Metabolic Photo-Fragmentation Kinetics for a Minimal Protocell: Rate Limiting Factors, Efficiency, and Implications for Evolution

Chad Knutson
Gil Benko
Tristan Rocheleau
Fouzi Mouffouk
Jerzy Maselko

SFI WORKING PAPER: 2006-12-047

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may be reposted only with the explicit permission of the copyright holder.

www.santafe.edu
Metabolic photo-fragmentation kinetics for a minimal protocell: Rate limiting factors, efficiency, and implications for evolution

Chad Knutson
EES-2, Los Alamos National Laboratory, MS-D462, Los Alamos NM 87545, USA, knutson@lanl.gov, (505) 667-5092

Gil Benkö
Graduiertenkolleg Wissensrepräsentation, Leipzig University, Leipzig, Germany, gil@bioinf.uni-leipzig.de

Tristan Rocheleau
University of California Santa Barbara, Santa Barbara CA 93106, USA, tristanr@lanl.gov

Fouzi Mouffouk
Argonne National Laboratory, Argonne IL 60439, USA
Rush University, Chicago IL 60612, USA, Fouzi_Mouffouk@rush.edu, (630) 252-3861

Jerzy Maselko
University of Alaska Anchorage, Anchorage AK 99508, USA, afjm1@uaa.alaska.edu, (907) 786-4748

Liaohai Chen
Argonne National Laboratory, Argonne IL 60439, USA
Rush University, Chicago IL 60612, USA, lhchen@anl.gov, (630) 252-3975

Andrew P. Shreve
MPA-CINT, Los Alamos National Laboratory, MS-K771, Los Alamos NM 87545, USA, shreve@lanl.gov, (505) 667-6933

Steen Rasmussen*
Self-Organizing Systems (SOS), EES-6, Los Alamos National Laboratory, MS-D462, Los Alamos NM 87545, USA
Santa Fe Institute, Santa Fe NM 87501, USA
University of Copenhagen, IMBG, Blegdamsvej 3 DK-2200, Denmark
* Corresponding author: steen@lanl.gov, (505) 665-0052

KEYWORDS: metabolism, photo-fragmentation, kinetics, gene selection, protocell
Abstract

A key requirement of an autonomous self-replicating molecular machine, a protocell, is the ability to digest resources and turn them into building blocks. Thus a protocell needs a set of metabolic processes fueled by external free energy in the form of available chemical redox potential or light. We introduce and investigate a minimal photo-driven metabolic system, which is based on photofragmentation of resource molecules catalyzed by genetic molecules. We represent and analyze the full metabolic set of reaction kinetic equations and, through a set of approximations, simplify the reaction kinetics such that analytical expressions can be obtained for the building block production. The analytical approximations are compared to the full equation set and to corresponding experimental results to the extent they are available. It should be noted, however, that the proposed metabolic system has not been experimentally implemented, so this investigation is conducted to obtain a deeper understanding of its dynamics and perhaps to anticipate its limitations. We demonstrate that this type of minimal photo-driven metabolic scheme is typically rate limited by the front-end photoexcitation process while its yield is determined by the genetic catalysis. We further predict how gene catalyzed metabolic reactions can only undergo evolutionary selection for certain combinations of the involved reaction rates due to their intricate interactions. We finally discuss how the expected range of metabolic rates likely impacts other key protocellular processes such as container growth and division as well as gene replication.
1 Introduction

The importance of studying minimal protocells [38, 29, 14] lies, among others, in furthering an understanding of what life is and the fundamental phenomena associated with life. A minimal protocell may consist of three component molecules: lipids for the container, precursor and energy capture molecules for the metabolic processes, and information molecules (genes) for the genetic material, as outlined in [30]. In this work we investigate the reaction kinetics of a simple metabolic system that could operate as part of such a protocell. The metabolic scheme uses light energy to drive a reaction that produces additional molecules for the information molecules and for the container. The novel feature of this scheme is that the protocell’s information molecules are directly involved in the metabolic processes.

The use of light energy to drive chemical reactions is expanding to more complex systems. Photochemistry is currently used in applications such as photolithography and X-ray crystallography to generate the desired product in a controllable manner, enabling the production of nanometer scale images. Much work in the area of artificial photosynthesis is ongoing, and some promising advancements have occurred, including the generation of a proton motive force across a membrane by embedding a photosensitizer within the membrane [18, 37]. Further breakthroughs could lead to functioning photo-driven metabolic systems for artificial cells.

Over the last few decades, a considerable amount of knowledge has been accumulated on electron transfer processes initiated by photoexcitation of potential donors or acceptors that typically show no interaction in their ground states. The intermediates, generated from single electron transfer quenching of the excited state of donor or acceptor, can provide useful chemical reactions [1, 39, 9]. An area of growing interest is radical ion fragmentation initiated by photoinduced electron transfer [27, 28, 40, 10]. Several of these reactions are very clean processes in which a single carbon-carbon, carbon-oxygen or carbon-nitrogen bond is selectively broken in high chemical yield and sometimes with reasonable quantum yield. In general, the quantum efficiency of these reactions depends on the competition of three processes after quenching the excited state through the electron transfer: back electron transfer (k_{back}), ion radical pair separation (k_e) and bond cleavage (k_L) as outlined in Figure 1.

FIGURE 1 HERE

Despite the discovery of several systems that undergo efficient bond cleavage, the quantum efficiency of the reaction is generally small. The relatively fast return electron transfer within the geminate radical-ion pair
and slow bond fragmentation rate are the primary causes of poor quantum efficiency. When the rate of fragmentation k_L is much slower than the rate of back electron transfer k_{back} and ion pair separation k_e (which is true for most cases), the reaction quantum yield largely depends on the ratio of k_e to k_{back} because deactivation of the separated radical ions through second-order recombination is a slow process, especially when conventional light sources are used. Otherwise, higher quantum efficiency can be obtained if k_L is comparable to or larger than k_{back} (or k_e). It is quite common to encounter k_{back} of 10^{10} s$^{-1}$ and higher, which results in quantum yields of separated radical ion of 5 to 10% or less. In order to improve the quantum efficiency of a bond cleavage reaction, one can either increase k_e or k_L. However, in most solvents k_e seems to be rather insensitive (ca. 5×10^8 s$^{-1}$ to 10^9 s$^{-1}$) to the structure of the radical-ion pair or to the reaction energetics. Using an electron relay system for an efficient k_L is the most commonly used method to increase reaction quantum efficiency.

Recently, bio-related molecules that may be used as information molecules such as peptide, DNA, or peptide nucleic acid (PNA) have been demonstrated to be excellent electron relay systems [15, 16, 25, 31, 8, 2]. Since the efficiency of charge transfer rate is sequence dependent, we can use certain sequence of DNA or PNA strands as an electron relay system to control the fragmentation reaction efficiency. This enables an avenue to couple the gene information to the production of lipid molecules. Rationally designed sequences could generate the radical ion of the other reactant at a much higher quantum yield, which would subsequently undergo fragmentation reaction to form lipid molecules. This may produce a selection pressure to drive protocell evolution toward PNA sequences with optimal electron transfer rates.

It has been well established that phenacyl esters can undergo photo-induced C-O bond scission to form acetophenone (PhCOCH$_3$) and the corresponding carboxylic acid (RCOOH, surfactant) in the presence of appropriate electron donor molecules [4]. However, the quantum efficiency is very low (ca. 0.01 - 0.05) because of fast back electron transfer. As mentioned earlier, a sensitizer coupled with an electron relay system can be introduced to block back electron transfer, increasing the quantum yield of the reaction. A direct autocatalytic feedback between PNA proto-genes and the production of both lipid molecules and more PNA precursor molecules can be implemented by using a donor sensitizer (Z) modified PNA as the electron relay system to photo-fragment various phenacyl esters (PhCOCH$_2$-OCOR, where R = long carbon chain). The excited state of the sensitizer reduces phenacyl esters, and then the sensitizer cation radical is reduced by PNA.
molecules. Stilbene derivatives appear to be suitable sensitizers for this process.

The objective of this paper is to introduce a minimal photochemical system that can be used as the metabolic system of a protocell. A key feature of this system is that a genetic molecule is directly involved (or must be present in order for the system to function correctly). The desired end-product of the process is a fatty acid molecule for the protocell aggregate and/or PNA oligomers that can undergo template directed polymerization. The kinetics of the photochemical system are investigated, and the resulting equations are simplified to obtain analytical expressions for the overall metabolic production rate. The consequences of a catalytic coupling between a metabolic container production and gene replication are discussed in [32, 26].

2 The metabolic reactions

In the proposed protocell model, first generation protocells are formed by self-assembly [30]. The lipids that form the protocell container are carboxylic acids (L) which form micellar structures at appropriate concentrations, pH values, and salt concentrations. The hydrophobic photosensitizers (Z) (either stilbenes or aromatic amines) are present within the oily interior of the micelle. The genes are modified peptide nucleic acid (PNA) chains that partition to the interface of the container and the surrounding solution. However, the genes could be any amphiphilic or hydrophilic nucleic acid molecule that associates with lipid aggregates. The resource molecules consist of precursor lipids (pL), e.g. phenacyl, and precursor information molecules (pO) that must be continuously added to the solution. These resource molecules are either hydrophobic or amphiphilic, so they partition to the container interior or surface. The metabolic system transforms precursor lipids (pL) into lipids (L), the container building blocks, and amphiphilic precursor PNA oligomers (pO) into functional oligomers that can ligate (polymerize). The pOs attach to the aggregate surface with the hydrophobic backbone anchored into the interior.

All electron transfer reactions are assumed to occur within the aggregate’s oily phase or interface because the double stranded PNA and the photosensitizer are immersed in the lipid aggregate or are deeply anchored at the interface. We can either assume that the hydrophobic photosensitizer (Z) is covalently bonded to the PNA backbone, increasing its hydrophobicity, or that it exists in sufficient concentration within the aggregate.

Figure 2 here
The metabolic scheme for the protocell is presented in Figure 2. Upon radiation with light of an appropriate wavelength the sensitizer is excited (Z^*) with rate constant $k_{h\nu}$ and due to the close proximity to the precursor lipids (pL), or precursor oligimers (pO), this causes a charge separation, and thus a contact ion pair leaving the sensitizer positively charged (Z^+) and the nearby precursor molecules (pL$^-$ or pO$^-$) negatively charged (rate k_{ip}). For most excitations the charges will quickly rejoin, dissipating the energy by emission and returning the system to the ground state again (rate constant k_{back}). This back reaction inhibits any significant quantum yield from the photochemical reaction.

However, double stranded PNA with an appropriate base composition and sequence (presumably two neighboring guanine (G) bases) should be able to act as a catalyst for the reaction through an electron relay system [30, 20]. Guanine bases within the PNA string can reduce Z^+ by charge transfer ($G \rightarrow G^+ + e^-$) with rate constant k_r. The positively charged PNA may be neutralized by HS$^-$ or some other terminal electron donor (rate constant k_{HS}). This process separates the charges and allows the energized and negatively charged precursor molecule (pL$^-$ or pO$^-$) sufficient time to undergo a fragmentation process through the breakage of the ester bond, resulting in the production of a functional oligomer or lipid molecule.

Another possibility for the Z^+/pL^- contact ion pair is that the cation and anion may separate (rate constant k_e). This is problematic because Z^+ may then be reduced by a number of different molecules present in solution, including water, instead of the information molecule (rate constant k_m). Along this pathway, the information molecule is not functionally part of the metabolic scheme and the necessary gene control of the system breaks down.

We can now write the reaction kinetic reactions for lipid production within the photo metabolic system. The production of functional PNA oligomers follows the same pattern. We assume that the PNA gene concentration in the aggregates is constant and that the ratio between single and double stranded PNA within the aggregates is fixed.
\[
\frac{d[pL]}{dt} = -k_{ip}[Z^*][pL] + k_{back}[Z^+/pL^-] \\
\frac{d[Z]}{dt} = -k_{hv}[Z] + k_{lum}[Z^*] + k_{back}[Z^+/pL^-] \\
\quad + (k_r[Z^+/pL^-] + k_m[Z^+]) [PNA] \\
\frac{d[Z^*]}{dt} = k_{hv}[Z] - k_{lum}[Z^*] - k_{ip}[Z^*][pL] \\
\frac{d[Z^+/pL^-]}{dt} = k_{ip}[Z^*][pL] - k_{back}[Z^+/pL^-] \\
\quad - k_e[Z^+/pL^-] - k_r[Z^+/pL^-] [PNA] \\
\frac{d[Z^+]}{dt} = k_e[Z^+/pL^-] - k_m[Z^+][PNA] \\
\frac{d[pL^-]}{dt} = k_r[Z^+/pL^-] + k_r[Z^+/pL^-] [PNA] \\
\quad - k_L[pL^-] \\
\frac{d[L]}{dt} = k_L[pL^-].
\]

Values for the rate constants used in this work are shown in Table 1. Values for rate constants that could not be found in the literature are obtained by fitting fatty acid production rates from Sundararajan and Falvey [35] using known literature values where possible. The photoexcitation rate may change significantly for different light sources or sensitizer molecules. Insufficient charge transfer studies have been performed with PNA compared to DNA, so we estimate \(k_r \sim 10^9 (\text{M s})^{-1}\), as is the case in DNA [6].

3 Separation of reaction timescales

The objective of the following analysis is to obtain expressions for the rates of formation of \(L\) and of removal of \(pL\) that depend only on the \(pL\) concentration and the rate constants. The first step of the scheme that involves \(pL\) is a bimolecular reaction with \(Z^*\). The concentration of \(Z^*\) changes with time in the scheme, but a reasonable estimate may be obtained by assuming that the concentrations of all species containing the sensitizer reach equilibrium before significant changes in \(pL\) are observed. Additionally, we assume that \(k_r [\text{PNA}] \gg k_e\), so that the concentration of \(Z^+\) may be set equal to zero. Mathematically, the time rate of change for species \(Z, Z^*, \text{and } Z^+/pL^-\) are set equal to zero. These equations are solved simultaneously along with the
Table 1: Estimated values of rate constants. * indicates that values have
been estimated by fitting fatty acid production rates from Sundararajan and
Falvey [35].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{h\nu}$</td>
<td>10^9</td>
<td>s$^{-1}$</td>
<td>*</td>
</tr>
<tr>
<td>k_{lum}</td>
<td>10^8</td>
<td>s$^{-1}$</td>
<td>*</td>
</tr>
<tr>
<td>k_{ip}</td>
<td>3×10^9</td>
<td>(M s)$^{-1}$</td>
<td>[35, 33]</td>
</tr>
<tr>
<td>k_{back}</td>
<td>10^4</td>
<td>s$^{-1}$</td>
<td>[17, 33]</td>
</tr>
<tr>
<td>k_r</td>
<td>10^9</td>
<td>(M s)$^{-1}$</td>
<td>[6]</td>
</tr>
<tr>
<td>k_e</td>
<td>10^6</td>
<td>s$^{-1}$</td>
<td>[17]</td>
</tr>
<tr>
<td>k_m</td>
<td>10^6</td>
<td>(M s)$^{-1}$</td>
<td>[6]</td>
</tr>
<tr>
<td>k_L</td>
<td>10^6</td>
<td>s$^{-1}$</td>
<td>*</td>
</tr>
</tbody>
</table>

mass balance of the sensitizer ($[Z] + [Z^*] + [Z^+/pL^-] = Z_0$). The value of
$[Z^*]$ is estimated as

$$[Z^*]_{eq} \approx \frac{k_{h\nu}(k_{back} + k_r[PNA])Z_0}{k_{h\nu}k_{ip}[pL] + (k_{back} + k_r[PNA])(k_{ip}[pL] + k_{lum} + k_{h\nu})}.$$ (8)

This approximation may be simplified when terms differ by orders of magnitude or greater.

To contract the remaining steps of the reaction scheme, we employ
the approximations described in the Appendix. The next section of the
metabolic process converts pL to pL$^−$. This set of reactions has the same
form as reaction scheme in Equation 18. The first forward reaction is the bi-
molecular reactions between pL and Z* to form the contact ion pair Z$^+/pL^-$.
The contact ion pair may proceed in the forward direction by two different
pathways, but we have already assumed that $k_r [PNA] \gg k_e$, so only the
electron transfer from PNA needs to be considered. Alternatively, the con-
tact ion pair may undergo back electron transfer to the ground state. The
rate equation for converting pL to pL$^−$ can be approximated by

$$\frac{d[pL]}{dt} \approx -k_{first}[pL].$$ (9)

where

$$k_{first} = \frac{[Z^*]_{eq}k_{ip}k_r[PNA]}{[Z^*]_{eq}k_{ip} + k_{back} + k_r[PNA]}.$$ (10)
The back reaction in this equation is slightly different than reaction scheme in Equation 18 because the sensitizer in $Z^+/{\text{pL}}^-$ returns to the ground state rather than to the excited state. But this may be neglected because the sensitizer species are assumed to be in equilibrium.

The final step that we consider is the fragmentation of pL^- to produce lipids. If Equation 9 is taken as the rate for a single reaction step, then a combined rate for this step and the fragmentation reaction may be obtained using reaction in Equation 16. Thus, the overall rate of lipid production is given by

$$k_{\text{tot}} \approx \frac{k_{\text{first}}k_L}{k_{\text{first}} + k_L}.$$
(11)

Thus, the rate of change of pL and L may be estimated by

$$\frac{d[\text{pL}]}{dt} \approx -k_{\text{tot}}[\text{pL}]$$
(12)

$$\frac{d[L]}{dt} \approx k_{\text{tot}}[\text{pL}].$$
(13)

These equations are easily solved using the initial conditions that $[\text{pL}](t=0) = pL_0$ and $[L](t=0) = 0$.

We consider two limiting cases for lipid production that depend on the value of photoexcitation rate, $k_{h\nu}$. Because the concentration of PNA is very small (10^{-4} M), the electron transfer from PNA to the sensitizer controls the overall rate of reaction once a sensitizer is excited. In both fast and slow excitation, the overall rate constant may be approximated as $k_{\text{tot}} \approx [Z^*]_{eq}k_{\text{ip}}$, where the concentration of Z_{eq} depends on the excitation rate. For fast excitation, $[Z^*]_{eq} \approx k_r[\text{PNA}]Z_0/(k_{\text{ip}}[\text{pL}])$. Then, the rate of change for L concentration is simply given by

$$\frac{d[L]}{dt} \approx k_r[\text{PNA}]Z_0,$$
(14)

so that the removal rate of pL is constant as long as sufficient pL is present.

For slow photoexcitation, the rate limiting step is the photoexcitation of the sensitizer molecule. In this case, the rate equations for pL and L are Equations 12 and 13, respectively, and the rate equation for L is given by

$$\frac{d[L]}{dt} \approx \frac{k_{h\nu}}{k_{\text{turn}}}k_{ip}Z_0[\text{pL}].$$
(15)

In this case, production of L is exponential with time.
In Figure 3, concentrations of precursors and lipids are plotted versus time for both fast and slow photoexcitation rates. In each case, both the simplified equations and numerical solutions to the full set of equations are plotted. Contact ion pair separation is included in these calculations with the value of k_e set equal to the value shown in Table 1. Excellent agreement is achieved for lipid formation in each case.

Figure 3 here

4 Rate limitations and electron transfer efficiency

For the estimated values of reaction rate constants in this study, the rate limiting step is the photoexcitation of the sensitizer. The slow excitation rate results from using a typical (visible light) lamp to generate photons. The excitation rate may be increased by several orders of magnitude by using lasers of appropriate wavelength. Thus, we expect that a wide range of values is possible for the value of $k_{h\nu}$.

In Figure 4, the half-life of lipid precursors is determined for a range of values for $k_{h\nu}$. Results are obtained by numerically solving the full set of differential equations (1) - (7) to determine the time at which half of the initial lipid precursors have been converted to lipids. For values of $k_{h\nu}$ less than 10^6 s$^{-1}$, the photoexcitation step is the rate limiting step of the overall reaction as demonstrated by the linear dependence of the lipid precursor half-life on the value of $k_{h\nu}$. For values of $k_{h\nu}$ greater than 10^6 s$^{-1}$, the overall rate becomes independent of the value of $k_{h\nu}$ and the time scale of reaction approaches 10 microseconds. However, the theoretical maximum excitation rate is on the order of 10^8 s$^{-1}$, with the greatest practical rate closer to 10^6 s$^{-1}$. Thus, for all practical cases, the rate limiting step in the reaction scheme is photoexcitation.

Figure 4 here

The rate of lipid (and oligomer) production depends greatly on the relative rates of forward and back reactions. In the proposed scheme, there are two steps in which forward and backward reactions must compete. The first step involves the competition between electron transfer from the excited sensitizer to the precursor and luminescence of the photosensitizer. The relative rates of these steps are largely dependent upon the sensitizer used and the precursor and sensitizer concentrations. The second step, which is less...
understood, is the competition between back electron transfer within the contact ion pair \((Z^+ / pL^-)\) and electron transfer from PNA to the contact ion pair. In bulk solution, concentrations of sensitizers and PNA tend to be on the order of millimolar, so the binary reaction rate is slow. However, because the sensitizers and PNA accumulate at the protocell containers, the local concentrations within the protocells can be greatly enhanced. The probability of the forward reaction occurring may also be increased by covalently linking the PNA template molecules to the sensitizers.

5 PNA selectivity and evolution

In order for protocell evolution to occur, a selective pressure must exist. It is hypothesized that the electron transfer rate from PNA molecules to sensitizers depends on the base sequence of PNA, so that protocells with optimal sequences have better metabolisms and will eventually become dominant. However, for most of the estimated rates in this investigation, the electron transfer rate from PNA is very fast compared to the photoexcitation rate. This means that the selective pressure for all sequences with electron transfer rates faster than the photoexcitation step will be the same because the overall metabolic rate is unaffected by the rate of the gene catalyzed step.

In Figure 5, the time scale for lipid production is shown for varying rates \(k_r [PNA]\) of electron transfer from PNA using both fast \((10^7 \text{ s}^{-1})\) and slow \((10^6 \text{ s}^{-1})\) photoexcitation rates based on the full reaction kinetic system given by (1) - (7). In this exploration three cases are discussed: (i) \(k_m [PNA] = 10^5 \text{ s}^{-1}\) and \(k_e = 10^6 \text{ s}^{-1}\), (ii) \(k_r [PNA] = k_m [PNA]\) and \(k_e = 10^6 \text{ s}^{-1}\), and (iii) \(k_e = 0\). In case (iii), the value of \(k_m [PNA]\) is irrelevant because the reaction cannot proceed along this pathway.

For fast photoexcitation rates in case (i), small values of \(k_r [PNA]\) do not affect the lipid production because the reaction proceeds along the \(k_e = 10^6 \text{ s}^{-1}\) pathway of the scheme. However, as the relative values between these rates differ in favor of the \(k_e\) pathway, the catalytic PNA control of lipid production also vanishes, since the charge recombination between the separated contact ions \(Z^+\) and \(pL^-\) can be ignored for all practical purposes in this situation. This means that the lipid precursor fragmentation process of the \(pL^-\) ion occurs independent of any possible PNA catalytic reduction of the \(Z^+\) ion.

In case (ii) where the \(k_r [PNA]\) values are small enough, the rate limiting step of lipid production is again electron transfer from PNA both for the fast and the slow photoexcitation. As expected the PNA catalytic range
is much larger for the fast photoexcitation as the PNA catalysis starts to become the rate limiting step already for $k_r [\text{PNA}] < 10^6 \text{ s}^{-1}$. For the slow excitation process $k_r [\text{PNA}] < 10^6 \text{ s}^{-1}$ becomes rate limiting. Again $k_e < k_r [\text{PNA}]$ is necessary to ensure that a majority of the reaction proceeds down the $k_r [\text{PNA}]$ pathway to maintain the catalytic PNA control of the lipid production.

For the case (iii) the catalytic PNA lipid production pathway is preserved for all values. No difference is observed between this case and the former for the fast excitation rate. However, for the slow excitation rate a significant difference is observed as $k_r [\text{PNA}]$ decreases. This is because the back electron transfer pathway becomes dominant. As expected the curve breaks off for $k_r [\text{PNA}] < k_{\text{back}} = 10^4 \text{ s}^{-1}$.

So when is PNA gene selection possible in this simple metabolic scheme? Since photoexcitation is expected to be slow, the effective catalytic effect of different PNA sequences may be difficult to observe unless the sequences have significantly different charge transfer rates. In order to observe changes in the lipid production rate for two different PNA base sequences, the value of $k_r [\text{PNA}]$ for at least one of the sequences must be less than 1 s^{-1} in case (ii) and less than 10^4 s^{-1} in case (iii). If either of these conditions is not satisfied, the lipid production rates will be independent of the PNA base sequences, and evolution towards protocells with optimal PNA base sequences may not occur. See Figure 5 for further discussion.

Finally it should be noted that a background charge transfer rate is always present, which will tend to neutralize the ion pairs independent of all other reactions. This means that in practice slow PNA electron transfer rates may have vanishing catalytic effect due to these background reactions. The scale of the background is dependent on many factors, such as temperature, pH, salt concentration, and of course the ion pair species involved.

Figure 5 here

6 Discussion and Conclusions

A successful metabolic system is a key step in the attempt to develop a viable protocell. The clear conclusions we can draw from our analysis are: (i) The rate limiting step in the proposed metabolic scheme is given by the photoexcitation of the sensitizer. (ii) The metabolic yield is given by the efficiency of the genetic catalysis of the forward fragmentation reaction compared to the back reaction. Without catalysis the overall process is dominated by
the back reaction. (iii) Only for certain parameter combinations is catalytic gene selection possible as the selection must be involved in a rate limiting step. This means that the efficiency of the gene catalyzed rates is affected both by the photoexcitation rate and the rate at which the contact ion pairs separate.

The likely time scale of the metabolic production can now be considered in the context of the time scales of the other protocellular processes [32]. Obviously, the aggregate life-time must be long enough to ensure container continuity both for the metabolic renewal process and for the inheritance through the template directed replication time. However, the balance between the lipid aggregate relaxation time and the lipid production time can also be critical.

A visible light driven metabolism of the kind we have proposed here, with no use of lasers, has an overall conversion rate limited by the sensitizer photoexcitation step, which is of the order of magnitude one metabolic conversion per sensitizer per second. If we assume an aggregate size of 100 lipids (a micelle) loaded with a similar set of precursors and the presence on a single photosensitizer, the lower bound on the metabolic determined protocellular generation time is 100 seconds, which is extremely fast compared to any contemporary organism. The lipid aggregate relaxation time is of the order of nanoseconds and certainly less than microseconds[12]. Thus the aggregate will reach equilibrium much faster than the metabolic rate can drive it out of equilibrium.

The metabolic transformation of oil-like molecules to surfactant molecules drives the aggregate out of equilibrium. As this occurs, several processes come into play, and the relative balance between them is important for overall protocellular dynamics. The generated nonequilibrium state of the aggregate could destabilize it and cause the aggregate to split into two or more new aggregates. The path taken by the unstable aggregate to equilibrium depends on the metabolic conversion rate compared to the aggregate relaxation rate and on the relative aggregate composition. During conversion, an adiabatic exchange of lipid molecules with the background solution occurs simultaneously. In one extreme, a very slow metabolic conversion could result in a continuous aggregate equilibrium where the aggregate continuously shrinks by ejecting excess lipids, preventing true aggregate division. In another extreme, a very fast metabolic conversion could ensure an instant aggregate instability with subsequent division. Yet another situation is possible, where a moderate metabolic conversion modifies the relative oil-surfactant composition to a point where the aggregate eventually reaches a critical oil-lipid composition where it becomes unstable and splits. The lat-
ter scenario is the most likely target for our protocell design, as a metabolic conversion rate that is significantly faster than the aggregate relaxation rate seems unrealistic based on the analysis in this work.

Acknowledgements

We are grateful for input and constructive criticism received from James Bailey, James Boncella, Michael DeClue, Goran Goranovic, Pierre-Alain Monnard, William Woodruff, and Hans Ziock as well as discussions with other team members on the Protocell Assembly (PAs) and Programmable Artificial Cell Evolution (PACE) projects. This work is in part supported by a Los Alamos National Laboratory (PAs) LDRD-DR grant and a grant from the European Commission’s 6th Framework on emerging information technologies (PACE).

References

[29] Rasmussen, S., Chen, L., Deamer, D., Krakauer, D., Packard, N.,
Stadler, P., & Bedau, M. (2004). Transitions from Nonliving to Liv-

living and living matter, *Artificial Life*, 9, 269-316.

tion of the Guanine Moiety of 2-Deoxyguanosine: Influence of 8-Oxo-

Emergence of protocellular growth laws, *Phil. Trans. R. Soc. Lond. B*.,
(in press).

toinduced Electron Transfer and Dark Charge Recombination in

[34] Sheehan, J.C. & Umezawa, K.J. (1973). Phenacyl photosensitive block-

Acids, Amino Acids, and Phosphates from N-Alkylpicolinium Esters
Using Photosensitization by High Wavelength Laser Dyes, *J. Am.

tochem.*, 10, 19-40.

Mimicking the antenna-electron transfer properties of photosynthesis,
PNAS, 97, 76877691.

409, 387-390.

ical Processes in Organized Molecular System*, Amsterdam: Elsevier
Science Publishers.

[40] Zhang, X., Hong, S., Freccero, M., & Mariano, P.S. (1994). Dynam-
ics of .alpha.-CH Deprotonation and .alpha.-Desilylation Reactions of
Appendix

The kinetics of the full reaction scheme is rather complex, so we contract the reaction scheme so that analytical equations for the formation of metabolic products (lipids and oligomers) may be obtained. To accomplish this contraction, two different methods are used. The first involves obtaining a single rate constant for a two-step reaction. Reaction scheme 1 is given by

\[A \xrightarrow{k_1} B \xrightarrow{k_2} C \]

where A, B, and C are the chemicals of interest, and \(k_1 \) and \(k_2 \) and reaction rate constants. The rate of change of \([C]\) may be approximated in terms of \(A \) only:

\[\frac{d[C]}{dt} \approx \frac{k_1k_2}{k_1 + k_2} [A] \]

which may be simplified if \(k_1 \) and \(k_2 \) differ greatly. For example, if \(k_1 \gg k_2 \), the \(k_2 \) term in the denominator may be neglected. Then, both the numerator and denominator may be divided by \(k_1 \), so that the overall rate constant is equal to \(k_2 \). Intuitively, this is sensible because we expect the entire process to be controlled by the step with rate constant \(k_2 \) when the step with rate constant \(k_1 \) is instantaneous. This error associated with this approximation is greatest when \(k_1 \) and \(k_2 \) are nearly equal. For normalized concentrations \([A](t=0) = 1\), the maximum error in the product concentration is 0.13. However, the time scales for the completion of the reaction for the full solution and the approximation agree well.

Reaction scheme 2 has the following reaction diagram:

\[A \xrightarrow{k_1} B \xrightarrow{k_{m_1}} C \]

In this case, B may undergo back reaction to reform A with rate constant \(k_{m_1} \). For this case, the rate of change of \([C]\) is approximated by

\[\frac{d[C]}{dt} \approx \frac{k_1k_2}{k_1 + k_{m_1} + k_2} [A] \]

This expression may be simplified in the same manner as Equation 17 when values of the rate constants differ significantly. The error associated with this approximation is maximized when \(k_1 \) and \(k_2 \) are nearly equal and the reverse reaction rate constant \(k_{m_1} \) is greater than the forward rate constants. For this case, the approximation is essentially identical to reaction scheme 1.
List of Figures

1 General scheme of the initial processes for photoinduced electron transfer (PET) fragmentation reactions. A photosensitizer Z is initially excited by light causing a charge separation and a transfer of an energy rich electron to a reactant molecule pL, which eventually undergoes a fragmentation reaction to form new products.

2 Reaction diagram showing reaction rates and the reactions between precursor lipids (pL), sensitizers (Z), catalytic information molecules (PNA), and lipids (L).

3 Concentrations of lipids and precursor lipids for fast (upper) and slow (lower) photoexcitation. Numerical simulations of the full reaction system (solid lines) are compared to the analytical solution of the simplified equations (dashed). Curves starting at concentration equal to one correspond to pL, and curves starting at concentration equal to zero correspond to L. For each case, pL₀ = 0.01 M, Z₀ = 0.0001 M, [PNA] = 0.0001 M, kтуμm = 10⁸ s⁻¹, kₚₚ = 3 × 10⁹ (M s)⁻¹, kₜₙₜₜ = 10⁴ s⁻¹, kᵣ = kᵣ = 10⁹ (M s)⁻¹, and kₗ = 10⁵ s⁻¹. The value of kₜₜₜ is 10⁷ s⁻¹ for fast excitation and 10⁶ s⁻¹ for slow excitation.

4 Time to transform one half of pL to L for a range of kₜₜₜ (photoexcitation rate) values. Default values are used for other parameters as well as initial concentrations of each species, and the graphs are generated from simulating the full reaction kinetic system. Note that for kₜₜₜ > 10⁶ s⁻¹ the rate limiting step in the metabolic system is no longer determined by the photoexcitation rate. For kₜₜₜ < 10⁶ s⁻¹ photoexcitation is the rate limiting step.
Time to transform one half of pL to L for a range of values for k_r [PNA]. Results for both fast (squares) and slow (circles) excitation are shown. Three cases are shown: (i) k_m [PNA] = 10^5 s$^{-1}$ and k_e = 10^6 s$^{-1}$ (open symbols), (ii) k_r [PNA] = k_m [PNA] and k_e = 10^6 s$^{-1}$ (black symbols), and (iii) k_e = 0 (gray symbols). Curves are generated by simulating full reaction kinetic system and standard parameters. Note that for the more realistic case with slow excitation rate (circles), no selection is possible even for very small values of k_r [PNA] in case (i). No gene selection is possible if values of k_r [PNA] are greater than 10^{-1} s$^{-1}$ in case (ii) and for k_r [PNA] > 10^{4} s$^{-1}$ in case (iii). Selection and thus evolution is possible between genes with different k_r [PNA] values below these values or between different sequences with k_r [PNA] values below and above these values respectively. However, the catalytic PNA is further modulated by the relative balance between the k_r [PNA] and k_e pathways, as well as the background reactions. See text for discussion.
Figure 1: General scheme of the initial processes for photoinduced electron transfer (PET) fragmentation reactions. A photosensitizer Z is initially excited by light causing a charge separation and a transfer of an energy rich electron to a reactant molecule pL, which eventually undergoes a fragmentation reaction to form new products.

Figure 2: Reaction diagram showing reaction rates and the reactions between precursor lipids (pL), sensitizers (Z), catalytic information molecules (PNA), and lipids (L).
Figure 3: Concentrations of lipids and precursor lipids for fast (upper) and slow (lower) photoexcitation. Numerical simulations of the full reaction system (solid lines) are compared to the analytical solution of the simplified equations (dashed). Curves starting at concentration equal to one correspond to pL, and curves starting at concentration equal to zero correspond to L. For each case, pL0 = 0.01 M, Z0 = 0.0001 M, [PNA] = 0.0001 M, \(k_{lum} = 10^8 \text{ s}^{-1} \), \(k_p = 3 \times 10^9 \text{ (M s)}^{-1} \), \(k_{back} = 10^4 \text{ s}^{-1} \), \(k_r = k_m = 10^9 \text{ (M s)}^{-1} \), and \(k_L = 10^5 \text{ s}^{-1} \). The value of \(k_{h\nu} \) is \(10^7 \text{ s}^{-1} \) for fast excitation and \(10^0 \text{ s}^{-1} \) for slow excitation.
Figure 4: Time to transform one half of pL to L for a range of k_{hv} (photoexcitation rate) values. Default values are used for other parameters as well as initial concentrations of each species, and the graphs are generated from simulating the full reaction kinetic system. Note that for $k_{hv} > 10^6$ s$^{-1}$ the rate limiting step in the metabolic system is no longer determined by the photoexcitation rate. For $k_{hv} < 10^6$ s$^{-1}$ photoexcitation is the rate limiting step.
Figure 5: Time to transform one half of pL to L for a range of values for k_r [PNA]. Results for both fast (squares) and slow (circles) excitation are shown. Three cases are shown: (i) k_m [PNA] = 10^5 s$^{-1}$ and $k_e = 10^6$ s$^{-1}$ (open symbols), (ii) k_r [PNA] = k_m [PNA] and $k_e = 10^6$ s$^{-1}$ (black symbols), and (iii) $k_e = 0$ (gray symbols). Curves are generated by simulating full reaction kinetic system and standard parameters. Note that for the more realistic case with slow excitation rate (circles), no selection is possible even for very small values of k_r [PNA] in case (i). No gene selection is possible if values of k_r [PNA] are greater than 10^{-1} s$^{-1}$ in case (ii) and for k_r [PNA] > 10^4 s$^{-1}$ in case (iii). Selection and thus evolution is possible between genes with different k_r [PNA] values below these values or between different sequences with k_r [PNA] values below and above these values respectively. However, the catalytic PNA is further modulated by the relative balance between the k_r [PNA] and k_e pathways, as well as the background reactions. See text for discussion.