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1. Introduction.

The formation of expectations and probability beliefs has played a

central role in the formulation of sequential and other dynamic equilibria.

The specification of II rational ll expectations in either economics or game

theory requires agents to possess extraordinary information and knowledge

about the underlying structure of the economy or the game. It is usually

hard to conceive how agents corne to possess such information and knowledge.

The recent response to this problem has been to formulate dynamic processes

of learning which aim to show how agents learn what they know when

formulating their beliefs. The problem is that this research has not solved

the initial problem. Without engaging in a full scale survey of the results

of the recent effort, we think it is accurate to say that there are examples

worked out where complete learnlng does take place. However, in general,

the learning approach has not been able to provide a satisfactory

justification for agents to be fully knowledgeable rationally expecting
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agents. This conclusion has a counterpart in the statistical

literaturewhere a spirited debate has been taking place on the problem of

"Bayes consistency" (see Diaconis and Freedman [1986] for an excellent

recent survey). This is the problem of ensuring the convergence of

posterior distributions to the mass-point distribution at the true

parameter. We note that UBayes consistency" may fail even when the

statistician is able to conduct independent, repeated controlled

experiments. A learning economic agent cannot obtain independent

observations and must be content with the acual data generated by the

system.

It is interesting to note that both Bayesian as well as rational

expectations theories of belief formation have fundamental difficulties in

explaining why is it that intelligent economic agents exhibit drastic

differences in beliefs without necessarily having substantial differences in

the information available to them. Bayesians insist on the common prior

assumption (see Aumann [1987] page 12) which requires all agents to have the

same prior given that they have the same information. We take the existence

of diversity of beliefs among intelligent and equally informed agent to be

an empirical observation which requires an explanation.

The prototype problem with which this paper is concerned may be simply

explained with the aid of an example. Let Yt' t = 0,1,2, ... be a sequence

of random profits or rewards of a household, a corporation or an investment

project. Let 0 < 1 < 1 be the discount rate employed and let the present

value, at date t, of future rewards be defined by

'"
(1)
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An economic agent who observes the data needs to evaluate, at date t, the

risky prospect via its distribution or moments like Ep~, Var P~

etc. The problem is that the agent does not know the true probability

distribution of the random sequence {yt , t = 0,1,2, ... ). He does have a

massive amount of past data since t = 0 occurred a long time ago and all

past data was recorded. Given this data the agent sets up to learn all that

he can and then form a conditional probability belief Qt about the future

sequence of random variables Yt+k' k - 0,1,2, .... from date t on. With

this probability selected, the agent can compute the implied distribution of

•Pt and its moments. We aim to establish criteria to determine if a

probability belief of an agent is "rational. 1I Moreover, given such criteria

of rationality, can we explain why two rational agents endowed with the same

information may come up with drastically different beliefs?

The problem of evaluating future risky events is made particularly

difficult since no market for contingent claims exist. This is a

consequence of many well known reasons: the "state" is not observable, many

imputs such as labor cannot be legally traded on futures markets, futures

contracts cannot be enforced, many crucial components of the "state" suffer

from problems of moral hazard and other incentive effects, etc. With

incomplete market structure arbitrage considerations are of limited

significance. We are explicitly rejecting the Rational Expectations theory

and the reasons will become evident from the development below.

Returning now to our discussion on learning procedures it is important

to note that one central achievement of this literature is that it

established the basic requirement that a theory of the formation of beliefs

must be based on the knowledge which agents actually have rather than on a
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hypothetical knowledge which the model builder may want them to have. This

calls, however, for the precise identification of what is knowable by the

agents and what is not knowable. Since the characterization of the

unknowable is known to all agents, such recognition must have important

implications.

This paper explores the process of the formation of beliefs by starting

from the suggested view that such beliefs must be compatible with what is

learnable from the data. We formulate the economic environment as a

stochastic dynamical system in which all agents know the structure of the

system but they do not know the probability which governs the stochastic

process. This true probability is the central object of learning. Agents

can observe all past data generated by the system and we postulate that the

amount of such past data is very large. It will become immediately clear

that there are such erratic economies in which nothing can be learned and

others, in which everything is learnable. We shall confine our attention to

those economies that exhibit stability properties which enable some

learning. Stability is defined in terms of the convergence of the long term

relative frequencies at which events occur. The assumption of stability,

but not necessarily stationarity, will enable us to argue that all the

agents will be able to learn a stationary (i.e. invariant) probability of

the dynamical system. We shall insist that this is all that the agents can

ever learn and therefore this should be taken as the primitive empirical

knowledge.

In addition to the empirical knowledge which all agents share, our

agents face imperfect knowledge about the structure of the economy and the

nature of the random mechanism which generates the data. This imperfection
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leads to the formation of conjectures, hypotheses, theories and other forms

in which intelligent opinions may be expressed. We hold the view that

randomness in the economy is a real phenomenon determined by the structure

of the economy, its organization and the technology at its foundation. A

better scientific understanding of this structure will lead to an improved

knowledge of the causes of random fluctuations. Obviously, all theories

must be tested with the aid of the data generated by the system. The

problem is that often the data provides only a partial resolution of the

differences among competing theories. This leaves a wide scientific gap

which can be resolved only by further scientific developments. It is these

scientific gaps which give rise, at any moment in history, to wide diversity

of opinions. In this paper we study the formation of beliefs given a state

of human knowledge.

We take the data generated as the basis for a definition of

"rationality of belief". We postulate two axioms which all rational beliefs

must satisfy. The main theorem of the paper provides a characterization of

all beliefs which satisfy the axioms. The characterization shows that a

rational probability belief must be a convex combination of two

probabilities: one is equivalent to the stationary, invariant, measure and

the other is orthogonal to it. This characterization helps clarify the

observation that the diversity of beliefs among intelligent agents with the

same information is the consequence of their common understanding that gaps

exist in their knowledge which cannot be resolved with the available data.

The paper provides a series of propositions and examples which aim to

clarify the basic ideas.
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2. The Model and Basic Formulation.

An abstract representation of our economic environments specifies the

economy as a dynamical system (O,F,IT,T). Here 0 is a subset of a complete

and separable metric space, F is the u-field of the Borel subsets of 0, IT

is a probability measure on the measurable space (O,F) and T: 0 4 0 is

a measurable transformation. In more concrete terms we postulate that an

economic agent observes a vector x t = (XltJX2tJ" "J~t) € X of random

variables with X being the state space. Normally the xit will be such

quantities as the profits of firms, outputs of firms or industries, prices

of assets and commodities, climate conditions etc. Hence, for all practical

purposes we may as well assume Xc Rk • We denote by x a generic infinite

sequence in (Rk)oo. We shall assume that economic agents know the

postulated structure but do not know the distribution of x in (Rk)oo. We

can attain a simplification of notation if we use the fact that all

countably generated probability spaces are isomorphic (see Parthasarathy

[1967] Chapter I). This allows us to define (O,F,IT) as the coordinate

probability space:

o XOO C (Rk)oo

F B(Xoo) - the u-field of Borel sets of XOO

and IT is a probability on measurable sets of infinite sequences in XOO
•

Although we shall think of x as a random point in XOO it will be

important for us to associate random points x with the time at which they

are selected. We use the notation x t
= (xt,Xt + 1 , ... ) to identify a random

sequence at time t. This brings up one possible confusion: sometimes we

would want to talk about x t
- (x t ,Xt + 1 ",,) as the sequence of random
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variables observable from time t. Similarly we may want to talk about x

as an infinite sequence of random variables in Xoo
• The context will

usually allow this distinction but for this reason we shall preserve the

notation of both x and w keeping in mind the identification n ~ Xoo
•

Whenever we use the notation w we shall be stressing the fact that we are

looking at a particular sample point W E XOO
•

The realization of the stochastic process is given by a dynamical

structure which is represented by the transformation T. If the realization

at time t is x t € XOO and at time t+l it is yt+l € XOO then

(1) Txt.

It is very cornmon to think of the random sequence x = (xo ,x
1

,x
2

, ... ) € XOO

as being selected simultaneously. In such a case x t
= (Xt,Xt+l,Xt+2J"')

is the sequence of realizations at dates t. This gives rise to a

definition of the shift transformation:

Definition 1: A measurable transformation T is said to be a shift

transformation if for all x t
= (xt,Xt + 1 , ... ) € XOO

(2) Txt

Although we do not need to assume that T is a shift transformation such an

assumption can be made with a minimal loss of generality. In almost any

example or an application we shall think of T as such a transformation.

One defines T2 x - T(Tx) and, in general, Tnx - T(Tn-1x). From the

measurability of T it follows that the iterated maps Tn are also

measurable transformations. We shall assume that the process starts at a

date called t ~ 0 with XO ~ x. We therefore define
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(3) t 0,1,2, ...

The reader may note that we permit t to take values in the set of non

negative integers {O,l,2, ... }. We specifically do not permit negative

integers. The force of this assumption is that the transformation T is

not assumed to be invertible. The economic meaning of this assumption is

that any particular future evolution, x t
, of the economy is not associated

with a unique past T- 1 (xt ); a future x t may arise from many possible

pasts! We shall return to this question later.

The above discussion leads to a very important notational convention

employed in the paper. Since T is not assumed to be invertible we reserve

the notation T-nS to be the preimage of S uqder Tn. That is

For this reason we think of a set B ~ (x € XOO
, Tnx € S) as the set

S C XOO located n periods into the future. Since Tnx € S for all

x € B, it follows that B is the set of points in XOO from which one

reaches S in n steps.

Our objective is to study what an observer can conceivably learn from

the data generated by the process. As stated earlier the observer knows the

basic structure (O,F,n,T) except for the probability n. He can learn

something about n only to the extent that the dynamical system exhibits

empirical repetition and, in addition, sufficient data is available to

discover any repetitive regularity. Since the objective of the observer is

to discover, for each measurable set S € F, the probability

a natural way to proceed. He can define

8
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[1 if x e S
Is (x)

0 if x 'f- S

and then compute

n-l
(4) mn(S)(x) .!. I Is (Tkx) .

n k~O

mn(S)(x) is the relative frequency at which the dynamical system visits the

set S given that it started at x. Our observing agent can conceivably

learn something about the true IT only if mn(S)(x) converges so that with

sufficient data lim mn(S)(x)
n->'"

accuracy. This motivates

m(S)(x) can be computed to any desired

Definition 2: A dynamical system (O,F,IT,T) is said to be stable if

for all S € F the limit of mn(S)(x) exists for IT almost all x and we

then write

(5) lim mn(S)(x) m(S)(x) IT a.e.

Note that since 0 ~ mn(S)(x) ~ 1 the lack of convergence of mn(S)(x)

means that for increasing lengths of time the means mn(S)(x) remain in

different parts of the interval [0,1] without ever settling down. It is

hard to visualize what one can learn about IT(S) from observing such a

sequence. We thus propose that in order to be able to talk about "1earningll

the probability of an event S it must be true that the limit of the

empirical frequency of that event exists and agents have enough data to

calculate it approximately. In the development below we shall assume that

the limits in (5) are known to all agents and this creates somewhat of a
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dilemma; on the one hand we insist on starting the observations at some date

t ~ O. On the other hand we assume that the agent has as much information

as he needs to calculate m(S)(x) for all S f F. Since the assumption

that the limits m(S)(x) are known to all the agents is central to our

theory, it requires some discussion.

It is important to keep in mind, at the outset, that we are concerned

here with on-going economic activity for which substantial history is

available. In terms of our model this means that the starting date t ~ 0

for that activity is far in the past. With a substantial amount of past

data available, it is possible to obtain an approximation of the limits

m(S)(x) to a high degree of accuracy. The idea of approximating m(S)(x)

by large, finite, set of data is strongly supplemented by our second

observation that in all economic applications agents discount the future and

are, therefore, concerned only with events which will occur within a finite

horizon. For example, consider the present value of a stream of future

profits introduced in (1) above

p~(y) k+l
'Y Yt+k'

In practical applications it is difficult to think of problems where profits

20 years after date t will make a significant difference to p~(y)

Keeping this in mind, let the a-field of J horizon events at date t be

defined by

a(xt ,xt + 1 ' ... ,xt + J )

and let
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Then, for any problem there exists a finite J such that economic agents

would be concerned mostly with the probability of J horizon events. In

any practical situation, the error in economic values of using sets in

instead of F t , is negligible.

Consider now any J horizon set S in FO,J = a(xo 'Xl'" o,xJ ). If n

is large relative to J and if mk(S)(x) converges sufficiently rapidly

then mn(S)(x) will provide a good approximation to its limit m(S)(x) .

Under these circumatances our assumption that m(S)(x) is known amounts to

the assumption that the history of the process is sufficiently long to

enable the agents to learn the normal dynamical patterns of the process over

time intervals of length J which are relevant to their welfare.

Our third point is that m(S)(x) may be deduced from the underlying

economic model which generates the data. In general, economic theory

provides a better explanation of long-term tendencies than of short-term

fluctuations. For example, considerations of equilibrium and free entry

combined with long-term resource and technological patterns, may often

provide a reasonable basis for a judgment of what average long-term patterns

of output, profits, etc. should be. In our analysis m(S)(x) describe

these long-term patterns and therefore may be deduced from general economic

theoretic considerations.

Our fourth point is a methodological one. As we pointed out above, one

should think of the limits m(S)(x) as the average or normal patterns of

the dynamical system. Our aim is to study the formation of beliefs based on

what is conceivably knowable by the agents. In practice, one develops

algorithms to approximate m(S)(x) with large finite data but this does not
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alter the basic fact that it is m(S)(x) which all agents can conceivably

learn. The idea of endowing the agents with what they can conceivably learn

is a methodological simplification which we are making in order to avoid the

complication of approximations.

When one considers economic variables, there are general technological

and physical limitations imposed on the values which they may take: the

output of wheat cannot exceed what the entire world may produce and the

output of steel cannot exceed twice the rated capacity. We do not propose

to assume that for any x E XOO we have that x
t

is known by all agents to

be uniformly bounded. Instead we shall assume that rr is tight and all

agents know that it is tight. Given a probability space (O,F) where 0

is a complete and separable metric space a probability measure rr is said

to be tight if for each E > 0 there exists a compact set K
E

C 0 such

that

Thus, on general scientific principles agents know that rr is tight but

they may have their own opinions of what KE is for each E •

Summary of Assumptions.

The economy is described by a dynamical system (O,F,rr,T) defined on

t 0,1,2, ....

Assumption 1: 0 XOO where X c Xk and

F B(Xoo ) ~ the a-field of Borel subsets of Xoo .

Assumption 2: The dynamical system (O,F,rr,T) is stable and agents

know m(S)(x) for all S E F and for all x E o.
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Assumption 3: The dynamic process takes place on the set {O,l,Z, ... }

of non·negative integers. T is not necessarily invertible.

Assumption 4: Agents know the description (O,F,IT,T) but they do not

know IT. The probability IT is tight and all agents know this. However,

the tightness conditions are agent specific (i.e. for each € > a ,K€ is

agent specific).

3. Stability and Asymptotically Mean Stationarity.

3.1 Stationary Systems.

An important case where a dynamical system has adequate repetition is

the case of a stationary system. The dynamical system (O,F,IT,T) is said

to be stationary if the transformation T is measure preserving; that is,

if for all S € F

IT(S).

When T preserves IT then·rr is said to be invariant under T.

Almost all results in Ergodic Theory have been proved for the case of

measure preserving transformations. When a dynamical system is stationary

and agents know that it is stationary the questions raised in this paper

have very clear answers. The main tool employed is Birkhoff's Ergodic

Theorem (also known as the "Pointwise ll Ergodic Theorem or liThe" Ergodic

Theorem). Since we use various aspects of this theorem it will be useful to

state it and see later some of its implications. We note first that in

calculating the relative frequency function mn(S)(x) in Equation (4) the

agents use the characteristic function ls(x). Since the ergodic theorem
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holds with respect to a broader class of functions we define, for any

measurable function, the average

1 n-l
- L f(l"'x) ,
n k~O

Now we introduce the following terms:

Definition 3: A measurable set S is said to be invariant with

respect to T if T-1S = S. A measurable function is said to be invariant

with respect to T if for any x € 0, f(Tx) ~ f(x).

Definition 4: A dynamical system is said to be ergodic if IT(S) 0

or IT(S) ~ 1 for all invariant sets S.

Now let the collection I of invariant sets be defined by

I {S € F S} .

It is easily seen that I is a sub a-field of F and hence one can define

the conditional probability of IT given I; we denote it by

IT(SII)(w) for all S € F, w € 0.

The Ergodic Theorem (Birknoff (1931): Let (O,F,IT,T) be a stationary

dynamical system and let the measurable function f € L' (O,F,IT). Then

( i) I ' 11m 
n

n->ro

n-l
L

k-O
f(x) exists a.e. ,

(ii) f € L' (O,F,IT) is an invariant function,
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(iii) f(x) Err(fII) (x) a.e.,

(iv) if the dynamical system is ergodic then

f(x) a.e.

Applying the ergodic theorem to our problem when (O,F,rr,T) is

stationary, we can draw three direct implications:

(a) lim mU (S) (x)
n->a>

m(S)(x) exists for all S € F a.e. ,

(b) m(S) (x) rr(SII)(x) for all S € F a.e. ,

(c) if (O,F,rr,T) is ergodic then

m(S)(x) ~ m(S) ~ rr(S) for all S € F a.e.

It is then clear that if the dynamical system is stationary and the

agents know that it is stationary then they can calculate m(o)(x) and know

that they have learned exactly the conditional probability rr(o!I)(x). In

the ergodic case the agents calculate the measure m and know that m n.

The conclusion that m(S)(x) - rr(S!I)(x), S € F, in the non-ergodic case is

sensible since in this case the sequence (TUx) will visit only the

invariant sets which contain x and hence rr(o!I)(x) is the only object

which can be learned.

It is useful to point out that when the dynamical system is stationary

agents may not know that it is stationary. Moreover, there does not exist

any statistical means by which agents can ascertain that a stationary system

is, in fact, stationary. More important is the fact that the dynamical

system may not be stationary. In this eventuality, even if we work with a

stable system for which m(o)(x) exists, agents cannot use the ergodic
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theorem--as stated--to be able to determine what is it that they are

learning.

In our view the determination if a dynamical system is stationary or

not must originate with the foundation of the model which gives rise to the

system. Two examples will illustrate the point. In certain applications in

physics the description of stochastic dynamical systems arise from

Hamiltonian structures. These Hamiltonians imply that the transformation of

the dynamical systems are measure preserving and thus stochastically

stationary. However, this stationarity of the transformation can be traced

to the fact that Hamiltonians are required to satisfy Liouville's theorem on

the conservation of energy. Putting it differently, the stationarity of the

dynamical system is proved as a logical consequence of Liouville's Theorem

which, in turn, is proved from the underlying physical structure. Thus,

stationarity is a logical implication of the underlying theory rather than

an empirical observation which is deduced from the data.

In statistical applications, consider the sequence of observations x t

for t ~ 0,1,2, ... where x
t

~ 1 or x
t
~ 0 depending upon the result of

an experiment, like the toss of a coin, in which two outcomes are possible

with probability p and q ~ 1 - p. If the experiments are conducted

independently, then it is a logical implication that the stochastic process

(x t ' t ~ 0,1,2, ... J is stationary and, considering the implied measure on

sets of infinite sequences x € ~oo, the shift transformation preserves the

measure. Here again, the claim that a system is stationary originates from

the logical structure of the stochastic mechanism which generates the data.

It is, perhaps, the fundamaental starting point of this paper that in

economic systems we rarely have more than a superficial knowledge of the
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stochastic factors which generate the data. Equilibrium considerations

often help us understand the "typical" or "normal" fluctuations of a random

economic system but very little in economic theory is designed to enable us

to make a logical deduction of what must be the nature of the probability

laws under which the economic data is generated. More specifically, we

suggest that although the assumption of stationarity is almost universally

employed in applied economics, there is little theoretical justification for

it. If anything, there are compelling theoretical reasons to expect

economic systems to be non-stationary_

3.2 Why Non-Stationarity.

A discussion of the evidence for non-stationarity in dynamic economic

processes takes us into a very broad arena. Our aim here is not to provide

a comprehensive survey of the evidence but rather, to state briefly the

arguments against an a-priori presumption of stationarity.

(i) Technological Changes. Economic growth has been associated with

dramatic changes in technology, product mix and human knowledge. Most

empirical evidence suggests that the pattern of these changes is complex and

irregular.

(ii) Externalities, Returns to Scale and Non-Convexities. Most students of

economic growth agree that non-convexities play an important role in the

dynamics of growth. An extremely large literature which has evolved over

the last two-three decades argues that these non-convexities result in path

dependency, critical sensitivity to changes in basic parameters and multiple

equilibria.

(iii) The Persistent Impact of Major Events. Almost every empirical work

with time series suggests that the data contains short periods of sporadic
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behavior which leave their marks for a long time. Depressions, wars,

crashes, speculative bubbles and other such phenomena have lasting effects

and remain outliers no matter what stationary model is employed.

(iv) Unobservability of the State and Aggregation. Suppose that the

"statel! of an economic system is described by a vector y = (Y1 '" ,YM ) € RM .

Given that technology, production, resource availability, preference of

agents, levels of effort and other measures of incentives are all random

variables included in y, it is obvious that we are dealing with an

extraordinarily large dimension M of, essentially, unobservable variables.

Instead we observe a much smaller number of either aggregates or other

transformed variables such as GNP, output of industry j, profits of firm

k etc. What must be strongly noted is that even if

{Yt = (Yt1 'Yt2"" ,YtM ); t = 0,1,2" ",} is a stationary process, this

stationarity is not preserved under aggregation or under other measurable

transformations! Since non-observability of the state is a major cause for

incompleteness of the market structure, it appears that there may exist an

intimate connection between the non-stationarity properties and the

incomplete nature of a dynamical market economy.

The combination of all the factors reviewed in (i) - (iv) above

suggests to us that in the absence of conclusive theoretical reasoning which

proves that a process must be stationary, we would expect that rational

beliefs will not reject the possibility that the process is non-stationary.

3.3. Stable Systems and the Ergodic Theorem.

Returning now to our main theme, we insist that our dynamical system

(O,F,ll,T) may not be stationary. However, in view of the ergodic theorem

one must immediately ask if the conditions of stability and non-stationarity
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are compatible? To examine this question we return to the definition of

stability.

The condition of stability requires that for any measurable set S € F

we must have

lim mn(S)(x)
n-><o

m(S)(x) exists a.e.

Since 0 ~ mn(S)(x) ~ 1 and mn(S)(o) is a finite sum of measurable

functions on n, mn(S)(o) is also a bounded measurable function. Taking

expectations on both sides and passing to the limit yields that

(6)

However

lim Jmn(S)(x)II(dx)

n

J m(S) (x)II(dx) .

[]

Since

it follows that

Jmn(S)(x)II(dt)

[]

n-l Jl I
n k-O

This proves that the expectations of mn(S)(o) is the mean probability,
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which means

(7) Jmn(S)(x)II(dx)

n

n-l
1 L II(T-kS).
n k=o

Combining (6) and (7) we can conclude that the stability of a dynamical

system requires that

n-l
lim ~ L II(T-kS)
n-+oo n=O

This motivates our next definition

m(S) exists for all S € F .

Definition 5: A dynamical system (n,F,II,T) is said to be asymptotically

mean stationary if for all S € F the limit

n->oo

(8) m(S)
n-l

lim 1 L
n k~O

exists.

Although asymptotically mean stationary processes are, generally, not

stationary, it turns out that many of the tools of ergodic theory remain

applicable to them. Such processes were studied by Dowker [1951], [1955],

Rechard [1956], Gray and Kieffer [1980] and Gray [1988]. Also, some studies

in Information Theory have employed such processes (see for example Fontana,

Gray and Kieffer [1981] and Kieffer and Rahe [1981]). We shall make

extensive use of these results.

The first observation to be made is that if we denote the mean

probability of S by
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(9) nn (S)

then nn is also a probability on (O,F). The definition of asymptotically

mean stationary processes requires the sequence nn to converge to some ill

in the sense that for each S. F nn(S) ~ m(S). It then follows from the

Vitali-Hahn-Saks theorem (see Neveu [1965], page 117) that m is also a

probability on (O,F). Moreover, the measure m is invariant relative to T

and hence the dynamical system (O,F,m,T) is stationary. To see why T

preserves m we calculate

~ n(S) + (
n+l

n

1: n(S) +
n

n+l nCn+1) (S).
n

Taking limits as n ~ 00 we can then conclude that

lim nCn +1 ) (S) m(S)

m(S). m is a stationary or invariant probability measure

of (O,F,n,T).

The second observation to be made is central to our development:
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Theorem 1: (Dowker [1951], Rechard [1956]): A dynamical system

(O,F,rr,T) is stable if and only if it is asymptotically mean stationary.

Theorem 1 shows that the condition of asymptotically mean stationarity

is exactly the natural condition for economic environments in which some

learning can take place but without necessarily being stationary. The

central result of the theory of asymptotically mean stationary processes

says that the condition of stability of a dynamical system is sufficient for

the validity of the ergodic theorem:

Theorem 2: Let (O,F,rr,T) be stable with a stationary measure m. If

f is a measurable function with f E L"(O,F,m) then

(i)
n-l

lim 1 L
n k~O

f(x) exists rr a.e.

(ii) f E L"(O,F,m) is an invariant function.

(iii) f(x) ~ Em(f!I)(x) II a.8.

(iv) if (O,F,rr,T) is ergodic then

f(x) Emf independent of x rr a. e.

(v) in the special case of f lSI S € F, we have

lim mn(S)(x)
n....'"

m(S)(x) m(S[I)(x)

If the dynamical system is ergodic then m(S)(x) and m(SII)(x)

are independent of x and therefore m(SII)(x) ~ m(S) rr a.e.

Theorem 2 shows that when a dynamical system (O,F,rr,T) is stable with

a stationary measure m then it generates, for almost each x € XOO and
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S € F, a limiting empirical relative frequency m(S)(x) which is equal to

m(SII)(x) - the m conditional probability of S given the a-field of T

invariant events. If the dynamical system is ergodic then m(S)(x) is

independent of x and equals m(S). Theorem 2 also helps clarify the

nature of our earlier Assumption 2. This assumption states that the limits

in (5) and known to the agents. Theorem 2 shows that this is equivalent to

the knowledge of the invariant measure ffi. For this reason we shall restate

Assumption 2 in the following manner:

Assumption 2': The dynamical system (O,F,il,T) is stable and all

agents know the associated invariant measure ffi.

4. Trends and Periodicity.

Restricting attention only to stable and tight dynamical systems may

appear to be excessively narrow in view of the existence of trends and

periodicity in economic time series. Starting with trends we note first

that such economic variables as output, employment, profits of firm j

etc., all have trends and could thus pass the test of stability only in a

somewhat unsatisfactory way: for any bounded set S we shall have

m(S) - 0 which is in violation of Assumption 4 on tightness. Recall that

our aim is to establish criteria for rationality of beliefs. In economic

applications this ultimately requires us to specify, at each date t, the

conditional probability of a future event S given, the past

~O~l' ... ,xtl. For this it is sufficient to specify the probability of

increments from x t into any set S of future values of the variables.

The typical procedure of handling this is to transform the variables. If,

on the average, the growth rate is geometric then Yt - xt/xt _
1

will do.
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If the growth is linear then Yt - x t - x t - l will do. For other growth

patterns appropriate measurable transformations may be considered. In

general it is the case that if {Xt' t - 0,1,2, ... J is stable, a measurable

transformation would imply that {Yt' t ~ 1,2, ... J is also stable with a

stationary measure my' The problem is that my may not be tight. We note

in passing that the assumption of stability is reasonably mild while the

tightness condition imposes substantial regularity on the measure.

If a transformation can be found so that is tight then all the

assumptions of this paper are satisfied with respect to the process

{Ytl t = 1,2, ... }. The agent can now derive the implied conditional

probability of future x events given (xo ,xl'" o,Xt ).

Turning now to periodicity let us start the discussion with an example

that could help clarify the main ideas.

Example 1. consider a process {x,; t - 0,1,2 ... J of independent

random variables specified as follows:

Xt is distributed uniformly on [0,1] if t is even.

is distributed uniformly on if t is odd.

This is clearly not a stationary process. Consider now the following

measurable set:

{y € X"':

where y, is the first coordinate of y (thus if y - (Xt,Xt+l,Xt+2"")

then y, - Xt)' Given the observations Ttx the agent will calculate
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1
n

n-l
1: lS (rkx).

k-O 1

This procedure will average between 50% of the time in which the draw is

uniform on [~, l~] and 50% of the time in which the draw is uniform on

[O,lJ. It then follows that

m(Sl) (x)
1
4

a.e.

Next the agent may consider the measurable set

1
(y EX"': 0 :5 Yl < 2' 0 :5 yz

It is easily seen that

1
:5 2) .

m(Sz) (x) o a.e.

A further examination will reveal that for a set like

S3
1

:5 1
2

, 0 :5 yz :5 l}

the calculation yields

and for a set like

m(S3) (x)
5
8

1
(y EX"': 0 :5 Yl :5 1, 2:5 Y z

the calculation yields

m(S4)(x) 5/8
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These facts and others will soon convince the learning agent that in

search of stationarity he must think of the data as a sequence

(XZt ,XZt + 1 ,XZt + 2 '" .) t 0,1,2, ...

In this process the dynamical system transforms x t in one period into

x t + 2 rather than into x t + 1 . Equivalently, it transforms

x = (xO,x1,xZ , .. ) into x 2t in t periods rather than into x t . One way

of handling this is by considering the dynamical system to be (O,F,rr,T2 )

and hence if a vector x € XOO is given then

In the case of the example above the agent can calculate the stationary

probability m2 (o)(x) which is derived from T2 . For the sets

(Sl,S2,S3,S4) this yields

m2 (Sl)(X) 1/2

m2 (S2)(x) 0

m2 (S3) (x) 1/4

m2 (S4)(x) 1.

Examination of Tj for j ~ 1,2,3, ... reveals that the stationary

measures m; (.) (x) satisfy, for all S € F

m(S)(x) ~ m
1

(S)(x)

m2 (S)(x)

m3 (S) (x)

m4 (S) (x)
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and also that

m(S)(x)

This will convince the agent that the system has periodicity of 2 and no

more.

The results of the example can be generalized. Consider any dynamical

system (O,F,II,T) and its associated "N block" system (O,F,II,TN). It can

be shown that if (O,F,II,T) is stable with stationary measure m then

(O,F,II,TN) is also stable with a stationary measure m.. Moreover, the

relationship between m and mN satisfies for all S e F

m(S)
N-I

1: I m.(T-jS)
N • 0

J~

Note that it is TN which preserves m. and not T consequently

mN(TcjS) ~ m.(S) only if j ~ N. It is then clear that if the dynamical

system has no periodicity then ~ ~ m for all k. On the other hand we

say that the system has periodicity if for some k, ~ ~ m.

It is essential to see that the discovery that a system may have

periodicity says nothing about its stationarity. In the example above the

system is stationary when we consider it to be a random sequence of pairs

However, the examination of the blocks

reveals the periodicity through the fact that for all Tj there exist only

two distinct stationary measures:

m for

for

j

j

odd

even.
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This discussion leads us to conclude that the problems of trend and

periodicity are only technical in nature. Having clarified their nature we

shall assume in the balance of this paper that these features are absent

from the process under study.

5. The Structure of Rational Beliefs.

Our aim now is to provide a characterization of rational beliefs.

Since in this paper all beliefs are formed only after observing a great deal

of data. the concept of "rationality" must be understood with respect to

statements about conditional probabilities of future events given the

observed past data. The key question is what is the relevant empirical

knowledge which should dictate to a rational agent his choice of conditional

probabilities of future events. In the previous sections we have endeavored

to show that the relevant empirical knowledge is entirely represented by the

stationary probability measure m and all rational beliefs should be

required to be compatible with this knowledge.

The approach adopted in this paper is based on Ergodic theory rather

than on Bayesian statistics and for this reason it is not convenient to

specify criteria for the selection of rational conditional probabilities.

Instead we specify two Axioms of Rationality under which the agent selects a

probability P which he believes to be the true measure on (O.F). Since

our central interest is in conditional probabilities the reasonableness of

our procedures and Axioms should be evaluated relative to the implied

selection of the conditional probability pt(Slx(t))' S E F. Our

justification is simple: at the given fixed date t at which the agent

forms his belief he is assumed to know both the stationary measure m of

(O.F.rr.T) as well as the actual past data x Ct ) ~ (xO.x1 •••.• xt - l )
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generated by the dynamical system; all economic choices at date twill

depend upon the conditional probability pt(. Ixct ») only.

5.1. Formin~ Beliefs

We presume that each agent makes explicit or implicit probability

assessment of events in O. Thus, simply stated, the formation of a belief

by an agent about the dynamical system (O,F,IT,T) must result in his

selecting a probability P and then presuming that the dynamical system is

(O,F,P,T). This means that when the agent faces a decision problem over

time he will assign the probability P(S) to each event S € F. P is the

probability which the agent will use to evaluate uncertain prospects.

To implement the above viewpoint recall that our agent is given a

stationary measure m on (O,F) which was generated by (O,F,IT,T); he is

then asked to form a belief about the true IT. From this vantage point if

P(O) is the set of all probabilities on 0, then the object of uncertainty

is P(O) itself and hence formin~ a belief about IT would necessitate the

a~ent's selectin~ a probability p* on P(O). That is, if P(P(O)) is the

space of all probabilities on P(O) then the agent must select

p* € P(P(O)). p* is an agent specific or "subjective" probability over the

set of all possible probabilities which the agent may adopt for his

decision-making. However, given the need to select such a probability we

propose to make this selection by simply defining

(10) P ~ JpP* (dp)

P(O)
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if such an integral makes sense. Under this procedure we say that the agent

forms the belief p* with which the probability P is selected. Given

this we would say that the agent believes that the dynamical system is

W.F.P.T) .

It is important to stress that the above selection procedure does not

change with additional data. This is the case since p. itself is not just

a prior probability subject to updating; it is already the limit of the

updated beliefs given all the wealth of data we have provided the agent in

the first place. Given the stability of p. we can

then proceed to specify the basic rationality axioms relative to the

selection of p.. Having done so we shall prove that the integral in Eq.

(10) is well defined and hence a probability P. P(D) is, in fact, chosen

by the agent. All our development will then focus on the characterization

of P.

We now introduce an important result regarding the process of forming

beliefs. We use the following notation

(Xt ,xt + 1 ,xt +2 I ••• )

(xo ' Xl ' ... I x t - 1 )

,,(xt )

F t is the ,,-field of "future" events at date t. We write the conditional

probability of a future event S. F t given the past history in the form

p
t

(S IXc t ) )

Now recall that our context is that t is assumed large. This implies that
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a long history is available for learning and therefore the limiting behavior

of the measure pt(o Ixct » should be of interest. This motivates

Definition 6: Regular conditional probabilities pt(olxct » and

Qt(olxct » on (O,F) are said to agree for Q almost all histories if

lim
t ...",

o Q a.e.

and we write pt ~ Qt Q a.e. If they agree Q a.e. and P a.e. then we

write pt ~ Qt Q a.e, p a.e.

Recall now a few definitions from measure theory. A probability

measure P is said to be absolutely continuous with respect to Q (denoted

by p« Q) if Q(S) ~ 0 implies P(S) ~ 0 for S € F. The two

probabilities are said to be equivalent if p« Q and Q« P. The two

probabilities are said to be singular (denoted by P ~ Q) if there exist

measurable sets A and B such that A n B ~ ¢ A U B ~ 0, P(B) ~ 0 and

Q(B) ~ 1.

We can now state the following result:

Theorem 3: (Blackwell and Dubins [1962]). Suppose that P and Q

are probability measures on (O,F) and Q« P. Then for each t and for

every regular conditional probability pt of the future given the past

there exists a corresponding conditional probability Qt such that

Q a.e.

We remark that the technical issue of selecting regular conditional

probabilities pt and Qt should be entirely disregarded here since
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n ~ xro is a complete and separable metric space (see Blackwell and Dubins

[1975] and Ash [1972] page 265). The significance of Theorem 3 will be

discussed below.

5.2 Axioms of Rationality.

Before formulating our two axioms we state the following:

Definition 7: We say that an agent's probability Q f pen) is

compatible with the data if

(a) (n,F,Q,T) is stable with a stationary measure m. That is, for

all S f F

n->ro

n-l
lim 1 I

n k~O
m(S)

(b) Q satisfies the agent-specific tightness condition on II

(Assumption 4, Section 2). That is, for every f there is a

compact set Kf en such that Q(K
f

) > 1 - f.

We define now the agent's acceptable set B(ll)

(lla) B(ll) (Q f pen): Q is compatible with the data}.

Also, relative to any measurable Set S f F define

(lIb) (Q f B(ll): Q(S) > O}.

Keeping in mind that the sets B(ll) and Bs are agent specific we

turn now to the axioms on the selection of p*.

Axion 1 (Compatibility with the data): An agents forms a belief p*

with B(ll) as its support.
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Axiom 2 (Continuity with respect to the data): If for S € F

m(S) > 0 then P*(Bs ) > O.

Discussion. Axiom 1 is the crucial axiom of rationality. It requires

of any agent to form belief P* which places probability 1 on B(IT); that

is, on the set of probabilities in the agent specific set of acceptable

probabilities. A rational agent is not permitted to put positive measure on

probabilities which would be contradicted by the data or that would conflict

with his own tightness conditions.

Axiom 2 states that if an agent knows that the long run frequency of a

set S is m(S) > 0 then he will place positive p* measure on those Q

in B(IT) with Q(S) > O. To see the meaning of Axiom 2 note that Axiom 1

says that if m(S) > 0 the agent must assign his p* measure on Q € P(O)

such that

m(S) > O.

This last condition requires Q(T-kS) > 0 for most large k. If the agent

knew that the system is stationary he would choose only among Q such that

Q(S) ~ Q(T-kS) for k", O. This would then prove that Q(S) > 0 and

Axiom 2 would not be needed. Without the knowledge of stationarity it is

conceivable that the agent selects Q with Q(S) o but Q(T-kS) > 0 for

large k. Given the fact that agents do not know if the true measure is

stationary, Axiom 2 proposes that when an agent observes m(S) > 0 he will

place some positive p' measure on Q € B(IT) with Q(S) > O.

We think of Axiom 2 as a continuity axiom. This is so since when

m(S) > 0 the agent is certain that for k large enough future S sets

(i.e. T-kS) must have positive probability. This means that he must place
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measure to

k large

(T- k S)

positive p* measure on those Q € B(il) with Q(T-kS) > 0 for

enough. What Axiom 2 says is that if the agent is certain that

have positive probability for large k then he cannot assign 0

probabilities Q with Q(S) > O.

Returning now to Theorem 3 suppose that two agents believe that P and

Q (respectively) are the true probabilities with P ~ Q but that P and

Q are equivalent. Since P and Q agree only on the null sets, the

numerical probability assessments of the two agents may be drastically

different. In fact, it is standard in the economics literature to assume

the equivalence of subjective probabilities whenever heterogeneity of

beliefs is introduced (see, for example, the important paper of Harrison and

Kreps [1979] where this assumption is crucial for the validity of the

conclusions). In our context ample past data is available and therefore it

follows from Theorem 3 that, although P ~ Q, no significant difference of

opinions will exist in their conditional probability assessment of future

events given the past.

Now consider the specific context of our analysis where our agent knows

m, the stationary measure of (O,F,il,T). We shall see below that the

process of forming a belief by an agent involves a probability measure Q

which is both stationary as well as equivalent to m. It follows from

Theorem 3 that Q and m have the same conditional probabilities of future

events given the past. This means that from the economic point of view of a

rational agent in our context, there is no difference between Q and m.

In the formal development below we shall, however, examine conditions under

which Q- m.

34



5.3 The Main Theorem

We now state and prove the main conclusion of this paper.

MAIN THEOREM: Given a dynamical system (O,F,IT,T) let an agent form a

belief p* which satisfies Axioms I and 2. Then the integral

P Jp.P* (dp.)

P(O)

is well defined and P € B(IT). Moreover, there exist probabilities Pa and

Po on (O,F) and a constant 0 < A
p

< I

(i) P has a unique representation

such that

(12a) P

where Pa and m are equivalent while Po and m are singular

m(A) I and Po(B) 1.

(ii) (G,F,Pa,T) and (G,F,Po,T) are stable with stationary measures Pa

and Po such that for all S € F

Ilim

(12b)

(12c)

where

lim
n->oo

n->oo

n-l
I Po (T-kS)

n k-O

Pa and ill are equivalent
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If (O,F,il,T) is ergodic and 0 < A
p

< 1 then we have

m.

(iii) There exist regular versions of the conditional probabilities pt ,

mt and pt
o

,pm

and densities

dm

dP

which satisfy m a.e. for S f F t

(12d)

Proof of Main Theorem

We start by demonstrating the existence of the choice P. Since

o ~ XOO with X c RN is a complete and separable metric space, the space,

P(O) endowed with the topology of weak convergence is a complete and

separable metric space (see Parthasarathy [1967], chapter 11.6). Hence if

we let B(P(O» be the a-field of the Borel subsets of P(O) then the

space (P(O) , B(P(O» is a Borel space. Denote by p' any probability on

the space (P(O), B(P(O».

Now consider the real valued function f:P(O) x F ~ R defined by

f(I',S) I'(S) I' f P(il) , S f F.

F P•or any which satisfies Axiom 1 we have

(13) Jf(I',S)P'(dl')

P(O)

~ Jf(I',S)

B(il)
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if the integral is defined. From Assumption 4 about the tightness

conditions it follows that the family B(IT) is tight and hence B(IT) is

compact (see Billingsley [1968J, Appendix III, Theorem 6). From the

definition we note that B(IT) is a convex set. Moreover, it follows from

the Prohorov Theorem that on B(IT) the topology of weak convergence and the

topology generated by the Prohorov metric are equivalent. It then follows

that on B(IT) the function f(~,S) is continuous in ~ for each fixed S

e F. Denote by p(P,Q) the Prohorov metric on B(IT).

Now let B(n) ~ (B~, B~, ...• B~(n)} be a sequence of partitions of

B(IT) where B(n) is a refinement of B(n-l). Let

Sup p(P,Q)
PeBi
QeB

i

and

en max 1'(B~) .
l:5i:5m(n)

Let the sequence of partitions B(n) satisfy en ~ O. By the continuity of

f we can obtain the integral in (13) as the following limit

Jf(~,S)P*(d~)
B(IT)

m(n)
lim l: f(~~.S)P*(B~)
n-H:o i=O

independent of the selection and independent of the sequence

B(n). Note that for each S e F

m(n)
l: f(~~,S)P·(B~)
i~O

m(n)
-l: ~~(S)P*(B~)
i~l

37

pn (S).



m(n)
Since L p' (B~) 1, I"~ • B(II) and B(II) is convex, the set function

1
i~l

pn (.) is a measure in B(II) . However B(II) is compact hence pn

converges weakly to a measure P • B(II). This proves that for every S • F

P(S) J f(I",S) P'(d,l")

B(II)

is well defined and P. B(II)

Next we consider the decomposition of P. It follows from the Borel

decomposition Theorem (See Royden [1988], page 278) that there exists

probabilities Pa and Po on (a,F), sets A C a and B ~ a - A, and a

constant 0 ~ A
p

~ 1 such that

(14) P

where Pa « m, Po ~ m, A
p

- P(A), m(A)

S • F, if P(A) > 0 and P(B) > 0 we have

P(A n S)
Pa (S)

P(A)

P(B n S)
Po (S)

P(B)

1 and m(B) O. For any set

By Axiom 2 m(A) ~ 1 implies P(A) > 0 and hence 0 < Ap ~ 1. We do not

exclude Ap 1 and P(B) - O.

We shall now show that Pa and m are equivalent. From the Borel

decomposition theorem we already have
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Pa « m.

To prove that m« Pa suppose that it is false. Thus let S € F and

Pa(S) - 0 while m(S) > O. From Axiom 2 it follows that P(S) > O. But

then we have

o < P(S)

o < m(S)

ApPa(S) + (l-Ap)Po(S) ~ (l-Ap)Po(S)

m(S n A) + m(S n B) - m(S n A).

A

Hence m(S n A) > 0 and Po (S) > O. Now consider S ~ S n A. Clearly

A A A A A

m(S) > 0 but S c S implies Pa (S) ~ 0 and SeA implies Po (S) ~ 0

singular) .
A

and this 2.(Po and m are Hence P(S) ~ 0 contradicts Axiom

We now demonstrate that (O,F,Pa,T) and (O,F,Po,T) are stable with

stationary measures Pa and Po and that Pa and m are equivalent. For

any set S € F we have that

(15)
n-l

I
k-O

Since P € B(rr) the left hand side of (15) converges to m(S) for all

S € F. Now since Pa « m and since m is stationary it follows from

Theorem 2 of Gray and Kieffer [1980] that Pa is asymptotically mean

stationary and hence for all S € F· the limit

(15')
1

lim
n->oo

Pa(S) exists .

Combining (15) and (15') leads to the conclusion that for all S € F the

limit
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1
lim

n
n-+co

n-l
L Po(T-kS)
k~O

Po(S) also exists

and that for all S f F

(16) m(S)

This shows that both (O,F,Pa,T) and (O,F,Po ,T) are stable dynamical

systems with stationary measures Pa and Po' It is immediate from (16)

that Po «m. We need to prove that Pa and m are equivalent.

To show that Pa is equivalent to m it is immediate from (16) that

m(S) ~ 0 ~ pa(S) ~ 0 hence pa « m. To prove that m« Pa assume the

contrary and select S f F with pa(S) ~ 0 but m(S) > O. Since Pa is

equivalent to m, Pa(S) > O. Now define

co co

S n U (T-kS)
n~O k~n

lim sup(T-kS)
k-+co

_ A

We claim that Pa(S) O. This is so since

lim Pa ( U
n-+co k=n

co

T- k S) < l' ( u_ a

k~l

L
k~l

o

A A _ A
A

But S is an invariant set so that on S, Pa (S) Pa (S) O. Hence

A

m(S) O. By Fatou's Lemma

A

m(lim sup T-ks) m(T-kS) m(S) > 0m(S) > lim sup
k-+co k-+co
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and this is a contradiction hence m« Fa

Fa and m are equivalent.

To prove that in the ergodic case

This concludes the proof that

m

it is sufficient to prove that m since the conclusion follows from

(16) and o < A
p

< 1. To prove m recall that Pa « m hence

there exists an m-integrable function g such that for all

J g(w)m(dw) .
S

Hence

Pa(T-kS) ~ r g(w)m(dw)
T-~S

S E F

By the change of variables theorem and the stationarity of m we have that

I
g(w)m(dw)

T- S

It then follows that

1lim
n->oo

I g(Tkw) (mT- k ) (dw)

S

I (lim ~
n->oo

S

Ig(Tkw)m(dw) .

S

n-l
L g(T-kw) )m(dw)
k~O

Now use Theorem 2(iv) to conclude that

1
lim
n->oo

Hence
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m(S) all S E F .

We finally turn to the conditional probabilities. Since n is a

complete and separable metric space it follows from Theorem 3 that for all

S € F t

A standard argument leads to

where .,pa
dP,
dP

and
dPo
dP . We conclude that

•

5.4 Some Implications of the Main Theorem and the Structure of Non
Stationarity

In this section we explore some implications of the Main Theorem with a

view to clarify the nature of non-stationary beliefs.

Proposition 1. (Time discounting under non-stationarity): Let S € F.

If m(S) ~ 0 then lim p(T-kS) ~ O.
k->oo

Proof: See Rechard [1956] and Theorem 5 of Gray and Kieffer [1980] .•

For an intuitive sense note that since P € B(ll) we have that for all

S € F the limit

lim 1
k-+co n

m(S)
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Hence, if m(S) ~ a then the sequence P(T-kS) itself must converge to O.

To provide an economic interpretation of Proposition 1 recall that if

K ~ T-uS then for each x E K, TUx E S: in n steps K will be

transformed into S. For this reason we suggested that one may think of K

as a future set S, n dates into the future. This interpretation is

particularly applicable to shift transformations. When m(S) ~ a the agent

knows that the long run frequency of S is equal to zero thus a belief that

peS) > a must be due to his belief in non-stationarity. In this case the

condition of compatibility with the data requires him to believe that the

probability that S occurs in the future declines to O.

The validity of our interpretation which stresses non-stationarity can

be formally seen as follows:

If m(S) ~ a then the invariance of m implies m(T-kS) ~ O. However,

since Pa « m it follows that Pa(T-kS) ~ O. We can thus conclude that

and proposition 1 implies that The point to be made is that

the essential non-stationarity of P is to be found in the measure Po'

The discussion above suggests that we may gain additional insight by

considering the celebrated theory of recurrence. A few definitions will set

the stage for our discussion.
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Definition 8: Let S e F. A point xeS is said to be recurrent

with respect to T if there is a finite integer k(S) ~ I such that

Tk(S)x e S. A set S e F is said to be recurrent if almost every point in

S is recurrent. A dynamical system is recurrent if every set in F is a

recurrent set.

In a recurrent dynamical system we can define, for each S e F, the set

§ is the set of all points which enter S in one or more steps. The set

N(S) defined by

N(S)
A

S - S

is then the set of members of S which do not return to S. In a recurrent

system peNeS»~ ~ 0 for all S e F. It is then clear that in a recurrent

system all sets of positive measure recur infinitely many times. The

celebrated Poincare Recurrence Theorem (1899) state that any stationary

dynamical system is recurrent. although we cannot use this theorem we could

identify recurrence in our system by thinking of it as consisting of two

distinct dynamical systems (O,F,Pa,T) and (O,F,Po ,T). Our Main Theorem

proves that both systems are stable with m as their common stationary

measure. There is, however, one crucial difference between these two

systems which we shall explore: Pa and m are equivalent whereas Po and

m are singular.

Proposition 2: The dynamical system (O,F,Pa,T) is recurrent.
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Proof: Since Pa « m and m« Pa we can use Theorem 6.4.3 of Gray

[1988] which asserts that for a stable system (O,F,Pa,T) the condition

Pa «m and m« Pa is equivalent to the property of recurrence. •

What Proposition 2 reveals is that although the dynamical system

(O,F,Pa,T) is not stationary it acts like a stationary system. This

highlights again our point made earlier that the non-stationarity of P is

due mostly to the Po component.

Definition 9: A set W is a wandering set if for all k - 1,2,3, ...

W n (T-kW) - 0 hence the sequence of sets ((T-kW); k ~ 1,2, ... } is

pairwise disjoint.

Note first that if for S E F we consider the set N(S) in (16) we

find that if x E N(S) then Tkx does not return to S. This means that

N(S) n T-kN(S) ~ 0 for k 1,2, . .. and hence N(S) is a wandering set.

What Proposition 2 says is that Pa(W) ~ 0 for all wandering sets W in O.

We now turn our attention to (O,F,Po ,T).

Proposition 3: There exists wandering sets We 0 with Po(W) > O.

Proof: We need to show that the dynamical system (O,F,Po ,T) is not

recurrent. Suppose it is. Since it follows from our Main Theorem that

(O,F,Po,T) is stable with m as its stationary measure it follows from

Theorem 6.4.3 of Gray [1988] (stated above in the proof of Proposition 2)

that Po is equivalent to m. This contradicts the conclusion of the Main

Theorem which states that Po and m are singular. •
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We have arrived at two interesting characterizations of the non-

stationary measure Po:

(a) for the set B specified in the Main Theorem we have Po(B) 1.

However, any subset S c B is dissipative in the sense that

lim Po (T-kS) 0
k...'"

(b) there exist wandering sets W with Po(W) > O.

In Proposition 1 we have suggested that dissipative sets can be thought

of as giving rise to discounted probability of recurrence due to non-

stationarity. In addition we may also note that the sets A and B

satisfy

1

o

o

1

Turning to the second characterization of non-stationarity we have

stressed our interest in non-stationary processes as a reflection of the

complexity of the process of structural change. This includes technical

innovations, the creation of new processes, new products, new organizational

structures etc. The dynamic transformation of a wandering set as a

representation of the process of structural change is very interesting. It

simply says that the sequence of structural changes is a sequence of events

each of which needs to be thought of as different from anything that

happened in the past. These events have zero probability under the

stationary measure hence meW) ~ m(T-kW) - 0 for all k ~ 1. However,

under the non-stationary measure
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We insisted earlier that T is not invertible. We now clarify this

point.

Proposition 4: Let the dynamical system (O,F,rr,T) be stable. If T

is invertible then rr« m and consequently P - Pa and Ap - 1.

Proof: If T is invertible it follows from corollary 6.3.2 of Gray

[1988J that rr« m. Since this is known to agents it follows that P« m

as well. Recalling that P(S) ~ ApPa(S) + (l-Ap)Po(S) for all S € F, let

S - B where Pa(B) - 0 and Po (B) ~ 1. This implies P(B) - 1 Ap

However, since P« m and by the Main Theorem m« Pa' the condition

implies P(B) - 0 and hence A-Ip . •
Proposition 4 reveals that invertible T render stable systems

essentially stationary.

6. Discussion of the Results and Examples.

The theory developed in this paper proposes that in a non-stationary

environment the rationality of a belief should be judged only on the basis

of its compatibility with the long-term, average patterns of the data

generated by the stochastic dynamical system. The characterization of the

Main Theorem shows that two intelligent agents knowing the same stationary

measure and having the same, and extensive, amount of past data may end up

with different probability beliefs. It is important to keep in mind that

the agents know that in forming their beliefs they have used all available

information and therefore their disagreements cannot be resolved by
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employing past data. Agents also know that the true IT is not known by

anyone and is not knowable if past data is the only source to be consulated.

This is what we called in the Introduction the "scientific gaps": they

result in a speculative search for ideas about the structural causes of the

random mechanism which generates the data. This search induces the

formation of hypotheses, conjectures or theories and these are the main

source of heterogeneity of beliefs.

Our conclusions are diametrically opposed to the "common prior ll

assumption advocated by most Bayesians. We think the reason for this

discrepancy can be found in our basic position that one must think of the

random nature of economic fluctuations as structurally caused and subject to

further understanding as human knowledge improves. From a Bayesian view-

point the formation of beliefs is only an expressions of the uncertainty of

the agent. From our view-point the formation of beliefs P* E P(P(O»

incorporates both the uncertainty of the agent given the data which he

observes as well as his best hypotheses about the structural mechanism which

generated the data. It is ultimately our ignorance which is the cause of

diversity of beliefs.

We started this paper with the prototype example of the present value

of profits, model (1)

'"P: I -yk+1Yt+k
k-O

We asked how would a rational agent form beliefs to evaluate the random

prospect P~. We can now use of Main Theorem to answer this question. Our

theorem says that a rational agent will employ two probabilities: the

stationary probability m and the non-stationary stable probability
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which has a stationary measure such that Po «m. These will be

formed in accordance with our theory and their formation will be compatible

with the data available. The agent will now evaluate separately with

respect to the conditional probabilities of m and to obtain

Together with m and

'"L ")'k+1Em (Yt+k I x( t) )
k~O

'"L ")'k+1 E
p

(Yt+k I x( t) )
k~O 0

the agent also selected >.p to represent

the probability which he assigns to the event that the process

{Yt' t~O,1,2, ... } is stationary. The agent's final conditional valuation is

Having selected a distribution for all other moments can also be

calculated. For example the conditional variance of with

respect to is calculated to yield

>.~var(V;: (x( t») + (1 - >'p )2Var(v~ (x( t»)

+ 2.Ap (l - >'p)cov(V;:(x(t»),v~(x(t»)

This last expression has some interesting implications to the debate on

volatility of stock prices.

It is worth noting that since the stationary measure m is a

probability on (X'" ,F) , the agent takes as known all the normal and regular

patterns of sequences of profits. To this extent the agent supports his

belief with any chart, curve or other empirical pattern often used to study

past data. One needs to note, however, that we are not talking here about
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historical charts or other patterns of stock prices. Rather, we are

discussing the formation of belief about the dynamics of the profit sequence

{Yt' t~0,1,2... j. Moreover, our theory does not imply any particular theory

of equilibrium asset valuation. We certainly are proposing how agents

should form rational beliefs about sequences of future profits, and this

would be an essential ingredient in an equilibrium theory of asset

valuation.

Economic applications of our approach will be developed in other

papers. We shall now present two examples to assist the reader in

understanding the ideas of the paper.

Example 2: Coin Tossing

Consider the sequence of independent random variables x
t

• Under the

true measure IT = m

{:with probability 1/2

with probability 1/2

Since each infinite sequence x - (xo ,xl ,x2 ' ..• ) is a binary expansion of a

real number in [0,1] the stationary measure IT ~ m is isomorphic to the

Lesbegue measure on [0,1].

Now consider the following belief Py . Let (~t}~~o be a sequence of

small positive number ~t
1

2(t+2) t 0,1,2, .... Now let the sequence

{: with probability

with probability
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Let Py be the associated measure on infinite sequences y. It is clear

that Py and IT are equivalent and Py is a rational belief.

Now consider a belief Pz which would have drastically different

properties. Let D = {t1 ,t
Z
,t

3
, •.. } be an infinite sequence of "remote"

dates such that

t , > 2

Now define the random variables

If t'liD

under P .z •

If t € D

with probability

with probability

with probability

with probability

1/2

1/2

1/3

2/3

Note that for any cylinder set S the future set (T-kS) will fallon

fewer and fewer dates in D and since these distances are more than

geometric

1lim m(S)

It is then clear that (O,F,Pz,T) is stable with m as its stationary

measure. Nevertheless we shall now indicate that Pz and m are singular.

To see this consider the following B set:
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B
the frequency of 111 11 at the infinite dates in

D is 1/3. }
By the strong law of large numbers we have

m(B) 0

On the other hand consider the A set

A
the frequency of "1" in the sequence
is 1/2 and this same frequency among
number of dates in D

(Xo ' x, ' x2 ' ••• ) }
the infinite

Here we must have

meA) 1

Pz (A) 0

It then follows that in the representation

we have '\ o and Pz ~ Po and this violates Axion 2. To see why note

that at date t we have t n < t < t n +
l

and the agent has n observations

(Xt ,xt , ... ,xt ). An examination of the frequency of "1 11 among these dates
1 2 n

cannot guarantee that he is either right or wrong about the probability of

"1" at future dates t j E D for j > n. Axiom 2 implies that he should

give some positive weight to the possibility that the true probability is,

in fact, m. Thus, any belief Q of the form
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with A
p

> 0 is compatible with the Main Theorem.

We "can modify example 2 in a somewhat revealing manner. Suppose that

Pz IT is the true non-stationary probability so that in fact it is true

that at the remote dates in the set D the probability switches to 1/3. An

agent who adopts the belief that m is the true measure is, in fact,

selecting a belief Q such that

with A
q

~ 1, some Qo and Q ~ m. Such a belief is compatible with the

Main Theorem. But now suppose that an agent selects the belief Q - IT.

Hence his belief is

(17) Q

where IT and m are singular, Aq ~ 0 thus Q - IT and IT is the truth!

Our theory proposes that this is not rational belief although the agent

selected the truth as his belief!! This appears paradoxical. On a purely

formal basis Axiom 2 requires the selection of Aq > 0 in (17). The agent

who believes that Q - IT is then permitted to select A
q

as small as he

pleases. In any decision-theoretic context all decisions under small A
q

will be the same as under Q - IT. The appearence of a paradox arises

because the agent has absolutely no systematic way of selecting the set of

true infinite dates D at which the probability switches. The agent has no

knowledge that there exists a set D of remote dates at which the

probability switches and even if he suspected that such is the fact and

selected a set D at random, the probability of selecting the correct set
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is zero. Axiom 2 proposes that since the agent recognizes his ignorance he

should place some positive probability on the possibility that the actually

observed frequencies over all the dates represent the true probability.

Example 3: Path Dependency

Let {xO '€1'€2' ... } be an infinite sequence of i.i.d. random

variables where

or
with probability

with probability

1/2

1/2

Now let (Xt}~=o be a sequence of random variables defined by

Xo as specified above

xt = D:'tXO + €t t 1,2, ...

where {O:l,O:2,O:3"") is a deterministic sequence of numbers taking values

a 1 1 or at ~ o.

This is a model of extreme path dependency: the effect of the initial

value taken by Xo continues to linger on forever but this effect depends

upon at" Note that for a constant at there exists an initial distribution

for Xo which would make the sequence stationary. The first question which

we investigate is whether the dynamical system generating the x
t

is

stable.

To examine the stability question we calculate first IT(xt,at ) the

unconditional distribution of x t which clearly depends upon at. A direct

calculation reveals that this distribution is as follows:
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° 1

Xt ° 1 2

lI(xt,O) 1/2 1/2 °
Xt ° 1 2

lI(xt ,l) 1/4 1/2 1/4

Stability requires that the following limit exists:

1
lim
n->oo

n-1

I
n k-O

m(x) exists .

In the above, the function lI(xt,at ) takes two values represented by the

vectors (1/2,1/2,0) and (1/4,1/2,1/4) which are then averaged by the

frequency of their occurence. These frequencies are exactly the frequencies

by which the at take the values ° and 1. Thus a sufficient condition

for stability in this case is

1
lim
n->oo

a exists .

In this case the stationary distribution of xt is simply

1 1
(I-a)

[,
a + 2

]m(x) 1
2

1
4 a

The requirement of stability demands the convergence of all the joint
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distributions as well. Thus if IT(xt ,xt + 1 ,at ,ot+l) is the joint

distribution of x t and xt + 1 it can easily be calculated to be

a a "'t a 1

x t + 1 a 1 2
x t

a 1/4 1/4 a

1 1/4 1/4 a

2 a a a

x t + 1 a 1 2
x t

a 1/8 2/8 1/8

1 1/8 2/8 1/8

2 a a a

1 a "'t 1 1

x t + 1 a 1 2
x

t

a 1/8 1/8 a

1 2/8 2/8 a

2 1/8 1/8 a

x t + 1 a 1 2
x t

a 1/8 1/8 1/8

1 1/8 3/8 1/8

2 a 1/8 1/8

Stability in this case requires that the averaging of the four matrix values

of the distribution IT(Xt,xt+l,at.at+l) converges. To express this

condition define the four sets

(O,O)

(1,O)
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Now consider the sequence of pairs ( (at' a t +1)' t~O ,1, 2, ... } . The

condition for stability is that the four following limits exist:

1 n-l
lim Ii I lK (ak ,ak + 1 ) Q

O,O
n->oo k~O 0,0

1 n-l
lim Ii I lK ("'k ,ak +1) Q

O,1
n->oo k~O 0,1

1 n-l
lim Ii I lK (ak ,ak+1) Q

1,0
n->oo k-O 1,0

1 n-l
lim Ii I lK (ak ,ak + 1 ) Q1,l
n- k~O 1,1

In the special case when

1
4

the stationary joint distribution m(x
t

,x
t

+
1

) is

Xt + 1
x t 0 1 2

0 5/32 6/32 1/32

1 6/32 9/32 1/16

2 1/32 2/32 1/32

The general pattern may now be spelled out. Let (at}~=l be a

sequence of real numbers taking values in a "state ll spece K f;;. X. Consider

the product space Koo with its Borel sets Lx ~ B(Koo ). Clearly (Koo,LK)

is a measurable space. Let T be the shift transformation on so

that if then

57



Definition 10: A sequence is said to be stable if for any

S E ~ the limit

lim
n-+'"

m",(S) exists.

If a sequence '" is s table then m", is a probability on (K"',~).

We call m", the limit measure of a.

Applying this definition to our problem it is seen that if (O,F,IT,T)

is the dynamical system generating then it is stable if the infinite

sequence is a stable sequence. The stationary distribution of

(x ,x , ... ,x ) can then be calculated by first calculating the joint
7 1 1"2 Tn

distribution nex , ... IX ,a ," .. ,a ) and then computing the
7 1 Tn 7 1 Tn

expectations under the stationary measure rna induced by Q. That is

(18) m(x , ... ,x )
1"1 Tn

Turning now to the question of heterogenously forming beliefs about IT

we can focus on the sequence Q. A belief will entail the selection

of a sequence However, for Qp E B(IT) the sequence p

must be stable with a limit measure satisfying mp ~ m",. Clearly,

the set of such measures is very large. To construct rational

beliefs in accordance with the Main Theorem we can simply take for such a p
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and then we have

If is not singular with m we can decompose it into

where

To see that we can easily find measures

singular with m consider an infinite set

Q
fio

which are stable yet

D of dates t j j - 0,1,2, ...

such that

Since " is stable there exists a set D such that the following limit

exists

n-l
lim

1
"",

n '" tn-+oo n=O j

•
"

Now select a sequence /3 such that

(i) Q/3 E B(IT)

A •

fi '" "
with

n-l
I /3n . 0 t.
J~ J

1
lim
TI-?CO

(ii)
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It is clear that such a sequence can be constructed from any stable

sequence a without changing the limit measure of the sequence. But now we

claim that

measure

and m are singular. Hence, for any o < A
p

< 1 the

p

is a rational belief.
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