
How to Reconstruct a Large
Genetic Network from n
Gene Perturbations in Fewer
than n^2 Easy Steps
Andreas Wagner

SFI WORKING PAPER: 2001-09-047

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works may be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

How to reconstruct a large genetic network from n gene

perturbations in fewer than n2 easy steps

Andreas Wagner
University of New Mexico

and
The Santa Fe Institute

University of New Mexico
Department of Biology

167A Castetter Hall
Albuquerque, NM 817131-1091

Phone: +505-277-2021
FAX: +505-277-0304

Email: wagnera@unm.edu

Abstract. I present an algorithm to reconstruct direct regulatory interactions in gene networks
from the effects of genetic perturbations on gene activity. Genomic technology has made feasible
large-scale experiments that perturb the activity of many genes and then assess the effect of each
individual perturbation on all other genes in an organism. Current experimental techniques can
not distinguish between direct and indirect effects of a genetic perturbation. An example of an
indirect effect is a gene X encoding a protein kinase, which phosphorylates and activates a
transcription factor Y, which then activates transcription of gene Z. X influences the activity of
gene Y directly, whereas it influences Z indirectly. To reconstruct a genetic network means to
identify, for each gene and within the limits of experimental resolution, the direct effects of a
perturbed gene on other genes. One can think of this as identifying the causal structure of the
network. I introduce an algorithm that performs this task for networks of arbitrary size and
complexity. It is based on a graph representation of a genetic network. Algorithmic complexity in
both storage and time is low, less than O(n2). In practice, the algorithm can reconstruct networks
of several thousand genes in mere CPU seconds on a desktop workstation.

mailto:wagnera@unm.edu

Wagner

2

Introduction

Most techniques to analyze genetic networks monitor changes in the expression of many genes

under changing environmental conditions, in different physiological stages, or in different genetic

backgrounds. They then identify genes with similar expression in these different situations, and

cluster them according to this similarity (DeRisi et al. 1997; Eisen et al. 1998; Tavazoie et al.

1999). The underlying assumption is that genes with similar expression patterns participate in

similar biological processes. While not unreasonable, this approach suffers from the problem that

correlated expression can only point to regulatory interactions between genes. It can not be used

to infer such interactions. By a regulatory interaction between two genes I mean that one gene

directly influences the expression level of the other gene. And if we are to understand the

structure and function of genetic networks, this is perhaps the most fundamental question to

answer: which genes in a network influence the activity of which other genes directly. I here

present an algorithm that can answer this question for arbitrarily large networks. Not surprisingly,

its ability to resolve regulatory gene interactions, and thus to resolve the causal structure of a

genetic network, comes at a price. It requires different kinds of data � and more of it � than

correlative methods. Specifically, it requires perturbation of many genes in the network. Large-

scale perturbation data of this sort is now becoming available (Bouche and Bouchez 2001; Fraser

et al. 2000; Gonczy et al. 2000; Hughes et al. 2000; Spradling et al. 1999).

Concepts. To begin with, a few definitions are in order. First, what is a genetic network? For the

purpose of this paper, I define a genetic network as a group of genes in which individual genes

can influence the activity of other genes. What, then, is gene activity? For my purpose, gene

activity can include many different things. Most definitions revolve around gene expression,

whether a gene is expressed or not, as mRNA or as protein. At a higher level of resolution, the

amount of mRNA or protein expressed might be important as well. However, there is more to

gene activity than just expression. For instance, one might consider differences in post-

transcriptional regulation, such as differential splicing, or post-translational modification, such as

phosphorylation. It is well known that the activity of many gene products is regulated by

phosphorylation, and gene products that phosphorylate or dephosphorylate other gene products

are key regulators inside any living cell. Another aspect of gene activity is the methylation state

Wagner

3

of genes, which is related to gene silencing. And there are gene products that are involved in

changing the methylation state of other genes. These few examples show that there are endlessly

many possible ways of defining gene activity. In principal the approach proposed here applies to

all notions of gene activity, as long as they are used consistently and defined clearly within an

experimental context.

Next, what is a genetic perturbation? For my purpose, it is an experimental manipulation

of gene activity by manipulating either a gene itself or its product. Such perturbations include

point mutations, gene deletions, overexpression, inhibition of translation, for example by using

antisense RNA, or any other interference with the activity of the product. While mutations are not

usually thought of as manipulations of gene activity, I choose to view them as such. Clearly, if I

mutate a gene so that the cell can not produce the gene product, I have affected the activity state

of the gene.

 Network reconstruction: direct and indirect effects. When manipulating a gene and finding

that this manipulation affects the activity of other genes, the question often arises as to whether

this is caused by a direct or indirect interaction. For example, when overexpressing a transcription

factor X, I might find that the expression level of genes A and B changes. Upon further

investigation, I may find that X binds the upstream regulatory region of A and up-regulates its

expression. This is what I call a direct effect of X on A. However, in the case of B I might find

that X induces the expression of a protein phosphatase, which dephosphorylates and thus

inactivates a transcriptional repressor of B. This is what I call an indirect effect of X on B. For the

purpose of this paper, I will define the task of network reconstruction as follows. To reconstruct a

genetic network is to identify all direct effects of network genes on one another�s activity within

the limits of experimental resolution.

The important issue of experimental resolution is best illustrated by an example. Consider

the hypothetical example of a biochemical pathway shown in Figure 1A. A constitutively

expressed transcription factor produced by gene 1 induces expression of gene 2, whose product is

a protein kinase. This protein kinase phosphorylates a protein phosphatase, the product of gene 3,

an event that activates the phosphatase. The phosphatase in turn dephosphorylates a transcription

factor, the product of gene 4. Dephosphorylation activates the transcription factor, which binds to

and induces expression of gene 5, whose function is unspecified.

Now consider a hypothetical series of five different experiments, deleting each of the five

genes involved in this pathway. For each of these five perturbations, we measure changes in gene

activity. The notion of gene activity I choose to use here is that of the mRNA expression level.

The results of these five hypothetical experiments are shown in Figure 1B in a format that I will

Wagner

4

use throughout. Each line contains the results of one genetic perturbation. The leftmost symbol

stands for the gene whose activity was manipulated, followed by a colon. To the right hand side

of the colon, the names of genes appear whose activity was influenced by that particular

manipulation. In the experiment whose result is shown in the first line of Figure 1B, the activities

(mRNA level) of genes 2 and 5 were affected by deleting gene 1. Gene 2 was affected because

the product of gene 1 is required for transcription of gene 2. Gene 5 was affected, because,

indirectly, the expression of gene 2 influences the phosphorylation state and the activity of the

transcription factor produced by gene 4. When the product of gene 2 is absent, then the product of

gene 4 will be inactive, and gene 5 will not be expressed. As opposed to its effect on the activities

of genes 2 and 5, deletion of gene 1 does not affect the activity of genes 3 and 4. Deletion of gene

1 will only affect the phosphorylation state of genes 3 and 4, but not their mRNA expression,

because they are constitutively expressed.

Figure 1C shows a situation where the genetic perturbation is the same, but

where the phosphorylation state is used as a measure of gene activity. Manipulation of gene 1

now does not affect the measured activity of genes 2 and 5, but it does affect the activities of

genes 3 and 4.

What can we expect a network reconstruction algorithm to achieve? Clearly, for the result

of the thought experiment shown in Fig. 1B, we would expect that the algorithm identifies the

order in which the genes influence each others expression state as G1→G2→G5. For Figure 1C,

we would expect that the algorithm identifies the order in which the genes influence each other�s

phosphorylation states as G1→G3→G4.

No algorithm can be expected to say anything beyond that. This is a limitation of the data

itself and not of any algorithm. Thus, one has to be very clear about the measure of gene activity

and the genetic perturbation used, and what interpretations one can extract from them. It is

possible to superimpose results such as those shown in Figure 1B and 1C, but this will not be my

focus here. My focus will be to reconstruct networks vastly more complex and reticulate than the

pathway shown in Figure 1A, from data like that shown in 1B or 1C.

In sum, an algorithm to reconstruct a genetic network from perturbation data should be

able to distinguish direct from indirect regulatory effects. This is by no means a weak statement,

although it may seem so at first glance. Consider a series of experiments in which the activity of

every single gene in an organism is manipulated. (For instance, non-essential genes can be

deleted, and for essential genes one might construct conditional mutants.) The effect on mRNA

expression of all other genes is measured separately for each mutant. The result is a list similar to

that shown in Figure 1B, but for thousands of genes. An algorithm reconstructing this network

Wagner

5

would be able to identify all genes regulated directly by any transcription factor encoded in this

organism�s genome. The significance of extracting such information can not be overestimated,

given the importance of transcriptional regulation in any biological process.

Results

Graph theoretical framework. As the previous examples indicated, I will be largely concerned

with qualitative information on gene interaction. That is, when I manipulate the activity of one

gene, what other genes are influenced in their activity? Quantitative information, such as whether

an interaction is activating or repressing, or the strength of the interaction, can be incorporated

into this approach, but I will leave that to a future contribution.

The qualitative information I am considering here lends itself ideally to a graph

representation of genetic networks. A directed graph or digraph is a mathematical object

consisting of nodes and directed edges. In the graph representation of a genetic network that I

will use here, the nodes of the graph correspond to genes, and two genes, say gene 1 and gene 2,

are connected by a directed edge (an arrow, 1→2) if gene 1 influences the activity of gene 2

directly. Figure 2A shows a graph representation of a hypothetical genetic network of 21 genes.

For brevity, I will simply label genes by numbers throughout the paper, as in this figure. Figure

2B shows an alternative representation of the network shown in 2A. For each gene i, it simply

shows which genes� activity state the gene influences directly. In graph theory, a list like that

shown in Fig. 2B is called the adjacency list of the graph. I will denote it as Adj(G), and will refer

to Adj(i) as the set of nodes (genes) adjacent to (directly influenced by) node i. One might also

call it the list of nearest neighbors in the gene network, or the list of direct regulatory interactions.

Importantly, the adjacency list completely defines the structure of a gene network.

When perturbing each gene in the network shown in Figure 2A, one would get the list of

influences on the activities of other genes shown in Figure 2C. For example, gene 0 influences,

directly or indirectly, the activity of genes 2 and 16. Gene 1 does not influence the activity of any

other gene, but its activity is influenced by genes 9 and 10. Gene 4 is an isolated node in this

network. Its activity is neither influenced by any gene in the network, nor does it influence the

activity of any gene. Starting from a graph representation of the network in Figure 2A, one arrives

at the list of direct and indirect causal interactions in Figure 2C by following all paths leaving a

gene. That is, one follows all arrows emanating from the gene until one can go no further. In

Wagner

6

graph theory, the resulting list Acc(G) is called the accessibility list of the graph G, because it

shows all nodes (genes) that can be accessed (influenced in their activity state) from a given gene

by following paths of direct interactions. In the context of a genetic network one might also call it

the list of perturbation effects or the list of regulatory effects. I define Acc(i) as the set of nodes

that can be reached from node i by following all paths of directed edges leaving i. Acc(G) then

simply consists of the accessibility list for all nodes i, as shown in Fig. 2C (Notice that not every

list like that shown in Figure 2C is the accessibility list of a graph. For example, there is no graph

with the accessibility list 1:2; 2:1; 3:2).

Generating 2C from 2A or 2B is straightforward, although time consuming for a large

network. The subject of this paper is the more difficult problem of reconstructing the network in

Figure 2A from nothing but the list given in Figure 2C, and to do that automatically for very large

networks of perhaps thousands of genes.

I will be using two additional mathematical representations of gene networks. The first of

these is the adjacency matrix of a graph G, A(G)=(aij). A(G) is an n×n square matrix, where n is

the number of nodes (genes) in the graph. An element aij of this matrix is equal to one if and only

if a directed edge exists from node i to node j. All other elements of the adjacency matrix are

zero. Second, the accessibility matrix P(G)=pij is also an n×n square matrix. An element pij is

equal to one if and only if a path following directed edges exists from node i to node j. pij equals

zero otherwise. Adjacency and accessibility matrices are the matrix equivalents of adjacency and

accessibility lists.

Most real world graphs are sparse. That is, they have few outgoing edges per node. For

such graphs, it is often more efficient to use lists rather than matrices for numerical operations.

However, to state or prove theorems, matrix representations are sometimes more convenient.

 In the following sections I will develop in two steps an algorithm to reconstruct a

network from its accessibility list, as well as its mathematical foundation. First, I will restrict

myself to graphs without cycles, where cycles are paths starting at a node and leading back to the

same node. Graphs without cycles are called acyclic graphs. In the second step I will generalize

to graphs with cycles. Before beginning, however, I have to address a problem germane to

analyzing any kind of experimental data. It is the problem that there are usually many possible

and internally consistent reconstructions of a study system from experimental data. The preferred

one is usually a simple or parsimonious one, by some suitable definition. Genetic network

reconstruction is no exception to this rule.

Wagner

7

Occam’s razor in network reconstruction. An acyclic directed graph defines its accessibility

list, but the converse is not true. In general, if Acc is the accessibility list of a graph, there is more

than one graph G with the same accessibility list. Figure 3 illustrates this with an example of three

graphs (Figs. 3B,C,D) with the same accessibility list Acc (Fig. 3A). For an example that simple it

is obvious that there is one graph (Fig. 3D) that has Acc as its accessibility list and is simpler than

all other graphs, in the sense that it has fewer edges. For more complicated graphs (Fig. 3C), it

may not be so clear that there is always such a graph. In this section, I will thus prove that there

exists exactly one such graph. In terms of reconstructing a genetic network, this means that for

any list of perturbation effects there exists exactly one genetic network G with fewer edges than

any other network with the same list of perturbation effects.

Theorem 1: Let Acc be the accessibility list of an acyclic digraph. Then there exists exactly one

graph Gpars that has Acc as its accessibility list and that has fewer edges than any other graph G

with Acc as its accessibility list.

I will call Gpars the most parsimonious network compatible with Acc. Before starting the proof, I

need to introduce some terminology.

Definition: An accessibility list Acc and a digraph G are compatible if G has Acc as its

accessibility list. Acc is the accessibility list induced by G.

Definition: Consider two nodes i and j of a digraph that are connected by an edge e. The range r

of the edge e is the length of the shortest path between i and j in the absence of e. If there is no

other path connecting i and j, then r: = ∞.

Definition: An edge e with range r≥2 but r≠∞ is called a shortcut.

The last two definitions, in slightly different form and for undirected graphs, are due to (Watts

1997). A shortcut of range k+1 is illustrated in Figure 4. A shortcut provides a shortest route

between two nodes which are also connected by a longer path. Equipped with these definitions, I

am now ready to prove Theorem 1.

Lemma 1: For any accessibility list Acc of a digraph, there exists a compatible graph Gpars that is

free of shortcuts.

Wagner

8

Proof: Assume there is no such graph Gpars. Without loss of generality, let G be a digraph

inducing Acc. By assumption, G has a finite number of node pairs, (x11, y1),…,(xnn, yn), each of

which has the following property: There exists a directed edge ei from xi to yi, as well as a path Pi

from xi to yi of length greater than 1. Take, without loss of generality, the first pair of such nodes,

(x11, y1), and generate from G a graph G* from which the edge e1 is deleted. This graph has the

same accessibility list as G, because x1 and y1 are still connected via P1. By repeating this

procedure with the remaining (n-1) node pairs, you arrive at a graph G(n*) with the same

accessibility list as G but without shortcuts. This is a contradiction to the assumption made in the

beginning of the proof.

Lemma 2: Assume that Acc is the accessibility list of a digraph G. For each node x, the adjacency

list Adj(x) of a shortcut-free graph Gpars compatible with Acc is a subset of the adjacency list

Adj(x) of any graph compatible with Acc.

Proof: Assume that Lemma 2 is false. Consider then, without loss of generality, a shortcut-free

graph Gpars that induces Acc, and some other graph G that also induces Acc. By assumption, Gpars

contains at least one node x for which the following holds. Adj(x) of Gpars contains at least one

node y that is not in the adjacency list Adj(x) of G. But because G and Gpars have the same

accessibility list Acc, there must exist some path x→z1→z2→z3→ …→zk→y from x to y in G.

Furthermore, because G and Gpars have the same accessibility list, z1 must be accessible from x in

Gpars, z2 from z1 in Gpars �and zk from zk-1 in Gpars. That means that we can find a path in Gpars,

however indirect, that runs from x to z1, from z1 to z2, from z2 to z3, � from zk-1 to zk, and from zk

to y. But now we have two paths in Gpars, one of length one, the edge e between x and y, and one

involving the nodes z1 through zk. Thus, the edge e (x→y) is a shortcut, in contradiction to the

assumption that Gpars is shortcut-free.

Corollary 1: The shortcut-free graph Gpars compatible with Acc is a unique graph with the fewest

edges among all graphs G compatible with Acc.

The corollary follows immediately from Lemma 2. A complementary way of showing that Gpars is

a minimal graph is to examine, first, the consequences of adding a node y to the adjacency list

Adj(x) of some node x in Gpars. If y ∉ Acc(x) before the addition, now y ∈ Acc(x), the

accessibility list has changed, and the altered graph is no longer compatible with the original

Wagner

9

accessibility list. If, on the other hand, y∈ Acc(x) before the addition, then the addition has

created a shortcut, so the graph is no longer shortcut-free. Second, what happens if you eliminate

a node y from the adjacency list of any node x in Gpars? Then, y is no longer accessible from x,

you have altered the accessibility list, and the resulting graph is no longer compatible with Acc.

Assume that this was not so, that is, that y was still accessible from x. Then a path from x to y

must have existed before the elimination of y from Adj(x). In that case, the edge from x to y was

a shortcut, in contradiction to the assumption that Gpars is shortcut-free.

The algorithm. The network reconstruction algorithm takes the accessibility list Acc of an

acyclic directed graph, and generates from it the adjacency list of the most parsimonious graph of

Acc. It relies on two basic relations between accessibility and adjacency lists. The first is that for

all nodes i a of a graph, Adj(i)⊆ Acc(i). The second is formulated in the following Theorem.

Theorem 2: Let Acc(G) be the accessibility list of an acyclic directed graph, Gpars its most

parsimonious graph, and V(Gpars) the set of all nodes of Gpars . Then the following identity

holds

In words, for each node i the adjacency list Adj(i) of the most parsimonious genetic network is

equal to the accessibility list Acc(i) after removal of all nodes that are accessible from any node in

Acc(i).

Proof: I will first prove that every node in Adj(i) is also contained in the set defined by the right

hand side of (1). Let x be a node in Adj(i). This node is also in Acc(i). Now take, without loss of

generality any node j ∈ Acc(i). Could x be in Acc(j)? If x could be in Acc(j) then we could

construct a path from i to j to x. But because x is also in Adj(i), there is also an edge from i to x.

This is a contradiction to Gpars being shortcut-free. Thus, for no j ∈ Acc(i) can x be in Acc(j). x is

therefore also not an element of the union of all Acc(j) shown on the right-hand side of (1). Thus,

subtracting this union from Acc(i) will not lead to the difference operator in (1) eliminating x

from Acc(i). Thus x is contained in the set defined by the right-hand side of (1).

Next I will prove that every node in the set of the right-hand side of (1) is also in Adj(i).

Let x be a node in the set of the right-hand side of (1). Because x is in the right hand side of (1), x

�
)(

)1()(\)()()(
iAccj

pars jAcciAcciAdjGVi
∈

=∈∀

Wagner

10

must a fortiori also be in Acc(i). That is, x is accessible from i. But x can not be accessible from

any j that is accessible from i. For if it were, then x would also be in the union of all Acc(j). Then

taking the complement of Acc(i) and this union would eliminate x from the set in the right hand

side of (1). In sum, x is accessible from i but not from any j accessible from i. Thus x must be

adjacent to i.

The algorithm itself will use the following corollary to Theorem 2.

Corollary 2: Let i, j, and k be any three pairwise different nodes of an acyclic directed shortcut-

free graph G. If j is accessible from i, then no node k accessible from j is adjacent to i.

Proof: Let j be a node accessible from node i. Assume that there is a node k accessible from j,

such that k is adjacent to i. That is, j ∈ Acc(i), k ∈ Acc(j) and k∈ Adj(i). That k is accessible from j

implies that there is a path of length at least one from j to k. For the same reason, there exists a

path of length at least one connecting i to j. In sum, there must exist a path of length at least two

from i to k. However, by assumption, there also exists a directed edge from i to k. Thus, the graph

G can not be short-cut free.

The algorithm itself takes the accessibility list of a graph and eliminates entries

inconsistent with Theorem 2 and Corollary 2. It does so recursively until only the adjacency list

of the shortcut-free graph is left. The algorithm is shown as pseudocode in Figure 5. Because it

operates on lists, programming languages such as perl or library extensions of other languages

permitting list operations will facilitate its implementation. (Appendix A shows a perl

implementation of the algorithm, where accessibility and adjacency list are represented by a two-

dimensional hashing array.)

The algorithm (Fig. 5) needs an accessibility list for each node i, Acc(i), which would be

obtained from gene perturbation data and subsequent gene activity measurements for a genetic

network. In lines one and two (Fig. 5), for each node i the adjacency list Adj(i) is initialized as

equal to the accessibility list. The algorithm will delete elements from this Adj(i) until the

adjacency list of the most parsimonious network of Acc(G) is obtained.

The master loop in lines 3-6 cycles over all nodes of G, and calls the routine

PRUNE_ACC for each node i. In the last statement of this routine (line 19) the calling node is

declared as visited. I define a visited node as a node whose adjacency list Adj(i) needs not be

Wagner

11

modified any further. This is the purpose of the conditional statement in the master loop (line 4),

which skips over nodes that have already been visited.

Aside from storing Acc and Adj, the algorithm thus also needs to keep track of all visited

nodes. In an actual implementation, Acc, Adj, and any data structure that keeps track of visited

nodes would need to be either global variables or passed into the routine PRUNE_ACC,

preferably by reference. In contrast, the calling node i needs to be a local variable because of the

recursivity of PRUNE_ACC.

I will now explain the function PRUNE_ACC itself, which is the algorithm�s core. It

contains of two loops. The first loop (lines 8-13) cycles over all nodes j accessible from the

calling node i. If there exists a node accessible from j, then PRUNE_ACC is called from j. If no

node is accessible from j, that is, if Acc(j) =∅ , then j is declared as visited. Because its

accessibility list is empty, its adjacency list must be empty as well (Adj(i)⊆ Acc(i)), and needs no

further modification. Thus, through the first loop PRUNE_ACC calls itself recursively until a

node is reached whose accessibility list is empty. There always exists such a node, otherwise the

graph would not be acyclic. This also means that infinite recursion is not possible for an acyclic

graph. Thus, the algorithm always terminates. More precisely, the longest possible chain of

nested calls of PRUNE_ACC is (n-1) if G has n nodes. For any node i calling PRUNE_ACC, the

number of nested calls is at most equal to the length of the longest path starting at i.

The second loop of PRUNE_ACC (lines 14-18) only starts once the algorithm has

explored all nodes accessible from the calling node i, that is, as the function calls made during the

first loop return. In the second loop the principle of Corollary 2 is applied. Specifically, the

second loop cycles over all nodes j accessible from i in line 14. In a slight deviation from what

Corollary 2 suggests, line 15 cycles not over all nodes k∈ Acc(j) , but only over k∈ Adj(j). All

nodes k∈ Adj(j) are deleted from Adj(i) in lines 16-18. Cycling only over k∈ Adj(j) saves time, but

does not compromise the requirement that all nodes k∉ Adj(i) be removed, because line 14 covers

all nodes j accessible from i. Because of the equality proven in Theorem 2, once this has been

done, the adjacency list need not be modified further. This is why upon leaving this routine, the

calling node is declared as visited. Notice also that if a node j with Acc(j) =∅ is encountered, the

loop in line 15 is not executed.

Computational and storage complexity. Both measures of algorithmic complexity are

influenced by the average number of entries in a node�s accessibility list. Let k<n-1 be that

number. For all practical purposes, there will be many fewer entries than that, not only because

accessibility lists with nearly n entries are not accessibility lists of acyclic digraphs, but also

because most real-world graphs are sparse (Fell and Wagner 2000; Jeong 2000; Wagner 2001b)

Wagner

12

During execution, each node accessible from a node j induces one recursive call of

PRUNE_ACC, after which the node accessed from j is declared as visited. Thus, each entry of the

accessibility list of a node is explored no more than once. However, line 15 of the algorithm

(Figure 3) loops over all nodes k adjacent to j. If a=|Adj(j)|, on average, then overall

computational complexity becomes O(nka).

For practical matters, large scale experimental gene perturbations in the yeast

Saccharomyces cerevisiae (n≈6300) suggests that k<50 (Hughes et al. 2000), a≤1 (Wagner

2001a), and thus that nka<<n2 in that case. In practice, a network of 6,300 nodes (the approximate

number of genes in the genome of the yeast Saccharomyces cerevisiae) and the same number of

edges was reconstructed in approximately 15 seconds on a desktop workstation (450MHz

Pentium II; RedHat Linux 6.2), using the perl implementation of the algorithm shown in the

Appendix. Even for the much larger human genome (n≈30000), network reconstruction would

thus be feasible on a desktop computer.

The algorithm stores two copies of the accessibility list, as well as a list of the nodes that

have been visited. The recursion stack requires additional storage. However, the recursion depth

can be no greater than n-1 because otherwise the graph would not be acyclic. Thus, overall

storage requirements are O(k).

 Cycles in genetic networks. One might think that acyclic graphs must be rather simple

objects. This is not so. Consider the two networks of 20 genes shown in Figure 6A and Figure 6B.

They differ by only one edge: The network in Figure 6B has a directed edge from gene 13 to gene

4, an edge that is missing in Figure 6A. The network in Figure 6B is cyclic (e.g., it contains the

cycle 4→6→9→19→13→4). The network in Figure 6A is acyclic. Thus, the distinction between

cyclic and acyclic networks need not be obvious.

There are two different kinds of cycles. First, an edge leaving a node might be directed

onto the node itself. In graph theory such edges are called loops. In genetic networks they

correspond to genes autoregulating their activity. Only certain perturbation techniques can detect

such loops. For example, perturbing gene activity by gene deletion can not detect autoregulation,

in contrast to overexpression of an extrachromosomal gene copy, while the activity of a

chromosomal copy is measured. Autoregulation is immediately detected from a suitable

perturbation experiment as an entry of the gene itself in its accessibility list. Because

autoregulation does not pose any algorithmic problems, I will here discuss only loopfree graphs,

corresponding to networks without autoregulated genes.

Wagner

13

The second type of cycles involves more than one gene. What is the problem with these

cycles? Consider the two simple cyclic networks shown in Figure 6C. Notice that the order of

direct regulatory interactions in these two networks is different, as reflected in the adjacency lists

written underneath each network. However, both networks, when perturbed, would generate the

accessibility list shown in Figure 6C. Characteristically, perturbation of any gene influences the

activity of all other genes in the network. Thus, from single gene perturbations one can not

uniquely reconstruct the structure of a cycle such as that in Figure 6C. In fact, all possible orders

of the five genes in the network are consistent with the list of Figure 6D.

Notice that this is not an algorithmic but an experimental limitation. Elsewhere I will

introduce an algorithm able to reconstruct the structure of any cyclic network with suitable

experimental data. In this contribution, however, I will stay within the limits of single-gene

perturbations. As is illustrated in Figure 6, the order of genes that are part of a cycle can not be

resolved. They are thus collapsed into a single group of nodes with indistinguishable order of

regulatory interactions. The general idea of what follows is to identify all cycles in a network and

for each cycle, collapse all nodes that are part of it. The remaining network is acyclic and can be

reconstructed with the algorithm for acyclic graphs.

I state some definitions and, without proof, some theorems from the theory of directed

graphs. All of them can be found in (Harary 1969). A strongly connected component or strong

component of a directed graph G is a maximal subset of nodes of G in which every two nodes are

mutually accessible. That means, for any two nodes i and j, there is a path from i to the j, and vice

versa. This implies that there is a cycle through any two nodes of a strong component.

Conversely, any two nodes through which there is a cycle are part of the same strong component.

Strictly speaking, I will thus not only be concerned with all cycles but with all strong components

of a digraph. A generalization of the principle above is that single gene perturbations can not

resolve the adjacency list for any node in a strong component.

Each node of a directed graph lies in exactly one strong component. This holds also for

acyclic graphs, if one defines that a graph (or the subgraph of G) with only one node is a strong

component of G. The condensation G* of a directed graph G has the strong components of the

graph G as its nodes,. Denote the components of G (nodes of G*) as S1, …, Sk. There is an edge

from any Si to any Sj in G* if there is an edge in G from at least one node in the component Si to at

least one node in the component Sj. The relationship of a graph and its condensation is illustrated

in Figure 7. Panel A shows a cyclic graph of 16 nodes. Upon close examination one finds one

component with 5 genes (1,3,4,5,15; diamond-shaped nodes), another component with three

genes (3, 6, 9; rectangular nodes), and eight remaining single-gene components (round nodes).

Wagner

14

Panel B shows the condensation of the graph in A, where the two non-trivial components are now

collapsed into single nodes. The condensation is an acyclic graph and can be reconstructed from

the accessibility list.

To reconstruct a genetic network from single-gene perturbation experiments, one thus

needs to identify all the strong components from experimental results, that is, from the

accessibility list. The following theorem, due to Harary, is very useful for doing that.

Theorem 3 (Harary 1969): Let P be the accessibility matrix of a digraph G with n nodes, x1, …, xn.

The strong component containing xi is determined by the unit entries of the i-th row in the matrix

P×PT. (The superscripted �T� denotes the matrix transpose of P, and the product �×� is the

elementwise or Hadamard product of the two matrices.)

Because I will be working with accessibility lists, not matrices, I will use the following corollary.

Corollary 3: Let i and j (i≠j) be two nodes of a digraph G. i and j are in the same component iff

i∈ Acc(j) and if j∈ Acc(i).

An algorithm applying this corollary to identify the strong components of a graph from the

accessibility list is shown in Fig. 8 as pseudocode. Not only does it identify the strong

components, it also generates a new graph G*, the condensation of G. To this end, it uses a data

structure component[i] which is an array indexed by the nodes i of G and pointing to a node

of G* which corresponds to the component in which i resides. (In an actual implementation of the

algorithm, a hashing array might be a convenient representation of such a data structure).

Before the algorithm starts, component[i] is undefined for all nodes i of G. The algorithm

itself has two parts. In the first part (lines 1-9 in Figure 8), it cycles through all nodes of G. If a

node i is found that has not been mapped onto a component (line 2), that is, the component which

i belongs to has not yet been defined, then a new node of G* is created (line 3), and i is mapped

onto that node (line 4). Then, a loop (line 5) cycles over all nodes in Acc(i) and applies the above

corollary to identify nodes in the same component as i. These nodes are then also mapped onto

component[i] (lines 6-8). Notice that the conditional statement in line 2 saves potentially

much execution time if the graph has few components. This is because it prevents scanning the

accessibility list of i (lines 5-8) if component[i] has been defined previously during the

master loop (line 1). For instance, in the extreme case of a graph with only one component, the

statements in the interior of the loop would only be executed for the first node i of the graph.

Wagner

15

The second part of the algorithm then generates the accessibility list of G* from that of

G. It first initializes this list to the empty list for each node i of G* (lines 10-11). It then cycles

through all nodes i of G (line 12), and through each node accessible from i, that is, through all j∈

Acc(i). If i and j are in different components, that is, if they map to different nodes of G*, the

node in G* represented by component[j] must also be in the accessibility list of

component[i]. If it has not been added to that list (line 15), it is added in line 16.

Because the graph G* has at most the same number of nodes and accessibilities as G, and

because the algorithm generates only one copy of G* and its accessibility list, both storage and

time complexity scale as O(k) where k is the number of entries of the accessibility list (k<n2).

Missing genes and messy data. The algorithm presented here can be used to reconstruct both

large and small genetic circuits. It can be used to reconstruct a genetic network for an entire

organism from perturbation data of all genes. At the time of this writing, the availability of such

data is not utopian. For instance, more than 90% of all genes of the yeast Saccharomyces

cerevisiae have been perturbed by targeted gene deletion (Winzeler et al. 1999). Similarly large-

scale genetic perturbation projects are under way in the fruit fly Drosophila melanogaster, the

nematode Caenorhabditis elegans, as well as in plants (Bouche and Bouchez 2001; Fraser et al.

2000; Gonczy et al. 2000; Spradling et al. 1999). In such experiments some genes are difficult to

perturb, because they are essential to the organism. It is then also difficult to assess how their

activity affects the activity of other genes. Sometimes a different kind of perturbation provides a

solution to this problem, such as overexpression or conditional expression instead of gene

deletion. Even so, it is likely that some genes remain impossible to perturb, or that one can not

measure their perturbation effect. In the reconstruction of smaller genetic networks one

encounters similar problems. For example, one might be interested in the regulatory interactions

of all genes required for sporulation, or for chromosome segregation, or for the repair of radiation

damage. Through earlier experiments, one might have an idea about what these genes are. For

instance, one might have carried out a saturation mutagenesis experiment, or a large-scale gene

expression study monitoring all genes whose expression changed during the process in question.

However, some genes involved in the process of interest may not have been detected by this

approach.

Thus, for one reason or another, when reconstructing a genetic network one is faced with

the problem of missing information, genes for which no perturbation data is available.

How does the algorithm perform in the face of such missing information? I will restrict myself

here to the case of acyclic networks. The reason is that eliminating expression information from a

Wagner

16

cyclic network may change the number of cycles observed, and thus the number of nodes in the

network�s condensation. How condensations with different numbers of nodes are best compared

to the original condensation is nontrivial and beyond the scope of this contribution.

To assess robustness of the algorithm from Fig. 5 to missing genes, I first use methods

described in (Mehlhorn and Naher 1999) to generate a random graph of a pre-specified number of

nodes and edges, which is then rendered acyclic by removal of suitably chosen edges. I use

random networks purely for reasons of computational convenience. However, notice that recent

analyses of the structure of large-scale metabolic and genetic networks suggest that they share

important features with random networks (Jeong 2000; Wagner 2000; Wagner and Fell 2000).

For a network thus generated, I then eliminate information on a pre-specified fraction of its nodes

from its accessibility list in the following way. For each of the nodes X, I eliminate all entries of

Acc(X) as well as all entries of X found in the accessibility lists of other genes. I then reconstruct a

network from this modified accessibility list using the algorithm of Fig. 5, and determine what

fraction of edges between the remaining nodes the algorithm has identified correctly. The results

are shown in Fig. 9 for three random networks of 500 nodes and 250, 500 and 750 edges.

Quality of network reconstruction is not sensitive to the number of edges, but decays

linearly with the number of genes on which information is missing (Fig. 9A). The best predictor

of network reconstruction quality is the fraction of entries of the accessibility list remaining after

removal of a certain fraction of nodes. Its relation to the fraction of correctly reconstructed direct

interactions is practically one to one, as indicated by the slope of the regression line in Fig. 9B.

This is not surprising, as one can think of each accessibility as a bit of information used in

reconstructing the network. It would in fact be very surprising if the reconstruction algorithm

could do any better than shown in Fig. 9B, that is, if the slope of the regression line could be

much less than one. This would mean that for any entry removed from an accessibility list

removed, one would lose less than one accurately reconstructed direct interaction. Conversely, a

slope much greater than one would indicate poor performance, in the sense that the algorithm

does not use all information contained in an accessibility list.

 Another problem is flawed data. By flawed data I mean spurious or missing entries of an

accessibility list. Such data is the result of errors in measuring gene activities. The reason why

flawed data is a problem is that not just any list of the form shown in Fig. 2C is the accessibility

list of a graph. Take the accessibility of the simple network 1→ 2 →3. Eliminate only one entry,

indicated in parentheses

1: 2 (3)

Wagner

17

2: 3

3:

and the resulting list is not the accessibility list of a graph anymore. You can convince yourself

that even for simple graphs, removal or addition of entries can lead to arbitrarily pathological

situations, such as structures that look like cycles in the accessibility list but that do not

correspond to any possible cycle in a graph. Such pathologies may pose challenges for any

reconstruction algorithm.

There are two ways to address this problem. One way is to use only the most reliable

data. For example, in a micro array experiment assessing the effect of a gene deletion on the

mRNA expression state of other genes, some genes change expression to a greater extent than

others. One could only use those genes whose expression state has changed beyond a pre-

specified threshold, according to some suitable statistical criterion. However, being excessively

conservative would lead to failure to identify some important interactions.

The second way regards heuristic modifications to the algorithm. For example, because

no cycle in a graph of n nodes can be longer than n edges, one might set a limit to the recursion

depth of the algorithm to prevent infinite recursion in case an accessibility list contains spurious

cycles. If that recursion depth is exceeded for at least one node, the algorithm (Fig. 8) generating

the condensation is applied repeatedly, until the pruning algorithm (Fig. 5) yields an adjacency

list. Even with such heuristic modifications, however, it is almost certain that one can construct

arbitrarily pathological �accessibility� lists for which any algorithmic modification would yield

little or no useful information on the network. If and how the algorithm should be modified

depends on the error structure of the empirical data. This error structure, in turn, may depend on

the notion of gene activity and also on the kind of perturbation used. As large-scale genetic

perturbation data is accumulating, the statistical nature of these errors will become clear. I will

thus postpone a more rigorous treatment of this problem.

 To provide at least a crude assessment of algorithmic robustness to defects in the

accessibility list, I will focus on one aspect of robustness, robustness to missing entries of the

accessibility list. Current techniques to measure the effects of gene perturbations on gene activity,

such as transcriptional activity measurements provided by micro arrays, are very noisy. It has thus

become common practice to call only those genes affected by a perturbation whose expression

level changes by more than some pre-specified factor. This factor is chosen in a statistically

conservative way in order to avoid false positives results. Statistical conservatism leads to the

usual problem that some genes actually affected by the perturbation are not identified as such.

Wagner

18

With this in mind I will address the question how the network reconstruction algorithm behaves

when a fraction of perturbation effects (entries of the accessibility list) are not identified in an

experiment.

I restrict myself to acyclic networks, for reasons discussed above. I generate a random

network of a pre-specified number of nodes and edges along with its accessibility list, and

eliminate a fraction of the entries of its accessibility list at random. I then apply the algorithm

from Fig. 5 to the list thus generated, and assess the fraction of edges that the algorithm identifies

correctly, that is, the fraction of edges that are in both the actual network and the network

reconstructed from the changed accessibility list. Fig. 10 shows the results of this analysis. Very

similar to what has been shown in Figure 9, and for the same reasons, the quality of network

reconstruction shows a statistical one-to-one relationship with the number of remaining entries of

the accessibility list.

Wagner

19

Discussion

The algorithm presented here proceeds in two steps. First, it renders a genetic network acyclic by

collapsing all cycles onto single nodes, and it then reconstructs the regulatory interactions in the

remaining acyclic network.

Limitations. The inability to resolve cycles may seem like a limitation of the algorithm but it

really is a limitation of the data. No single gene perturbation experiment can resolve cycles, as

illustrated in Fig. 6. The question then arises how important this limitation is in network

reconstruction. While it is safe to assume that any genetic circuit contains feedback controls, and

thus cycles, it is much less clear how frequent cyclic interactions are when measuring only one

aspect of gene activity. In other words, how many transcription factor genes indirectly influence

their own transcriptional state, and how many protein kinases indirectly influence their own

phosphorylation state? There are examples of such control loops, but they may be less frequent

than the more general feedback controls involving two or more different kinds of gene activity. (I

am emphasizing indirectness in feedback, because direct self-regulation by a gene product can be

immediately inferred from a suitably designed experiment without requiring any sophisticated

algorithm.)

A second limitation is that the notion of gene activity limits the information one can

obtain on network structure (Fig. 1). This is again an experimental limitation that can only be

overcome if multiple aspects of gene activity, such as transcription, phosphorylation state, or

methylation state can be measured at the scale required here. Currently, only mRNA expression

can be measured at that scale. However, because most eukaryotic genes are regulated

transcriptionally, the reconstruction of transcriptional regulation networks will provide a

backbone into which other measurements of gene activity can be easily integrated, once they are

available.

 A third shortcoming is that the algorithm requires more data than conventional methods

using gene expression correlations. This is the price to pay for resolving causal interactions. It

illustrates an informational trade-off involved in reconstructing genetic networks. Fortunately,

genome-scale experiments are in the process of providing the required genetic perturbations for

several model organisms (Bouche and Bouchez 2001; Fraser et al. 2000; Gonczy et al. 2000;

Hughes et al. 2000; Spradling et al. 1999). The most effective strategy to reconstruct genetic

networks may in fact be a combination of the correlative and perturbative approaches. Available

correlation methods can be used to identify groups of genes likely to participate in a particular

process of interest. These genes can then be systematically perturbed, and the resulting data can

Wagner

20

then be used to reconstruct regulatory interactions. Conventional biochemical methods can then

be applied to study subnets of interest in greater detail.

Fourth, there are many networks consistent with any given list of perturbation effects.

The algorithm only reconstructs one of them, the simplest or most parsimonious network, the

network that contains the fewest regulatory interactions. There can be no guarantee that this most

parsimonious network reflects the actual structure of a genetic network, which might have vastly

more interactions. However, it is not likely that a genetic network would maintain vastly more

regulatory interactions than necessary to exert its function. The reason is that such unnecessary

interactions are likely to disappear rapidly through degenerative mutations. In a related vein, gene

perturbation data may resolve the influence of redundant genes on other genes to a limited extent.

Gene redundancy has often been postulated when knockout mutations of a gene show weak or no

detectable phenotypic effect. However, on a genome-wide scale such redundancy may be less

abundant than commonly assumed (Wagner 2000). For example, a recent large scale analysis of

the effect of several hundred knockout mutations on growth phenotypes and mRNA expression

patterns in the yeast Saccharomyces cerevisiae reported that the vast majority of mutations with

weak phenotypic effects showed detectable alterations in gene expression patterns (Hughes et al.

2000).

The next steps. Computational complexity of the algorithm is low, and it is sufficiently fast that a

genetic network with as many genes as the human genome could be reconstructed on a desktop

workstation. While efforts to improve algorithmic efficiency may thus lead to marginal returns,

significant improvement in other areas is possible.

Because the data currently available to apply the algorithm is notoriously noisy (DeRisi

et al. 1997), I have restricted myself to assessing regulatory interactions qualitatively. That is, I

do not ask to what extent a gene infuences another gene�s activity, or whether this influence is

activating or repressing. However, once the network is reconstructed, this information is easily

read from the experimental data and superimposed onto the network�s edges. Doing that poses no

algorithmic problem. Second, although I crudely assessed robustness of reconstruction quality to

missing genes and flawed data, a more rigorous evaluation is clearly possible. It is, however, best

postponed until we know more about the statistical structure of errors in large-scale gene activity

measurements. Third, integrating different kinds of genomic data may provide additional useful

information. For instance, superimposing functional annotation for network genes onto the

structure of a reconstructed network may help distinguish between direct and indirect interactions

beyond the resolution of the perturbation experiment itself.

Wagner

21

Conclusions. Genetics is concerned with identifying gene interactions and their biological

significance. Functional genomics takes this concern to the next level, that of identifying gene

interactions among thousands of genes in a genome. Thus, a tool to identify such interactions, and

to distinguish direct from indirect interactions, applies to virtually any area in these two fields.

The algorithm may help answer a multitude of questions about the genetic architecture of

organisms. What is the structure of genetic networks? How do patterns of gene interactions

change in different developmental stages, in different physiological states, in different

environmental conditions, or in different cell types? Are there few or many genes that do not

affect the activity of other genes. What about so-called master regulators, genes that drive large

parts of a physiological or developmental program? Do they have a characteristic profile of

regulatory interactions? These are all coarse-scale questions about genetic networks. In addition,

by distinguishing a gene�s direct and indirect regulation targets, the algorithm can help sift

through a large amount of genomic information to identify candidate genes for targeted

biochemical investigation.

Insofar as our understanding of intact organisms helps us understand the nature of

disease, a tool to identify direct gene interactions has broad applications in basic and applied

biomedical research. To give but two examples, it may be useful to identify targets for

conventional therapeutic agents or for gene therapy. Second, there may be variation in genetic

network structure within human populations. If so, the tool can be used to identify the nature of

this variation, and thus provide information useful to pharmacogeneticists. There are also

countless applications to organisms other than humans. One example is agricultural

biotechnology, where the design of effective pesticides may depend on our understanding of gene

interactions involved in host defense, pest survival, reproduction, or virulence. In sum, a tool to

reconstruct genetic network structure from gene perturbation data is useful wherever regulatory

gene interactions are important for our understanding of how organisms � be they humans,

animals or plants � function, or how disease comes about.

Acknowledgments. I would like to thank the Santa Fe Institute for its continued support of my

research program, and two reviewers for their constructive comments.

Wagner

22

Appendix

Below is a perl implementation of the algorithm to reconstruct acyclic genetic networks

by pruning accessibility lists. Its structure follows exactly that of the pseudocode shown in Fig. 7

and explained in the main text, with one difference. Only one data structure is used to represent

both accessibility list and adjacency list. This structure is a two-dimensional hashing array acc.

The accessibility list needs to be read into this array (input and output are not shown here) such

that after input but before the algorithm is run $acc{$i}{$j}=1 if gene $j is accessible from

gene $i. This implies that $acc{$i}{$j} is also defined. If gene $j is not accessible from

gene $i, then $acc{$i}{$j} must be undefined. The algorithm tests whether $j is accessible

from $i by testing whether the corresponding entry of acc is defined, but it prunes acc by

setting an entry to zero. After execution, all entries of acc that are still equal to one are entries of

adj and can be read out that way. Visited nodes are kept track of by a one-dimensional hashing

array %visited which needs to be initialized as �%visited=();’ before execution. I do not

claim that this is the most efficient or most elegant implementation.

master loop

foreach $i(sort keys %acc) {

if($visited{$i}!=1) {

PRUNE_ACC($i);

}

}

sub PRUNE_ACC {

declare calling variable as local

my $i=@_[0];

loop one of PRUNE_ACC

foreach $j (keys %{$acc{$i}}) {

if($visited{$j}!=1) {

if (scalar(keys %{$acc{$j}})==0) {

$visited{$j}=1;

}

else {

PRUNE_ACC($j);

}

}

Wagner

23

}

#loop two of PRUNE_ACC

foreach $j (keys %{$acc{$i}}) {

foreach $k (keys %{$acc{$j}}) {

if($acc{$j}{$k}==1) {

if ($acc{$i}{$k}==1) {

$acc{$i}{$k}=0;

}

}

}

}

$visited{$i}=1;

}

Wagner

24

Figure Captions

Fig. 1: The importance of specifiying gene activity when reconstructing genetic networks. A)

A hypothetical biochemical pathway involving two transcription factors, a protein kinase, and a

protein phosphatase, as well as the genes encoding them. See text for details. B) Shown is a list of

perturbation effects for each of the five genes in A, when perturbing individual genes by deleting

them, and when using mRNA expression level as an indicator of gene activity. The left-most

symbol in each line stands for the perturbed gene. To the left of each colon is a list of genes

whose activity is affected by the perturbation. C) Analogous to B but for a different notion of

gene activity (phosphorylation state).

Fig. 2: Reconstructing a network from a list of direct and indirect perturbation effects.

Panel A shows a genetic network represented as a graph whose nodes correspond to genes

numbered from 0 through 19. Two genes are connected by an arrow if they influence each other�s

activity directly. Panel B shows the adjacency list of this network. It completely defines the

network. For each gene i (to the left of the colon), it is the list of all genes directly influenced by i.

C) shows the list of direct and indirect perturbation effects for the network in A. When perturbing

the activity of a gene i in the network, all genes whose activities are directly or indirectly

influenced by this gene will change their activity. For each perturbed gene, one gets the list

shown in C by following all paths leaving a gene along the arrows. In this context, the task of

network reconstruction is to generate a list such as that shown in A from a list of perturbation

effects shown in C.

Fig. 3 The most parsimonious graph is the graph with the fewest edges consistent with a

given accessibility list. A shows the accessibility Acc of an acyclic graph. B, C and D show

graphs that have this accessibility list. The graph shown in D is the most parsimonious graph of

Acc.

Fig. 4. A shortcut is an edge e connecting two nodes, i and j, that are also connected via a

longer path of edges. The shortcut e shown here is a shortcut of range k+1. That is, when

eliminating e, i and j are still connected by a path of length k+1.

Wagner

25

Fig. 5. A recursive pruning algorithm to reconstruct the most parsimonious graph from an

accessibility list. See text for details.

Fig. 6. Single gene perturbations can not resolve the order of genes in a cycle. A and B show

a cyclic and an acyclic network, respectively, that differ by only one edge, the edge between

nodes 13 and 4. Panel C shows two cycles with their respective adjacency list. The order of genes

in these cycles is different, yet they generate the same accessibility list, which is shown in D.

Fig. 7. Graphs and condensations. The graph shown in A contains two nontrivial strong

components, that comprising nodes 1, 3, 4, 5, 15 (diamonds), and that comprising nodes 6, 9 and

12 (squares). In the condensation of this graph, shown in B), the strong components are collapsed

onto a single node.

Fig. 8. An algorithm to calculate the condensation of a cyclic network from perturbation

data. The first part of the algorithm (lines 1-9) generate the nodes of the condensation, as well as

a map from the nodes of the graph into the condensation. The second part (lines 10-18) generates

edges between the nodes of the condensation.

Fig. 9. Quality of network reconstruction with missing genes. Results are shown for three

random graphs of 500 nodes and 250 edges (diamonds), 500 edges (stars), or 750 edges (squares),

from which edges are removed until each network is rendered acyclic (Mehlhorn and Naher

1999). After removal of these edges, the resulting three acyclic graphs have 250, 492, and 646

edges, respectively. The pruning algorithm from Fig. 5 is then applied to the accessibility list of

each of these networks, as well as to the same accessibility list after information on a pre-

specified number of nodes is removed, as explained in the main text. This reduced accessibility

list emulates a situation where a number of genes have not been perturbed. A) shows on the

abscissa a measure of the number of these genes, that is, the fraction of genes on which

information is missing. Plotted against it is the fraction of correctly reconstructed edges. More

precisely, it is the fraction of edges that the network reconstructed with missing perturbation

information has in common with the network with complete information. B) shows the same

measure of reconstruction quality. The only difference to A) is that the abscissa shows the

fraction of remaining entries of the accessibility list, and not the fraction of missing genes. The

value of one on the abscissa refers to the number of entries of the accessibility list for a network

where all genes were perturbed. As the fraction of missing genes increases from 0 to 0.5 (as

Wagner

26

shown in A), the fraction of remaining entries of the accessibility list decreases from one to

approximately 0.25 for all three networks shown. Both panels show that the quality of network

reconstruction is not very sensitive to the number of edges in the network. The most direct

predictor of this quality is the number of remaining entries of the accessibility list. This is

indicated by the slope of the regression line shown in B) through the data points pooled for all

three networks. It is nearly identical to one (y=1.01x-0.002; Pearson r2=0.994).

Fig. 10. Quality of network reconstruction with unidentified perturbation effects. Results are

shown for three random graphs of 500 nodes and 250 edges (diamonds), 500 edges (stars), or 750

edges (squares), from which edges are removed until each network is rendered acyclic (Mehlhorn

and Naher 1999). After removal of these edges, the resulting three acyclic graphs have 250, 492,

and 646 edges left, respectively. For each of these networks, a pre-specified fraction of entries is

then eliminated at random from the accessibility list. The fraction of remaining entries is shown

on the abscissa. The pruning algorithm from Fig.5 is applied to the changed accessibility list, and

the network it reconstructs is then compared to the actual graph. More precisely, the fraction of

correctly identified edges in the reconstructed network with missing accessibilities is determined.

This fraction is shown on the ordinate axis. There is a statistical one-to-one relation between the

number of remaining entries and the fraction of correctly reconstructed interactions (y=1.006x-

0.006; Pearson r2=0.75).

Wagner

27

References

Bouche, N., and D. Bouchez, 2001. Arabidopsis gene knockout: phenotypes wanted.

Current Opinion in Plant Biology ; 4: 111-117.

DeRisi, J. L., V. R. Iyer and P. O. Brown, 1997. Exploring the metabolic and genetic

control of gene expression on a genomic scale. Science 278: 680-686.

Eisen, M. B., P. T. Spellman, P. O. Brown and D. Botstein, 1998. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National

Academy of Sciences of the United States of America 95: 14863-14868.

Fell, D., and A. Wagner, 2000. The small world of metabolism. Nature Biotechnology

18: 1121-1122.

Fraser, A. G., R. S. Kamath, P. Zipperlen, M. MartinezCampos, M. Sohrmann et al.,

2000. Functional genomic analysis of C-elegans chromosome I by systematic

RNA interference. Nature ; 408: 325-330.

Gonczy, P., C. Echeverri, K. Oegema, A. Coulson, S. J. M. Jones et al., 2000. Functional

genomic analysis of cell division in C-elegans using RNAi of genes on

chromosome III. Nature ; 408: 331-336.

Harary, F., 1969. Graph theory. Addison-Wesley, Reading, Massachusetts.

Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton et al., 2000.

Functional discovery via a compendium of expression profiles. Cell ; 102: 109-

126.

Jeong, H., Tombor, B. Albert, R. Oltvai, Z.N., Barabasi, A.L., 2000. The large-scale

organization of metabolic networks. Nature 407: 651-654.

Mehlhorn, K., and S. Naher, 1999. LEDA: A platform for combinatorial and geometric

computing. Cambridge University Press, Cambridge, UK.

Spradling, A. C., D. Stern, A. Beaton, E. J. Rhem, T. Laverty et al., 1999. The Berkeley

Drosophila Genome Project gene disruption project: Single P-element insertions

mutating 25% of vital drosophila genes. Genetics 153: 135-177.

Wagner

28

Tavazoie, S., J. D. Hughes, M. J. Campbell, R. J. Cho and G. M. Church, 1999.

Systematic determination of genetic network architecture. Nature Genetics 22:

281-285.

Wagner, A., 2000. Mutational robustness in genetic networks of yeast. Nature Genetics

24: 355-361.

Wagner, A., 2001a. Genetic networks are sparse: estimates based on a large-scale genetic

perturbation experiment. (submitted). .

Wagner, A., 2001b. The yeast protein interaction network evolves rapidly and contains

few redundant duplicate genes. Mol. Biol. Evol. (in press).

Wagner, A., and D. Fell, 2000 The small world inside large metabolic networks. Proc.

Roy. Soc. London Ser. B (in press).

Watts, D. J., 1997 The structure and dynamics of small world networks. Ph.D.

dissertation. Cornell University.

Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999

Functional characterization of the S. cerevisiae genome by gene deletion and

parallel analysis. Science 285: 901-906.

Wagner

29

Fig. 1

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5DNA

protein

transcription
factor

P

protein
kinase

protein
phosphatase

transcription
factor

inactive

active

P

inactive

active

Aspect of gene activity: mRNA expression
Genetic perturbation: gene deletion

G1: G2, G5
G2: G5
G3: G5
G4: G5
G5:

A)

Aspect of gene activity: phosphorylation state
Genetic perturbation: gene deletion

G1: G3, G4
G2: G3, G4
G3: G4
G4:
G5:

B) C)

Wagner

30

Fig. 2

0: 2 16
1:
2:
3: 0 2 5 8 12 14 16
4:
5: 0 2 12 14 16
6: 0 2 5 12 14 16
7: 2 8 17
8:
9: 0 1 2 5 6 10 12 14 15 16 18 20
10: 0 1 2 5 6 12 14 16 18 20
11: 0 2 5 6 12 14 16 18 20
12: 0 2 14 16
13: 8 17
14: 0 2 16
15: 0 2 16
16: 2
17: 8
18:
19: 8
20: 0 2 5 6 12 14 16 18

B

A

0: 16
1:
2:
3: 2 5 8
4:
5: 12
6: 5 12
7: 2 17
8:
9: 10 15
10: 1 20
11: 20
12: 14
13: 8 17
14: 0
15: 0
16: 2
17: 8
18:
19: 8
20: 6 18

C

Wagner

31

Fig. 3

0: 1 2 3 4 5
1: 2 3 4 5
2: 3 4 5
3:
4: 5
5:

A) B)

C) D)

Wagner

32

Fig. 4

i

z

z

z

z

z

j
e

r(e)=k+1

Wagner

33

Fig. 5

1 for all nodes i of G
2 Adj(i)=Acc(i)

3 for all nodes i of G
4 if node i has not been visited
5 call PRUNE_ACC(i)
6 end if

7 PRUNE_ACC(i)
8 for all nodes j ∈ Acc(i)
9 if Acc(j)=∅
10 declare j as visited.
11 else
12 call PRUNE_ACC(j)
13 end if

14 for all nodes j ∈ Acc(i)
15 for all nodes k ∈ Adj(j)
16 if k ∈ Acc(i)
17 delete k from Adj(i)
18 end if
19 declare node i as visited
20 end PRUNE_ACC(i)

Wagner

34

Fig. 6

0: 1 2 3 4
1: 0 2 3 4
2: 0 1 3 4
3: 0 1 2 4
4: 0 1 2 3

D)

A) B)

C)

0: 3
1: 4
2: 1
3: 2
4: 0

0: 1
1: 2
2: 3
3: 4
4: 0

Wagner

35

Fig. 7

A)

B)

Wagner

36

Fig. 8

1 for all nodes i of G
2 if component[i] has not been defined
3 create new node x of G*
4 component[i]=x
5 for all nodes j∈ Acc(i)
6 if i∈ Acc(j)
7 component[j]=x
8 end if
9 end if

10 for all nodes i of G*
11 AccG*(i)=∅
12 for all nodes i of G
13 for all nodes j ∈ Acc(i)
14 if component[i] ≠ component[j]
15 if component[j]∉ AccG*(component[i])
16 add component[j] to AccG*(component[i])
17 end if
18 end if

Wagner

37

Fig. 9

Wagner

38

Fig. 10

