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Abstract

The use of the term "landscape" is increasing rapidly in the field of evolutionary
computation, yet in many cases it remains poorly, if at all, defined. This situation has
perhaps developed because everyone grasps the imagery immediately, and the ques­
tions that would be asked of a less evocative term do not get asked. Tllis paper
presents a model of landscapes that is general enough to encompass most of what
computer scientists would call search, though the model is not restricted to either the
field or the viewpoint. It is particularly relevant to algorithms that employ some form
of crossover, and hence to genetic algorithms and other members of the evolutionary
computing family. An overview of the consequences and properties of the model estab­
lishes a connection with more traditional search algorithms from artificial intelligence,
introduces the notion of a crossover landscape, and argues the importance of viewing
search as navigation and structure.
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1 Introduction

The field of Artificial Intelligence (AI) has long recognized the importance of structure in
search. Most of the classic AI search algorithms, see, for example, [6, 21, 30, 40], are either
explicitly phrased as algorithms that search graphs, or can be described in terms of a search
on a graph. The other component of search is navigation: the process of examining a
structure for some purpose. Myriad navigation strategies, from random search to exhaustive
search, have been developed. Some are designed to search specific structures, others can be
more generally applied.

The importance of structure in evolutionary algorithms and in fields other than biology
is beginning to be recognized, and the structures are commonly termed "landscapes". These
fields include anthropology [20J, chemistry [5, 32J, economics [15,18,27], immunology [14, 22],
physics [1, 37, 38] and computer science [3, 11, 12, 17, 23, 24, 26, 35]. The above references
represent merely the tip of an iceberg and should not be taken as complete. The study of
RNA landscapes for instance has produced many papers that adopt a landscape perspective.

The use of a landscape metaphor to develop insight or intuition about the workings of a
complex process originated with the work of Sewall Wright in the early 1930s [41 J. Wright
used landscapes to provide imagery for his theory of speciation. According to Eldredge [4],
Wright's fitness surface is:

By all odds the most important metaphor in macroevolutionary theory of the
past fifty years.

We develop a landscape model that, structurally, is simply a labeled directed graph.
This provides a fundamental link to traditional AI search and also a framework for thinking
about evolutionary algorithms in terms of structure and navigation. This separation allows
us to examine the components of the algorithms individually, and to apply simple navigation
strategies from AI to the landscape structures induced by the so-called genetic operators
in evolutionary algorithms. The model is especially relevant to the "evolutionary" algo­
rithms that employ some form of crossover. This includes genetic algorithms [7, 9], genetic
programming [19] and evolution strategies [2, 29, 33].

A later section details connections with other versions of landscapes. This discussion is
deferred as it cannot be properly understood before the model is presented.

2 Landscapes

In its most general form, a landscape, £, as proposed here, is simply a directed graph, g<p'
whose vertices, V, are labeled with a real number and whose edges, E, are labeled with a
probability. The sum of the probabilities on the edges leaving any vertex is 1. Any such
graph shall be called a landscape, and anything hereafter referred to as a landscape is simply
such a graph. The subscript, <p, will be explained below.

It is important to clearly understand the origin of the various components of a landscape.
Initially, we are faced with some situation whose objects present some (possibly infinite) set.
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This is deliberately vague, so as to avoid terms like "problem" and "solution". As examples,
we might be interested, for whatever reason, in the set of n-tuples of real numbers, the set
of binary strings of length n, the set of LISP S-expressions, the set of permutations of the
integers one to ten, the set of legal chess positions, the set of spin configurations in a spin
glass or the set of RNA sequences.

We will call the set of objects described above the object space, O. If we wish to use some
form of computation to address 0, we construct a representation of the objects in it. This
representation determines a representation space, R. There may be a bijection between 0
and R, but R may also correspond to a proper subset of 0 or may include the whole of 0
as a proper subset!.

Due to finite limits on computation, some object spaces, being infinite, will necessarily be
under-represented by the chosen R. An obvious and common example is object spaces that
involve real numbers. The computational process is restricted to dealing with that part of
o that is representable with the choice of R. There is of course nothing to stop the process
from adopting a new R at any point, for example see [25, 31, 34, 39].

The objects in 0 are of interest for some reason or reasons, and we will suppose that the
degree to which an object is interesting or desirable can be expressed as a single real value.
This is commonly called the fitness of the object in question. We will denote the fitness of
an object a E R by f( a) and call f : R -; ~ the fitness function. For the purposes of this
paper, we will assume that numerically higher fitness is desirable, though the opposite view
is also common. In practice, f may be difficult to compute, and may be the result of some
heuristic calculation, as is common in many problems in AI.

At this point we have a representation space and a function that assigns values to points
in that space. Nothing more. In particular, we do not yet have a landscape. The entire
reason, presumably, for talking about a landscape is to use the powerful imagery it evokes.
One is concerned with "peaks", "ridges" and "valleys" and the like. But what is a peak?
A simple definition of a peak is a point whose neighbors are all "below" (or less fit) than
it is. Thus a sine qua non of any discussion of landscapes is some notion of neighborhood.
Without neighborhood, none of the terminology associated with landscapes makes any sense
at all.

Neighborhood in our landscapes will be determined by the choice of an operator, </>. This
is not an operator in the mathematical sense, the term is chosen as it is already so widely used
in the field of evolutionary computation. An operator is better thought of as a stochastic
process which, when given some vertex v in 9</> as input, produces one of a set of possible

outcomes, each of which is a vertex in 9</>' and each with a certain probability.

The (possibly infinite) set of outcomes (vertices) that the operator may produce on input
v will be called the neighborhood of v under </>, and will be denoted by N </>(v). If </> produces

w from input v at time t, we will write </>,(v) = w. It will be simplest to assume for now that
N </>(v), the set of possible outcomes, does not change with time and that the probability

Ilfwe are not performing any computation, there is no need for a representation space and we can simply
setR=CJ.
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that </>,(v) = w is also independent of time2
• If we are simply concerned with the event of </>

producing w from v, and not with when this happened, we will drop the time subscript and
simply write </>(v) = w

If WEN</>(v) then g</>, will contain a directed edge (v, w) labeled with the probability

that </>,(v) = w. Thus the edges of the graph are induced by the operator </>, as indicated by
the subscript.

We have accounted for the edges of g</>' but what about the vertices? The usual notion
of a landscape would simply assign each member of R to a vertex in g</>. But this would
prevent us from defining landscapes for operators that act on or produce more than a single
element of R. We will make an important generalization. We assume that an operator acts
on a k-tuple of points from R (i.e. an element of R k

) and produces an I-tuple, a member
of R I

.

Vertices in g</> will then correspond to either a k-tuple or an I-tuple of points from R.
Often, as is the case in mutation, k and I will both be one, and the distinction will not be
needed. But all forms of crossover act on more than a single point of R as input, and most
produce more than a single point.

Before elaborating on the consequences of this generalization, we can attend to the last
component of our landscape, the real numbers that label the vertices. In general, we need
two functions, Ik : Rk

---> ~ and II : RI ---> ~. These are used to assign a real value to each
vertex.

If the operator that induces the connectivity in g</> acts on and produces a single point

in R, then it is natural to label each vertex v E V with the fitness, I(v), of the point in
R to which it corresponds. In other words, if k = 1 and I = 1, it is natural (though of
course not necessary) to let Ik = I and II = I. Where k > 1 or I> 1, one might choose the
maximum of the fitnesses of the corresponding points of R [3], their average [23], or some
other function.

2.1 Terminology And Conventions

A landscape will be called walkable if k = I. If a landscape is walkable, an operator's outcome
can be used as its next input. For example, the landscapes generated by the common forms
of mutation are always walkable. Any form of crossover that takes two parents and produces
two children induces a landscape that is walkable. Crossover that produces one child from
two parents induces a landscape that is not walkable. We will also refer to operators as being
walkable, meaning that they generate walkable landscapes.

A landscape will be called symmetric if WEN</>(v) '* v EN</>(w) and P( </>(v) = w) =

P( </>(w) = v). In words, a landscape is symmetric if the existence of a directed edge between
v and w implies that there is also an edge from w to v, and that, at any point in time,
both edges are labeled with the same probability. We will also refer to operators as being

2These assumptions are violated by evolution strategies, evolutionary programming and simulated an­
nealing. They can be discarded once the basic landscape notions are understood.
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symmetric, meaning that they generate symmetric landscapes. Most common operators in
evolutionary algorithms are symmetric. If an operator is symmetric it will be convenient to
consider gq, as undirected. Notice that a symmetric landscape is necessarily walkable since
the above condition implies that k = l.

If a landscape is symmetric, it will make sense to talk about connectedness. Two vertices
v and w in V are connected in gq, if there is at least one path between them. If every vertex
is considered connected to itself, the relation "connected to" on V is an equivalence relation
and thus induces equivalence classes. Each of these equivalence classes, together with the
edges incident on the vertices in the class, defines a connected component of gq,' If gq, has
a single connected component, the landscape will be said to be connected. A connected
landscape is necessarily walkable, but the converse is not true.

If q, produces each member of v's neighborhood with equal probability, for all v E V, we
will usually not label the edges of gq,'

A landscape will be called natural if it is symmetric, k = 1, 1= 1, Ik = I and II = I. A
simple example is the mutation landscape where vertices of gq, are labeled with the fitnesses
of the points in n to which they correspond.

2.2 Three Operator Classes And Their Landscapes

The three classes of operators most commonly encountered all rely on the objects in n
being composed of some (not necessarily fixed) number of components. For example, a bit
string has some number of bits, an n-tuple of real numbers consists of n individual reals and
the parse tree representing a LISP S-expression consists of some number of internal nodes
and leaves. These components can typically be modified individually or in subsets, possibly
according to some constraints.

The simplest operator class we will consider could (narrowly) be called the bit-flipping
operators3 • These act on and produce a single element of n. They randomly choose a
component of their input and modify it in some slight way. The outcome of this operator
always differs in exactly one component from the input. The simplest example of this sort
of operator is the operator that flips a bit in a bit string. If n is {D, 1}", the bit-flipping
operator induces a graph that is a hypercube of dimension n. Each edge in the graph will
be labeled with probability lin.

The second class is the mutational operators. These operators also act on and produce a
single element of n. They modify each component of their input with a given, typically small,
probability. Thus a mutational operator's output is a modification of its input according to
some probability distribution. The outcome may be identical to the input, it may contain
minor changes or may even be different from the input in every component. If we again
consider binary strings of length n and assume that each bit is flipped with a fixed probability
p, then the graph induced is the complete graph J{2n. An edge in the graph between vertices
that represent binary strings whose Hamming distance is d will be labeled with a probability

3This name is really only appropriate when n is {D, I}". In fact, operators of this class can be trivially
constructed for any of the representations for which we can define mutational operators.
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pdqn-d. Notice that this is a very different landscape to that generated by the conceptually
similar bit-flipping operator.

The final class is the crossover operators. These typically act on an element of R 2
•

Crossover operators combine the components from their inputs to produce their output. As
an example, a crossover operator in an evolution strategy might receive two n-tuples of real
numbers as input and its outcome might be a single n-tuple whose elements are the averages
of the corresponding components of the inputs [2]. There are many forms of crossover for
representation spaces such as n-tuples of reals, permutations of integers and fixed length
strings over some alphabet.

3 Consequences Of The Model

The definition presented above has a number of consequences that are not found in other
landscape models. The landscape does not need any notion of dimensionality, and it does
not need a distance metric. In some cases of course, these will be present, and there is
nothing to say that they should not be taken advantage of when they are. But the model
does not require them, and so we can construct landscapes for Tic-Tac-Toe, sliding block
puzzles, bit strings of length n, traveling salesperson tours and LISP S-expressions with
equal ease. These two consequences are further discussed below in the section on advantages
of the model.

Two properties of the current model will seem particularly strange. Firstly, as described
above, a landscape may not be walkable. As mentioned, an example is any form of crossover
that produces one child from two parents. Such an operator cannot be used to conduct a
walk on the landscape as the output of the operator cannot be simply used as the next input.

Secondly, landscapes may not be connected. A simple example is the landscape induced
by a (non-genetic programming) crossover operator that produces two children from two
parents. Consider a vertex of the landscape that corresponds to two points of R that are
identical. The vertex will be connected to itself (with probability 1), and nothing else. A
more specific example of a landscape that is not connected is seen by considering the vertex
(011,010) of V where R = {0,1}3. Clearly no form of crossover can transform this input
to a pair of points either of which begins with a one, e.g. (100,000). Equally clearly, no
composition of crossovers will be able to do that either. Thus (011,010) is not connected to
any vertex in the landscape which contains a member of R that starts with a 1 (in fact, this
vertex is also connected only to itself). The complete landscape for one-point crossover on
binary strings of length 3 is shown in Figure 1.

The possibility that landscapes may not be connected means that on these landscapes
there is no general notion of distance between landscape vertices. This does not mean that
a metric cannot be defined, just that there may be no natural one (such as the length of the
shortest path between the vertices concerned). The model does not require a distance metric
to exist, though the absence of one might make certain statistics meaningless or impossible
to compute. Within a connected component of a landscape, one can always use the length
of the shortest path between two vertices as a distance metric.
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Distance between points.

0 1 2 3
000,000 000,001 000,011 001,010 000,111

• • 0 0001,001 000,010 <)• • 000,110 010,100 011,100 001,110
010,010 000,100 0 0• •
011,011 001,011 001,111 011,101 010,101

• • 0 0100,100 001,101

• • 100,111 101,110
101,101 010,011 0 0• •
110,110 010,110

• •
111,111 011,111

• •
100,101

•
100,110

•
101,111

•
110,111

•
Figure 1: The one-point crossover landscape for binary strings of length 3. All edge proba­
bilities are 1/2.
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Because a landscape may not be walkable, general statistics describing properties of land­
scapes may be restricted to using the information gained from repeated single applications
of the operator that generated the landscape. This sort of statistic was employed in [23J,
even though they were actually considering a walkable landscape.

4 Implications For Genetic Algorithms

An important consequence of this model of landscapes is that every operator used by an
algorithm defines its own landscape. For this reason, genetic algorithms should be seen
as operating on (at least) a pair of landscapes, the mutation landscape and the crossover
landscape. These landscapes will have different characteristics for different problems, and
can be studied independently.

When one hears people talk of "the landscape", the object of reference is most commonly
the mutation landscape or the hypercube landscape that a bit-flipping operator induces.
Crossover is typically employed far more frequently than mutation in a genetic algorithm,
yet it has been assigned a supporting role in the landscape structure defined by mutation.
To say that crossover is making large jumps on the landscape (the mutation landscape is
implied), is to examine crossover outside its own context. What if the algorithm involved
does not even use mutation? What relevance does the mutation landscape have then for the
algorithm or for crossover? It makes as much sense to say that mutation is making large
jumps on the crossover landscape. There is some sense to these statements, but it is worth
considering each operator in light of the landscape structure it defines. This bias is a difficult
thing to detect.

Another illustration can be found in the interpretation commonly given to the notion of
a peak on a landscape. When people talk of a peak, they are referring to a peak on the
mutation landscape. Yet crossover is an operator too, and a far more frequently used one.
Surely it should be entitled to some notion of peak? The notion of a peak cannot be divorced
from the notion of operator. A vertex in 9<p can be a peak under one operator and not under
another. The mutation landscape has peaks, the crossover landscape has peaks. To regard
peaks as something defined only in terms of mutation is simply biased.

5 Advantages Of The Model

• The model establishes a point of contact with traditional AI search. The contact is at
a fundamental level, that of the graph, and has practical consequences (see below) .

• The model does not make the assumptions that prevent other notions of landscape
from being more widely used. For example, the landscape does not need some fixed
dimensionality, nor does it need a distance metric between the objects that compose
the landscape. For these reasons, it is possible to view many AI problems as being
problems on landscapes of this type. For instance, it is simple to imagine a landscape
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for chess or Rubik's cube. The navigational task on these landscapes may differ, and
the operators may be complex, but the underlying structures are the same. The model
is also useful within the field of evolutionary computing. It applies as well to genetic
programming as to genetic algorithms. Statistics that can be calculated for a landscape
in one paradigm can be calculated in exactly the same way for another. The model also
provides a framework for thinking about hillclimbing, simulated annealing, evolution
strategies and evolutionary programming.

• The model invites a point of view that seems uncommon in the field of evolutionary
computation, though not in AI. This is a view of search as navigation and structure.
Once this move is made and once the various components present in a genetic algorithm
are identified, it becomes natural to ask questions about these components. If we regard
many search algorithms as being navigation and structure, then it is possible to break
algorithms into their pieces and collect the parts. From a collection of these pieces, we
could choose (say) one navigation strategy and one structure and use them as the basis
of a new algorithm. An obvious target here is to combine a hillclimbing strategy with a
crossover landscape from genetic algorithms. This approach has been used with success
on Holland's recent Royal Road "challenge" [10]. A simple hillclimber consistently
climbs four of the five levels in that problem using approximately the same number of
evaluations as a standard genetic algorithm [13]. The success of this approach raises
important questions about the genetic algorithm as a navigation strategy, at least on
this problem.

• The one operator, one landscape view reveals the very different landscapes that are
constructed by various operators. This invites statistical analysis of the landscapes,
as has been done in [17, 23, 24, 35, 38]. Such analysis has the advantage of being
independent of any particular navigation strategy. For this reason, it may be possible
to demonstrate that a particular operator creates difficult (in some sense) landscapes
for some problem types. Such results might go a long way towards resolving the never­
ending debates on the virtues of certain operators. Statistics such as these would be
very useful as indicators of potential difficulty (or ease) of a problem for an operator
and could simultaneously be a guide to the construction, at run time, of hybrid search
algorithms.

6 Limitations Of The Model

As presented, the model assumes that the worth of objects in 0 can be represented as a
single number. In many situations, it may be more natural to assign a set of values to a
point in O. As presented, the model assumes also that navigation strategies are content to
navigate on the basis of a single value at each vertex of the landscape. This may not be the
case, and is certainly not the case in pareto optimality. The model can be easily extended
to remove both these assumptions. These generalizations were not presented for the sake of
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brevity. One might also generalize to operators that accept and produce variable numbers
of objects from O.

At first glance, it appears that the model is not general enough to cover situations in which
landscape vertices do not correspond to sets of points in R, but also to partial objects. An
example of a partial object is a sub-tour in the graph of a TSP problem. This shortcoming
may be simply a matter of perspective. If 0 is thought of as including the partial objects
(and, possibly, the complete objects), we can proceed as before, as long as the function f can
produce an indicator of the worth of a partial object. A search structure that involves partial
solutions to the matrix chain association problem and the traveling salesperson problem has
been developed by Helman [8J.

It can be argued that the model is not particularly useful in situations where the nature
of the operators changes in the course of search. For example, the change of mutation vector
for an individual in evolution strategies and evolutionary programming, the change of edge
probabilities when the temperature falls in simulated annealing or after inversion in a genetic
algorithm, or where the representation space is changed, e.g. in dynamic parameter encoding
[31J and delta coding [25]. There is some truth in this. However, if one ceases to regard
a search structure as something necessarily fixed for all time, the model is still potentially
useful. For example, a statistic, say correlation length, might be computed for the landscapes
generated by a range of different temperature settings in a simulated annealing problem. This
might provide useful information about when the search could be expected to make good
progress (thus guiding the choice of cooling schedule) and it might prompt a comparison
with a hillclimber or other algorithm on one of the landscapes. These situations make the
landscape something of a moving target, but the targets can be studied individually.

More generally, an algorithm might change any aspect of its behavior, for example the
fitness function or the representation space, mid-run, and thereby shift its attention to new
landscapes. This might be done very frequently. The model is not intended to be general
enough to cover every conceivable algorithm, and so its usefulness will be limited in some
situations. It is intended to be general enough to cover a wide range of current situations
while remaining relatively simple.

7 Other Viewpoints

There are many ways to look at things, and none of them is necessarily right. In science
at least, a perspective is "good" to the extent that it provides insight, raises (and answers)
questions, and so on. There are many ways to formulate landscape models. The most
common point of view found in the genetic algorithm domain regards an n-dimensional
hypercube as "the landscape", and views crossover as making jumps on it and mutation
as taking single steps on it. Paradoxically, this landscape structure, from the point of view
proposed here, is not the structure induced by either operator! There has been a considerable
amount of thinking within this framework and a lot of progress has been made.

The model presented here argues that this point of view, despite its history and the use
it has been, is more complex than need be and, more importantly, contains and promotes a
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biased view of the two operators. The one operator, one landscape view builds independent
and very different structures for mutation and crossover and insists that we give each its due.
Studying the effect of using both in a population-based algorithm is of course still necessary,
but this view allows us to address a simpler problem, the study of the individual structural
components of such algorithms.

Another view of landscapes regards an entire population of objects as a point on some
landscape. This model can also be traced to Wright [42]. Under this view, the landscape
is usually thought of as having some number of dimensions and the axes represent gene
frequencies in the population. This view of landscape is captured by the model presented
here, but as an object of study it is vast. Progress has been made studying the genetic
algorithm from this perspective, see for example [36J.

One might also view selection as an operator and therefore as having its own landscape.
This is perfectly valid, and statistics calculated on a selection landscape might lead to re­
sults concerning rates of convergence. Our preference has been to concentrate on simpler
operators, but it should be clear that this is not necessary.

8 Related Work

There are three other pieces of work whose relevance to this model can now be considered.
Weinberger [37, 38] provides a precise definition of a fitness landscape. His landscape is

also a graph (though finite), whose vertices are labeled using some real valued function. He
introduces the autocorrelation function and shows its use as a measure of landscape fitness
correlation or "ruggedness". This measure has been widely used [16, 17, 23, 35]

The model presented here generalizes that model by allowing operators that act on and
produce tuples of points in n. In addition, our model introduces the representation space,
allows the graph to be infinite and/or unconnected, and assigns probabilities to edges which is
necessary when considering mutation or crossover. Figure 2 illustrates this common situation
with crossover. Weinberger only considered operators that would assign an equal probability
to each outgoing edge from a vertex, and so had no need for probabilities.

Manderick et al. [23] used Weinberger's landscape and autocorrelation function to exam­
ine the relationship between the statistical structure of landscapes and the performance of
genetic algorithms on the same landscapes. This important paper illustrates how successfully
statistics concerning landscape structure can predict algorithm performance.

Manderick et al., following Weinberger, viewed a landscape as something defined by an
operator that acted on and produced a single point of n. Weinberger's autocorrelation
function can be calculated for these simplest of operators. They recognized crossover as
an operator without making the generalization of the model described above. To deal with
this, they defined a measure of operator correlation which they applied successfully to one­
point crossover on NK landscapes4 and to four crossover operators for TSP. This statistic

4The NK "landscapes" are not actually landscapes, as defined by the current model. They provide 0
(and R is obvious) and a fitness functiou. The crucial missing ingredient is an operator. The majority of
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0000,1011

1000,0011

213

113 213

1001,0010

0001,1010

Figure 2: A fragment of the one-point crossover landscape for binary strings of length 4,
showing unequal transition probabilities.

is calculated by repeated use of the operator from randomly chosen starting points. Thus,
they were actually computing statistical measures about the crossover landscape without
recognizing it as a landscape. Had they done so, they might have used the autocorrelation
function, since they dealt with the walkable landscapes generated by crossover operators
that take two parents and produce two children.

I have argued above that the most generally applicable landscape statistic will be based
on fitness values obtained from repeated single operator applications from randomly chosen
starting points. A measure such as autocorrelation is not computable for some landscapes
because they have no distance metric. This is true for all non-walkable landscapes.

Recently, Culberson [3J has independently conceived of a crossover landscape. His struc­
ture, which he calls a search space structure, is also a graph and the vertices correspond
to a population of points from {O, 1}1. He examines populations of size two, which creates
a graph that corresponds to the largest connected component of the crossover landscape
generated by one-point crossover in our model. That component (like all others) is a hyper­
cube. It contains vertices that correspond to all possible pairs of binary strings of the form
(a, a). Culberson shows that the structure of the component is isomorphic to the hypercube
generated by the bit-flipping operator for strings of length I - 1. He demonstrates how to
transform a problem that appears hard for one operator into a problem that appears hard
for the other. This provides further evidence of the importance of structure for search and
of how that structure is induced by the choice of operator.

9 Usefulness Of The Metaphor

The term "landscape" has something powerfully seductive about it. The imagery it evokes is
so appealing, that further thought can be completely suspended. An important question to

. work on these problems has been with respect to mutation, and references to NK "landscapes" always imply
a mutational viewpoint.
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ask is why we would want to use such a term. The answer to this is presumably that we hope
to use the imagery (e.g. peaks, ridges, valleys etc.) to enhance our understanding of some
process, to develop new ideas for exploring spaces and to stimulate questions about processes
operating on these structures. All of this tends to rely rather heavily on the simple properties
that we see in physical three dimensional landscapes. It is not clear just how many of the
ideas scale up to landscapes with hundreds or thousands of dimensions. It is quite possible
that the simplicity and beauty of the metaphor is actually damaging in some instances, for
example by diverting attention from the actual process or by suggesting appealing, simple
and incorrect explanations. All of this has been put very well by Provine [28] (pp. 307-317),
which should be required reading for people interested in employing the metaphor.

The ambiguities surrounding the term and its use originated with Wright, and were not
identified until 1985 [28]. These problems cap. also be found in the field of evolutionary
computing. Given this, it is worth asking whether it is better to abandon the term or to
use it and try to be more precise about what is actually meant. There is something to be
said for abandoning it - after all, in just about every formulation, a landscape is simply a
graph. On the other hand, it seems unlikely that the term will just go away. In addition,
the metaphor, however distant it may sometimes be from reality, has given rise to new ideas
and intuitions. This paper has opted to adopt the term, with the hope that it will lessen,
rather than increase, the vagueness with which it is applied.

10 Conclusion

This paper presented a general model of landscapes and an overview of its consequences and
relevance to genetic algorithms. The model views a landscape as a directed graph whose edges
and vertices are labeled, though a vertex is not constrained to correspond to exactly one point
from the representation space. It was argued that the operators in evolutionary algorithms,
including crossover, each generate a landscape; that these landscapes have differing qualities;
and that each can and should be studied in its own right, independent of any navigation
strategy. Thus genetic algorithms are seen as operating on multiple landscapes. Defining
a landscape as a graph establishes a contact with more traditional search algorithms from
artificial intelligence, many of which are explicitly designed to search labeled graphs. The
paper advocates a view of search as composed of navigation and structure, with the structure
provided by landscapes. The advantages and limitations of the model were briefly discussed
and the model was compared to other work on landscapes.
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