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Abstract

Genomic instability is considered by many authors the key engine of tumorigenesis. However,

mounting evidence indicates that a small population of drug resistant cancer cells can also be

a key component of tumor progression. Such cancer stem cells would be the reservoir of tumor

stability while genetically unstable cells would compete with normal cells and invade neighboring

host tissue. Here we study the interplay between these two conflicting components of cancer

dynamics using two types of tissue architecture. Both mean field and multicompartment models

are studied. It is shown that tissue architecture affects the pattern of cancer dynamics and

that unstable cancers spontaneously organize into a heterogeneous population of highly unstable

cells. This dominant population is in fact separated from the low-mutation compartment by

an instability gap, where almost no cancer cells are observed. The possible implications of this

prediction are discussed.
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I. INTRODUCTION

Cancer is commonly viewed as a micro-evolutionary
process (Cairns, 1975; Merlo et al., 2006; Weinberg, 2007;
Wodarz and Komarova, 2005). The outcome of such pro-
cess is strongly tied to different traits of tumor structure,
including its heterogeneity (Fearon and Vogelstein, 1990),
robustness (Kitano, 2004) and even cooperation (Axelrod
et al., 2006). Genomic instability seems to be a common
trait in many types of cancer (Cahill et al., 1999) and is
a key ingredient in the Darwinian exploratory process re-
quired to overcome selection barriers. By displaying high
levels of mutation, cancer cells can generate a progeny
of diverse phenotypes able to escape from such barriers
(Loeb, 2001). Faced with different challenges under the
conditions imposed by the given tissue, mutated cells are
able to change their pattern of communication, immune
markers, migration and adhesion properties.

Genetic instability is present in all solid tumors, partic-
ularly under the form of chromosomal instability (CIN).
Available evidence shows that CIN is actually an early
event in some types of cancer. The presence of a so called
mutator phenotype (Bielas et al., 2006; Loeb, 2001) has
been proposed, suggesting that somatic selection would
favor cells having higher mutation rates (Anderson et al.,
2001). Genetic instability would then derive from the
loss of DNA repair mechanisms and cell cycle check-
points (Kops et al., 2004, 2005). As Loeb pointed out,
a consequence is that tumor progression is genetically
irreversible (Loeb, 2001) since genomic instability acts
as a rate of change (Lengauer et al., 1998). This leads
to cumulative mutations and increased levels of genetic
change associated to further failures in genome mainte-
nance mechanisms (Hoeijmakers, 2001). The amount of
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FIG. 1 The architecture of normal and cancer tissue interac-
tions. Four populations are being considered, namely: stem
cells (S), host tissue (H), cancer stem cells (Sc) and differ-
entiated cancer cells (C). Cancer stem cells are assumed to
emerge either from mutations in normal stem cells or through
dedifferentiation, at rates ϕ1 and ϕ2, respectively. Both nor-
mal and cancer differentiated compartments are able to repli-
cate at rates r and f , respectively. If too many mutations
occur, new cancer cells might be nonviable. This is indicated
here by means of empty circles.

instability is limited by lethal effects affecting key pro-
cesses leading to effectively non-viable cells (Kops et al.,
2004) thus indicating that thresholds for instability must
exist. In fact, many anti-cancer therapies take advantage
of increased genomic instability, as is the case of mitotic
spindle alteration by taxol or DNA damage by radiation
or alkilating agents (DeVita et al., 2005).

The previous observations indicate that instability
places cancer cells at some risk: by increasing the number
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FIG. 2 The two types of tissue architecture considered in this paper. Both are particular cases of the more general scenario
given in figure 1. In both cases cancer cells are formed from preexisting cancer stem cells at a rate η. In (a) a so called
homogeneous tissue structure is considered, with the normal cell population formed by identical cells replicating at a constant
rate r. In (b) a hierarchical tissue is considered, with normal cells being also generated from a stem cell pool.

of errors, cancer cells can also experience a loss in their
plasticity or viability due to deleterious mutations. Even
for cancer cells, some key genetic components need to be
preserved in order to guarantee cell survival. These so-
called housekeeping genes are the essential core required
to allow reliable self-maintenance and replication to take
place. In this context, mutations affecting them would
cause cell death (see for example (Jordan and Wilson,
2004; Kops et al., 2004).

A rather different component of cancer success involves
a somewhat opposite element dealing with stability: can-
cer stem cells (Bapat, 2007; Pardal et al., 2003). These
cells share the self-renewal character of normal stem cells
and have been already found in a number of cancer types.
They self-renew to generate additional cancer stem cells
and differentiate to generate phenotypically diverse can-
cer cells with limited proliferative potential. The paral-
lels between somatic and cancer stem cells have long been
drawn and are illustrated by many case studies (Pardal
et al., 2003; Reya et al., 2001). Their characteristic trait
is that self-renew is poorly controlled in cancer, leading
to abnormal differentiation. An extreme example of this
situation is provided by teratocarcinomas, which give rise
to a diverse range of cell types, from respiratory epithe-
lium to cartilage and bone (Sell and Pierce, 1994). In
summary, both types of stem cells have organogenic ca-
pacity, but somatic stem cells are able to generate nor-
mal, well organized tissues whereas cancer stem cells will
generate abnormal tissues.

The presence of cancer stem cells is also detected by
observing that only a tiny fraction of tumor cells have a
high proliferation potential. Although the hypothesis of
an emergence of CSC from differentiated cells cannot be
ruled out, many evidences point out to their origin from
normal stem cells by mutations affecting key pathways
(Liu et al., 2005; Wicha and Liu, 2006). These popu-
lations have been found in different contexts, including
leukemia, brain and breast cancers (Al-Hajj et al., 2003;
Bonnet and Dick, 1997; Singh et al., 2004). The self-
renewal potential of CSC make them a source of tumor
stability. They preserve information and thus define a

stable cellular reservoir, whereas the differentiated cell
generated from them are not constrained to be stable.

How are both elements reconciled? How does the sta-
ble core of a growing tumor, formed by a (presumably)
small set of cancer stem cells interact with the much
larger, genetically unstable population of differentiated
cancer cells? An additional ingredient needs to be also
considered: cancer takes place in a well-defined tissue
context, where a given cellular environment constraints
the tempo and mode of tumor progression. In terms of
tissue homeostasis we can find a wide range of tissue ar-
chitectures among two extremes:

1. Hierarchical tissue organization, where cell home-
ostasis is supported by a small fraction of prolif-
erative cells (stem cells) able to self-renew them-
selves and produce nonproliferative cells. This is
the case for example of gastric epithelium (Potten,
1998) and skin (Potten and Booth, 2002)

2. Homogeneous tissue organization, such as endothe-
lium (Dejana, 2004) or hepatocytes (Ponder, 1996)
in liver where cell homeostasis is maintained by the
replication of the very same differentiated cells. In
this case stem cells are relegated to tissue regener-
ation under acute damage (Ponder, 1996).

The dynamics of growth and regeneration resulting
from these two basic scenarios will be different and have
different consequences to both healthy and neoplasic tis-
sues. In this paper we explore the outcome of the inter-
actions among these components and their consequences
using different mathematical models.

II. MEAN FIELD TISSUE-CANCER MODELS

Here we first explore the simplest models involving tu-
mor growth in two alternative types of tissue architec-
ture. In this context, we do not introduce the hetero-
geneous structure of the cancer population but instead
consider it as a population of essentially identical cells.



Both hierarchical and homogeneous tissue architectures
are used. The most sophisticated model at this level of
description is shown in figure 1. Here four different cell
populations are coupled and are assumed to compete for
available resources. Here: C are cancer cells, H are host
cells, Sc are cancer stem cells and SH normal stem cells.
The associated rates of growth will be indicated as r, f, Γ
and η, respectively. Two cell subsets are thus associ-
ated to both normal and tumor populations. Each tissue
component (healthy tissue and tumor) involves a stem
cell and a differentiated compartment. Since cancer stem
cells are assumed to result from mutations associated to
normal stem cells or matured cell de-differentiation we
also indicate their potential origin as two flows ϕ1 and
ϕ2 from S to Sc and from H to Sc, respectively.

The general treatment of this model is not trivial, and
here we consider a number of relevant simplifications able
to offer insight. In particular, two basic assumptions are
made. First, we will decouple CSC from normal cell com-
partments by setting ϕ1 and ϕ2 to zero. This assumption
is made by considering that the process of CSC produc-
tion is a slow one and that we start from a given fixed
CSC set from which differentiated cancer cells are pro-
duced. Additionally, two types of normal tissue structure
will be considered, including (S > 0) or not (S = 0) the
presence of normal stem cells.

The two resulting tissue architecture models are shown
in figure 2. Our models assume that cancer cell popula-
tions are decoupled from the host dynamics, except for
the competition introduced by the function Φ. This func-
tion will depend on the tissue architecture chosen and
the growth functions. CSC and stem cell populations (if
present) are considered to be constant. In this way, as
shown below, we can easily treat mathematically the two
basic scenarios relevant to our discussion.

The two scenarios can be described by a pair of differ-
ential equations, namely:

dH

dt
= G(H) − HΦ(H, C) (1)

dC

dt
= ηSc + fC − CΦ(H, C) (2)

where G(H) introduces the general form of the growth
of the normal (host) tissue. Here Φ(H, C) introduces an
outflow term (see below). For the homogeneous tissue ar-
chitecture model (figure 2a) we have a linear growth term
G(H) = rH whereas for the hierarchical model (figure
2b)this is a constant term, namely G(H) = ΓS.

An additional assumption is that the total cell popu-
lation is constant. This constant population constraint
(CP) is defined by considering the condition

dH

dt
+

dC

dt
= 0 (3)

which implies that the sum H + C is constant. For sim-
plicity we normalize the total population to one. Using

FIG. 3 Stationary populations of cancer cells C∗ for the hier-
archical (a) and the homogeneous (b) tissue models. The first
exhibits a monotonous, single-phase behavior, which is con-
sistent with the presence of a unique fixed point where cancer
cells and normal tissue coexist. The second show two phases:
a tumor winning phase, where all available space is occupied
by cancer cells (the large plateau) and a different phase where
both tissues coexist. Here we use: ηSc = 0.25, ΓS = 0.25 and
r = 0.5.

the previous condition we obtain:

Φ = G(H) + fC + ηSc (4)

Now we can reduce the previous two-equation model to
a single-equation model, namely:

dC

dt
= ηSc + fC − C (G(H) + fC + ηSc) (5)

and by using the normalization condition H +C = 1, the
final form of the two tissue architecture models is:

dC

dt
= ηSc + C (f(1 − C) − ΓS − ηSc) (6)

for the hierarchical model and

dC

dt
= (1 − C) ((f − r)C + ηSc) (7)

for the homogeneous tissue1

1 For both models when Sc = 0 we obtain a particular case for a



The two mean field models are now easily analyzed.
First, we compute the equilibrium (fixed) points C∗.
These points satisfy dC/dt = 0. For equation (6) a single
fixed point is obtained:

C∗ =
f − ηSc − ΓS +

√

(f − ηSc − ΓS)2 + 4fηSc

2f
(8)

(the negative solution has no meaning). This unique
point will be always stable provided that Sc > 0 i. e.
if cancer stem cells are present.

The stability of the equilibrium point is determined
following standard methods (Strogatz, 1994). If we indi-
cate as g(C) = dC/dt, then the point C∗ is stable if the
derivative:

dg(C)

dC
= f − ΓS − ηSc − 2C (9)

is negative for C = C∗. If we use Q = f − ΓS − ηSc and
replace C = C∗ in equation (9) we obtain

dg(C∗)

dC
= Q − 2fC∗ = −

√

Q2 + fηSc (10)

Which cannot be positive and thus C∗ is always stable.
The dependency of the cancer cell population C∗ at equi-
librium in relation to replication rate f and the produc-
tion from cancer stem cells ηSc is shown in figure 3(a).
We can see that a continuum of stationary values is ob-
tained, as predicted from the presence of a single fixed
point. If cancer stem cells are removed (Sc = 0) then the
equilibrium point is stable only if f > ΓS and otherwise
an alternative fixed point C∗ = 0 is reached with no can-
cer present. The stability condition just tells us that the
rate of cancer growth under the absence of cancer stem
cells must be larger than the production rate of normal
cells.

For the homogeneous model, we have now two fixed
points, namely a tumor-winning state C∗

1 = 1 and a co-
existence point

C∗

2 =
ηSc

r − f
(11)

In this case the stability analysis shows that the tumor
winning scenario (C∗

1 stable) occurs when the following
inequality holds:

r < f + ηSc (12)

and C∗

2 will be stable otherwise (i. e. for r > f + ηSc).
The two possible phases are observable in figure 3(b),
where a plateau indicates the domain of cancer-winning
parameters, whereas the linear decay seen at low param-
eter values corresponds to the coexistence domain. For
Sc = 0 we have a classical competition model with two

cancer without any stable reservoir.

excluding solutions. If r < f then the stable point will
be C∗

1 = 1 and otherwise, C∗

2 = 0.
The previous approach can be generalized by consid-

ering other types of functional dependencies among cell
types. For example, we could use a dynamical model
where the Φ function is a different one, including other
types of biologically sensible limitations. In appendix I
we consider a general class of model that includes the
previous one as a particular case. As shown there, our
previous results are robust and do not change by using
other types of functional responses.

III. THE ROLE OF GENETIC INSTABILITY

As mentioned at the introduction, cancer stem cells
are the reservoir of stability in a tumor. They are able to
maintain their cellular organization and simultaneously
generate further cancer cells that are free from such con-
straint. What is the impact of an unstable cancer cell
population on the final outcome of tumor progression?
A first approximation to this problem can be obtained
by considering an extension of the previous two mod-
els that incorporates instability. Since we consider all
cells within one compartment as equal, all cancer cells
will share a common instability level. This is of course
a rough approximation, which we will relax in the next
section by considering a hierarchy of instability levels and
thus population heterogeneity.

In order to choose an appropriate form of both growth
and instability constraints, we will use the following func-
tional form for the replication rate of cancer cells:

f(µ) = r(1 + g(µ))d(µ) (13)

where the functions g(µ) and d(µ) will introduce both the
selective advantage and the deleterious effects on replica-
tion, associated to each instability level µ, respectively.

As discussed above, g(µ) will be an increasing function,
since it indicates that higher replicating strains are more
easily found as instability increases. This can be under-
stood in terms of the potential number of oncogenes and
tumor suppressor genes that, if mutated, can favor in-
creased proliferation. Moreover, the function d(µ) must
introduce the deleterious effects of instability and thus
needs to be a decreasing function. Assuming that in-
stability causes changes in r we consider that for µ = 0
cancer populations will have the same replicative power
than healthy cells, i. e. f(0) = r.

Many possible choices for g(µ) and d(µ) can be made.
Here we show our results for a linear dependency in the
growth term, g(µ) = αµ: the higher the instability, the
more likely is to hit a proliferation-related gene. For the
second term, we need to consider the probability of affect-
ing housekeeping genes. Here we can make a rough esti-
mation using available data on housekeeping (HK) genes
and therefore leading to a nonviable cell. The probabil-
ity Ph(µ) of hitting a HK gene for a given instability rate
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FIG. 4 The role of genetic instability in the two previous
models is summarized here by plotting the cancer cell pop-
ulation against both instability level µ and CSC production
ηSc for: (a) the hierarchical model and (b) the homogeneous
model. In (c) we represent the two domains of behavior shown
in (b) by means of a two-dimensional parameter space. We
can see that in order to have a successful expansion of the
unstable tumor, a given amount of cell proliferation from the
CSC compartment is required. All parameters as in figure 3,
with α = 100 and µc = 0.08.

will be

Ph(µ) = 1 − (1 − µρh)nh (14)

where ρh is the relative frequency of HK genes and nh

their absolute number. Current estimates (Eisenberg and
Levanon, 2003) give nh ≈ 500−600 to be compared with

the total number of genes Ng ≈ 3 × 104. This gives
ρh = nh/Ng ≈ 0.016 − 0.02. Assuming µρh small and
nh = 600, we can write

Ph(µ) = 1 − e−µρhnh (15)

(using the Taylor expansion e−z ≈ 1 − z) with ρhnh ≈
12. The probability of generating a viable cell will be
1 − Ph(µ) and thus we can use an exponential form
for the effect of deleterious mutations, namely d(µ) =
exp(−µ/µc), with µc ≈ 0.08. Note that µ = 0 leads to
d(0) = 1, i. e. no deleterous effect by instability and by
contrast g(0) = 0, no selective advantage. Here α will
be a given constant (not estimated from real data). The
resulting function will have a maximum at some given µ∗

value, i. e.
(

∂f(µ)

∂µ

)

µ=µ∗

= 0 (16)

and also
(

∂2f(µ)

∂µ2

)

µ=µ∗

< 0 (17)

which in our case gives a maximum at

µ∗ = µc −
1

α
(18)

Such value will be positive provided that µc > 1/α and
this inequality actually defines a necessary condition for
a successful unstable tumor to propagate.

In figure 4 we summarize our results for the mean field
model incorporating genetic instability. Once again, the
hierarchical tissue displays a continuous, although non-
linear relation between the stationary cancer population
and instability levels. In particular, if the production
term is small, a large cancer cell population can be sus-
tained only if the instability level is small enough. Once
it keeps increasing, a rapid decay occurs. The homoge-
neous model shows again two well-defined phases. These
two phases can be obtained from the generalized condi-
tion for stability:

r < f(µ) + ηSc (19)

which leads to
(

1 −
ηSc

r

)

eµ/µc < 1 + αµ (20)

The two phases are clearly indicated in figure 4(c). Here
we can appreciate the effects of instability and cancer
stem cells in terms of a threshold phenomenon. In order
for the tumor to grow and outcompete the host tissue, we
need either low levels of instability if the production term
is small or large production rates able to overcome the
deleterious effects of instability. It can be easily shown
that the limit value of ηSc for high instability levels is
ηSc = r: the rate of cancer cell production must (at
least) equal the normal tissue growth rate.
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FIG. 5 Sequential unstable cancer model. Here only the cancer cell populations are shown, starting at left from a compartment
of cancer stem cells of fixed size Sc. At a rate η, differentiated, unstable proliferating cancer cells C1 are generated, with an
increased instability level µ1. New cells are generated at a rate f1(1 − µ1) whereas mutated cells C2 originate at a rate f1µ1.
The new population has an average instability µ2 = µ1 + ∆µ. The process continues and as we move to the right increasing
instability levels are involved.

IV. MULTISTEP MODEL OF GENETIC INSTABILITY

The previous models considered a homogeneous cancer
cell population, being all cells equal in terms of their dy-
namics. A tumor is far from a homogeneous system and
mounting evidence indicates that they might actually dis-
play high levels of genetic heterogeneity in space and time
(González-Garćıa et al., 2002). Due to genetic instability,
the possible spectrum of replication and death rates (as
well as many other aspects of cell function) will typically
present a large variance. How is the introduction of such
heterogeneity changing our previous picture? If a spec-
trum of instability levels is reached, how are mutation
rates distributed over the population structure? How is
this heterogeneous structure affecting tumor dynamics?

Each time a cancer cell replicates, new mutations can
arise. In such scenario, genes controlling genome in-
tegrity will fail to do so and further mutations will arise.
Eventually, the increasing mutation rate will affect other
repair and stability genes. Each time new mutations oc-
cur, new opportunities will appear for finding cell phe-
notypes that replicate faster. In parallel, increasing mu-
tation rates will also jeopardize cell replication due to
deleterious effects. The two conflicting constraints can
be introduced in a general model of unstable tumor pro-
gression where a range of possible instability levels is in-
troduced explicitly.

Instead of lumping together all cancer cells in a single
phenotype, we will describe the cancer population as a
set of compartments C = {C1, C2, ..., CM} where M is
the maximum number of cancer cell types. This linear
chain model allows defining a multistep model of unstable
tumor progression. Each compartment Ci is character-
ized by a given replication rate fi and a given instability
level µi. Increasing instability allows a one-directional
flow Ci−1 → Ci → Ci+1.

As we move to higher instability levels, the likelihood
to generate nonviable cancer strains increases. The ba-
sic scheme of this model is outlined in figure 5. A linear
chain of events connects cancer cells through increasing
levels of mutation. Of course this is again an oversim-

plification of reality, since each compartment actually in-
cludes a diverse zoo of cells sharing common instabilities
but having different replication rates. Once again, we
collapse all this diversity in a single number.

The new model (following figure 5) is described by a
system of M + 1 coupled differential equations:

dH

dt
= G(H) − HΦ(H,C) (21)

dC1

dt
= ηSc + f1(1 − µ1)C1 − C1Φ (22)

dC2

dt
= f1µ1C1 + f2(1 − µ2)C2 − C2Φ (23)

. . . (24)

dCi

dt
= fi−1µi−1Ci−1 + fi(1 − µi)Ci − CiΦ (25)

. . . (26)

dCM

dt
= fM−1µM−1CM−1 + fMCM − CMΦ (27)

For this system, we have now:

Φ(H,C) = G(H,C) +
M
∑

j=1

fjCj + ηSc (28)

which generalizes our previous expression. As we move to
higher instability levels, we should expect to reach some
critical level where cells are nonviable. In that sense, we
will assume that the maximum number of cell compart-
ments M is large enough so that fM ≈ 0. The role of
instability can be introduced as already defined for the
mean field (one-dimensional) models, but now we can
consider different levels for each compartment and thus
different replication rates:

fi = r(1 + g(µi))d(µi) (29)

Following our previous discussion, we have g(µi) = αµi

and d(µi) = exp(−µi/µc), respectively.
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FIG. 6 Time evolution of the multistep model for (a) hierarchical tissue (ηSc = 0.0001, µc = 0.08, ΓS = 0.5 and α = 20) and
(b) homogeneous tissue (ηSc = 25 × 10−3, α = 20, µc = 0.08 and r = 0.25). The change in mutation rate from compartment
to compartment is ∆µ = 0.001 and the compartment number needs to be rescaled by µ × 10−3/3 in order to obtain the exact
genetic instability level. In both cases, the tumor diffuses through instability space as a wave, reaching a steady distribution
near the optimal mutation rate µ∗ (but typically moving beyond this value). In the first case, a stable tumor of finite size
is formed, whereas in the second all the invaded tissue becomes tumor. In both cases, a gap is formed between the CSC
compartment and the unstable tumor population.

Starting from an initial condition including just
healthy and cancer stem cells, new cancer cells are gener-
ated and the population structure starts moving through
the instability space. The dynamics of the population
structure is shown in figure 6 for both homogeneous and
hierarchical models. Here we show the frequency of can-
cer cell types along time and mutation space. We can
see that there is a steady state where most cancer cells
become organized close to a maximal level of instability.
This is actually the result of the spontaneous tendency
of moving towards higher mutation rates and the brakes
associated to increasing deleterious effects. A small peak
is observable at small mutation rates, indicating the pres-
ence of cancer stem cells.

A remarkable outcome of our models is the presence of
a gap in instability space. Such stability gap implies that
the largest part of the tumor will be displaced towards
high instability and high replication, leading to a highly
heterogeneous population as it is occurs in real tumors
(particularly when CIN is present). Under our contin-
uous approximation, evolves towards a high instability
level and the population distribution eventually reaches a
steady state. The distribution has a peak close to the op-
timal instability level µ∗ but typically moves beyond this
value. Such result would suggest that tumors growing un-
der the mutator phenotype might become too unstable
and thus more fragile than expected. It also seems con-
sistent with the observation that cells taken from samples
obtained from tumors seldom develop colonies except for
special cell types that correspond to CSC. If no instability
gap were present, we would expect having a continuum of
colony-forming capacities associated to cancer cells hav-

ing more or less stability levels. The all-or-none pattern
observed from experimental systems indicates that non-
CSC are highly unlikely to develop colonies. which will
be the case for the unstable population. This pattern is
a prediction of our model.

V. DISCUSSION

Cancer dynamics display most features common to
other biological systems experiencing Darwinian selec-
tion (Merlo et al., 2006). The lack of cooperation and
inhibition among cancer cells leads to the survival of the
fittest: the most efficient replicators are the winners. But
the whole picture is more complicated and the study
of complexity in cancer development can benefit from
modelling approaches (Dingli and Nowak, 2006; Spencer
et al., 2006; Wodarz and Komarova, 2005). Spatial het-
erogeneity and genetic instability introduce several rel-
evant components that can modify the standard predic-
tions of a purely Darwinian dynamics. Previous theoreti-
cal works (Solé, 2002; Solé and Deisboeck, 2003) (see also
(Poyatos and Carnero, 2004)) suggest that genetically
unstable cancer population exhibit an error threshold of
instability beyond which population drift occurs. As a
consequence, increasing mutation rate we would force tu-
mor regression. However, mounting evidence reveals that
tumors benefit from a highly stable component: cancer
stem cells. Such a small, but robust ingredient seems to
play the role of a reservoir of stability. In this context,
it has been postulated that such stem cells are likely to
be very resistant against the action of drugs since they



present different cell cycle kinetics, more active mech-
anism for drug exclusion than cancer cells (Dean and
Bates, 2005) as well as DNA repair mechanisms (Dean
and Bates, 2005; Wicha and Liu, 2006). In addition, stem
cells avoid mutation accumulation by keeping the same
parental DNA strand into stem cell by a selective segre-
gation process (Merok et al., 2002; Potten et al., 2002).
According to this cancer stem cell surveillance even if
tumor ressection is successful, the preservation of these
CSC allows a new tumor to be formed. Cancer stem cells
and unstable cancer cells thus define a complex system,
where information is preserved in the stable compartment
while exploration and adaptation takes place thanks to
the intrinsic lack of reliable genome replication of unsta-
ble cancer cells.

In this paper we have considered the problem of the
interplay between cancer stem cells and genetic instabil-
ity within the context of tissue architecture. A previous
model (Komarova, 2005) suggested that hierarchical tis-
sues appear as a solution to prevent cancer and cell aging
thus reinforcing the relevance of tissue structure in under-
standing oncogenesis. In our paper we have shown that
appropriate simplifications allow treating the all these
components in a theoretically meaningful way. We have
seen that (under the assumptions made here) the pres-
ence of cancer stem cells acts as the engine of tumorigen-
esis and presents a number of tradeoffs with genetc insta-
bility. Beyond the mean field models (reduced to a single
equation by using the constant population constraint)
the use of a multistep model of instability reveals that
we should expect most cells in the tumor to be highly
unstable and distribute close to the optimal instability
level. Therapies detecting CIN cells could exploit this
feature and take advantage of the tumor fragility. This
is actually consistent with the observation that tumors
displaying high CIN have better prognosis. On the other
hand, tumor resection affecting only unstable cells will
not prevent the emergence of a new tumor mass, since
the instability wave easily reappears (results not shown).
Future work should consider several generalizations of
our theoretical models using stochastic implementations
(such as branching processes, see (Kimmel and Axelrod,
2002)) spatially-explicit models and more accurate rep-
resentations of cell genomes and the cell cycle.
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VI. APPENDIX: GENERALIZED MODEL OF

CANCER-NORMAL TISSUE INTERACTIONS

In this appendix we consider the effect of changing our
previous model description of the cancer-normal tissue

interactions. Starting with our initial set of equations
(1,2) let us assume that Φ(H, C) is a continuous differ-
entiable function in both arguments H ≥ 0 and C ≥ 0,
is such that the following set of conditions is fulfilled:

Φ(0, 0) = Φ0 ≥ 0 (30)

∂Φ

∂H
> 0 (31)

∂Φ

∂C
> 0 (32)

(and thus dC/dh < 0). We will show that the basic
results presented in section II hold, provided the previous
conditions are met.

A. Homogeneous tissue

For the homogeneous tissue, we would have

dH

dt
= H(r − Φ(H, C)) (33)

dC

dt
= C(f − Φ(H, C)) + ηSc (34)

The nullclines of this system for H > 0 are thus

Φ(H, C) = r (35)

Φ(H, C) =
ηSc

C
+ f (36)

Under the previous assumptions on Φ(H, C), Eq. (36)

implicitly defines the function H = Ĥ(C). Moreover,
from the total derivative of the previous expression, we
have that Ĥ(C) is a decreasing function with

dĤ

dC
= −

(

ηSc

C2
+

∂Φ

∂C

)(

∂Φ

∂H

)

−1

(37)

which implies that Ĥ(C) → ∞ as C → 0. Therefore, if

C∗ is the value of C such that Ĥ(C∗) = 0, the system has
P ∗

1 = (0, C∗) as an equilibrium point. Now, comparing
(35) with (36), it follows that, in order to find a condition
for a coexistence equilibrium P ∗

2 , we have to consider
two possible cases. The first one corresponds with the
inequality

ηSc

C∗
+ f < r (38)

For this situation, it is not difficult to show that P ∗

1 is a
saddle point whereas P ∗

2 is globally stable (for H0 > 0).
When the opposite inequality is at work, namely

ηSc

C∗
+ f ≥ r (39)

P ∗

1 is the only equilibrium point which is globally stable
for H ≥ 0 and C ≥ 0.



B. Hierarchical tissue

For the second type of tissue structure, the equations
now read

dH

dt
= ΓS − HΦ(H, C) (40)

dC

dt
= C(f − Φ(H, C)) + ηSc (41)

The new nullclines are now

Φ(H, C) =
ΓS

H
(42)

Φ(H, C) =
ηSc

C
+ f (43)

respectively. We need to characterize the relative po-
sition of the nullclines in the (H, C)-plane in order to
determine the existence and stability of a positive equi-
librium point P ∗.

From the first nullcline, we have:

∂Φ

∂C
+

∂Φ

∂H

(

dĤ

dC

)

= −
ΓS

H2

(

dĤ

dC

)

(44)

which can be written as:

(

∂Φ

∂H
+

ΓS

H2

)

dĤ

dC
= −

∂Φ

∂C
< 0 (45)

Similarly, from the expression of the second nullcline we
obtain:

∂Φ

∂H

(

dĤ

dC

)

= −
ηSc

C2
−

∂Φ

∂C
< 0 (46)

Therefore, the existence of a globally stable equilibrium-
point P ∗ follows since

(

dĤ

dC

)

Ċ=0

<

(

dĤ

dC

)

Ḣ=0

< 0 (47)

the nullcline H ′ = 0 is tangent to the C-axis and the
nullcline C′ = 0 is tangent to the H-axis and thus they
cross each other.
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