0) = 1). We note that the di-
agram for geometric replication using a single strand as initial
condition did not differ from the one obtained with N(0) = 50
(results not shown), and the critical mutation rate was almost
the same. Indeed, even using a single initial genomic strand
as a starting population, linear replication is more robust to
mutation as compared with the geometric mode.

These results confirm that Luria’s stamping machine is less
sensitive to mutations. Moreover, the composition of the mu-
tant spectrum is shown to be different according to the repli-
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Linear Geometric
µb Mean Median SD Mean Median SD M-W P K-S P

0.0125 0.462 0 0.47 0.473 0 0.71 -0.14 0.886 0.11 1
0.0250 0.975 1 1.02 1.020 1 1.09 -0.57 0.567 0.3 1
0.0375 1.532 1 1.31 1.321 1 1.48 -5.77 7.8 ×10−9 3.16 0
0.0500 2.193 2 1.62 2.941 2 2.35 -6.31 2.7 ×10−10 2.93 0
0.0550 2.465 2 1.72 3.855 3 2.97 -32.57 0 14.84 0
0.0610 2.789 3 1.86 6.368 5 4.45 -62.49 0 29.19 0
0.0615 2.846 3 1.88 6.571 6 4.55 -63.16 0 29.83 0
0.0620 2.869 3 1.89 7.147 6 4.80 -68.42 0 32.87 0
0.0625 2.907 3 1.90 8.315 8 5.22 -24.74 0 12.09 7.3 ×10−8

0.0630 2.932 3 1.91 8.724 8 5.31 -80.81 0 39.86 0
0.0635 2.992 3 1.93 9.472 9 5.34 -87.09 0 43.18 0
0.0640 3.022 3 1.94 10.02 10 5.46 -90.18 0 43.18 0
0.0700 3.384 3 2.06 15.76 16 3.02 -122.1 0 45.26 0
0.0750 3.755 4 2.17 16.01 16 2.83 -38.74 0 21.86 0
0.0875 4.482 4 2.35 16.03 16 2.81 -38.67 0 21.57 0
0.1000 5.345 5 2.50 16.04 16 2.86 -38.48 0 21.14 0
0.1125 6.147 6 2.59 16.00 16 2.83 -38.24 0 20.6 0
0.1250 6.931 7 2.67 16.02 16 2.82 -37.82 0 20.07 0
0.1375 7.589 7 2.72 16.02 16 2.82 -37.35 0 19.41 0
0.1500 8.243 8 2.72 15.99 16 2.82 -36.71 0 18.54 0
0.1625 8.829 9 2.77 16.03 16 2.84 -35.84 0 17.86 0
0.1750 9.412 9 2.80 15.98 16 2.83 -34.70 0 16.94 0

TABLE II: Statistics describing the mutational load of viral quasispecies generated by linear and geometric modes of replication for increasing
values of µb. SD: Standard deviation; M-W: Mann-Whitney statistic; K-S: Kolmogorov-Smirnov statistic.

cation strategy. It is well known that for geometric growth
the mutant spectrum suffers a sharp phase transition at the
error threshold, and each mutant genome reaches a steady-
state concentration that only depends on its mutational cou-
pling (9). However, we show that this is not the case for the
stamping machine replication, since a sharp phase transition
is never observed and different genomes rise and decrease in
frequency depending on mutation rate (Figure 6, upper).

Statistical analysis of the distribution of the number of
mutations per genome. Next we sought to explore the effect
of the two extreme models of RNA virus replication on the
mutational load of newly generated viral populations. Figure
7 shows the distribution of mutations accumulated in genomic
strands for a set of representative µb values as a function of
the mode of replication. Table II shows the detailed statis-
tical analyses for µb varying from 0.0125 to 0.175. At very
low mutation rates (µb = 0.025) both replication mechanisms
produced distributions of mutants that were undistinguishable
(Figure 7a) both in the average number of mutations and in
shape (Table II). However, for µb > 0.025 the mutant distribu-
tions generated quickly diverged both in their average values
and shapes (Table II), with the geometric replication generat-
ing a much larger mutational load, with distributions centered
on higher values (Table II). As illustrated in Figure 7e, the av-
erage number of mutations per genome accumulated under the
stamping machine mechanisms steadily increased until reach-
ing a maximum value of 9.412± 2.803.

Similarly, the standard deviation of the number of muta-
tions per genome also increased in a similar way (Figure 7f).
By contrast, the average number of mutations per genome pro-
duced by the geometric replication increased much faster and
reached a plateau of 16 mutations per genome for µb ≥ 0.075
(Table II and Figure 7e). We also computed the maximum
number of mutations per genome at equilibrium from 50 in-
dependent replicas at increasing mutation rates (results not
shown). For low values of mutation rate (0 ≤ µb ≤ 0.028)
both replication modes showed a similar low maximum num-
ber of mutations. For higher mutation rates, the geomet-
ric model rapidly increased in the maximum number of mu-
tations, with some strands carrying up to 23 mutations for
µb = 0.056. Linear replication generated, for the same muta-
tion rate, a maximum load of 13 mutations per genome. Ac-
tually, in the range 0.068 ≤ µb ≤ 0.18, the maximum number
of mutations for geometric replication was between 27 and
29, while for linear replication such a number fluctuated be-
tween 15 and 24 mutations. The variance in mutational load
for geometric replication also increased faster than in the case
of linear replication mechanism. However, this fast increase
was only transient and until the point in which the average
mutational load reached its maximum value. Afterwards, the
variance in the number of mutations sharply decreased and
asymptotically approached the variance value observed for the
stamping machine model (see Figure 7f).

As described in the Introduction, under a purely stamping
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machine mechanism, the number of mutations per genome
should conform to a Poisson distribution, whereas for a geo-
metric mechanism the distribution departs from the Poisson
model and fits the more complex Luria-Delbrück distribution.
To confirm this expectation, we run Kolmogorov-Smirnov
tests for the null hypothesis of the Poisson distribution
(data shown in Table III). As expected, under the stamping
machine model, the distributions of mutations per genome
were Poisson for all values of µb whereas they departed from
this null model for values of µb ≥ 0.0375.

DISCUSSION

It is known that the mode of virus replication can change the
rates at which deleterious mutations accumulate. Depend-
ing on whether genomes replicate linearly or geometrically
one may observe different fractions of mutation-free genomes.
Linear replication, also known as Luria’s stamping machine
(3), implies that the copies produced during the first round of
replication will be the only templates for the generation of the
entire quasispecies. Experimental data suggest that φX174
replicates linearly (6). However, if replication is geometric,
as experimentally found for the phage T2 (3), all the synthe-
sized copies during infection will serve as templates in the
following generations. Intermediate situations have also been
described for other viruses (1). As far as we know, previous
attempts to model viral replication have only investigated the
geometric case. Moreover, the majority of theoretical work on
quasispecies did not consider the genomic-antigenomic dual-
ity of the sequences.

In this work we analyze a structured model describing
the single-cell reproductive cycle of positive-sense RNA
viruses that make no subgenomic mRNAs and encode a sin-
gle polyprotein that is selfprocessed into structural and non-
structural components. We develop a mathematical model
using as key variables the genomic and antigenomic RNA
strands, the viral polyprotein precursor, the translational com-
plexes formed by viral RNA and cellular ribosomes, and the
mature virions. Genetic heterogeneity is introduced with a
simplified quasispecies structure of the strands considering
master sequences (which have the higher fitness) and the pool
of deleterious mutants for each strands polarity, which are
grouped into a single variable denoting an average mutant se-
quence different from the master one. We analyze a single-
peak fitness landscape (21) which assumes that mutations
have a large deleterious effect. We explore the error threshold
and the sensitivity to mutations for a viral populations repli-
cating linearly or geometrically.

We have shown that the error catastrophe takes place at a
higher mutation rate for the stamping machine mechanism,
indicating that this strategy is less sensitive to the effect of
deleterious mutations. On the contrary, geometric replication
displays a lower critical mutation rate, being more sensitive to
mutation. Consistently, we have also shown that mild muta-
tional effects tend to accumulate more in the geometric case,
and that under such a growth kinetics the population collapses
at intermediate mutation rates. However, the stamping ma-

Linear Geometric
µb K-S P K-S P

0.0125 0.09 1 0.20 1
0.0250 0.37 0.999 0.75 0.625
0.0375 0.58 0.895 3.54 0
0.0500 0.89 0.404 3.15 0
0.0550 0.93 0.352 4.35 0
0.0610 1.07 0.206 6.31 0
0.0615 1.08 0.190 6.39 0
0.0620 1.19 0.115 6.45 0
0.0625 1.15 0.140 6.69 0
0.0630 1.11 0.170 6.66 0
0.0635 1.08 0.195 6.15 0
0.0640 1.18 0.123 6.09 0
0.0700 1.12 0.165 2.52 0
0.0750 1.06 0.210 2.72 7.4 ×10−7

0.0875 1.08 0.197 2.74 5.87 ×10−7

0.1000 0.75 0.632 2.67 1.26 ×10−6

0.1125 0.44 0.990 2.72 7.12 ×10−7

0.1250 0.23 1 2.81 2.65 ×10−7

0.1375 0.36 1 2.78 3.89 ×10−7

0.1500 0.63 0.826 2.72 7.5 ×10−7

0.1625 0.77 0.588 2.68 1.16 ×10−6

0.1750 0.90 0.389 2.75 5.15 ×10−7

TABLE III: Fit of the average number of mutations accumulated
by viral populations replicating linearly or geometrically, at in-
creasing µb, to the null hypothesis of a Poisson distribution. K-S:
Kolmogorov-Smirnov statistic.

chine strategy is less sensitive to the accumulation of mild mu-
tations and viral strands continue existing for mutation rates
that produce a collapse of viral populations replicating ge-
ometrically. Additionally, the production of mature virions
also has a strong dependence on the mode of replication. For
low mutation rates, the maximum amount of virions is pro-
duced with linear replication, although for certain values of
the fraction of replicase produced (β ≈ 0.3) geometric repli-
cation also induces the production of virions at low mutation
rates. Nevertheless, if mutation rate is increased, a combina-
tion of linear replication and high amount of replicase ensures
the (lower) production of virions. This is not the case for ge-
ometric replication, where no mature virions are produced at
all.

To complement the analysis of the mathematical model we
also used a model of digital genomes which considers the in-
trinsic noise due to small population sizes, also explicitly con-
sidering the heterogeneous structure of the quasispecies and
the duality of the strands. This model consistently shows that
the critical per-bit mutation rate is higher for the linear case
and the mutational load lower.

Whether RNA viruses may have evolved some mechanisms
to buffer the deleterious effects of mutations has attracted
the attention of researchers (27). Robustness is defined as a
reduced sensitivity to perturbations affecting phenotypic ex-
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pression. RNA virus populations, may owe their robustness
to several of the following mechanisms ((27) and references
therein). First, individual hypersensitivity to mutational ef-
fects translates into robustness at the population level as a con-
sequence of a more efficient purifying selection that maintains
average fitness high. Second, high mutation rates characteris-
tic of RNA viruses may impose a strong selective pressure
that pushes virus populations towards regions of the sequence
space where the density of neutral mutations is higher. Third,
the variable and random ploidy of viruses and the frequent
coinfection events enhance the possibility of genetic comple-
mentation. Fourth, segregation of segments during mixed in-
fections and homologous recombination are forms of sex that
may recreate mutation-free genomes. Fifth, cellular buffering
mechanisms (e.g., heat-shock proteins) can be utilized by the
viruses in their own benefit as an extrinsic source of robust-

ness. The results reported in this study suggest that, in addi-
tion to these five potential mechanisms, by choosing a stamp-
ing machine mode of replication, RNA viruses will also accu-
mulate less deleterious mutations, will have a higher critical
mutation rate and will suffer in a lesser extent from the effect
of deleterious mutations, that is, increase their robustness.
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