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Abstract

In this paper, we construct a general model of diverse problem solvers of limited

abilities. We use this model to derive two main results: (1) a collection of diverse, bounded

problem solvers can locate optimal solutions to di�cult problems and (2) a collection of

problem solvers of diverse abilities tends to jointly outperform a collection of high ability

problem solvers, where a problem solver's ability equals her expected individual performance.

1 Introduction

Humans have limited abilities in solving problems. We su�er from numerous biases, short-

comings, and constraints (Dawes 1988 and Nisbett and Ross 1980). Yet, we often locate

good, or even optimal decisions to di�cult, i.e. multi{dimensional and highly nonlinear,

problems. Whether designing products, constructing welfare policies, re{organizing corpora-

tions, performing scienti�c research, or proving mathematical theorems, people collectively,

either in groups or over time, perform amazingly well. This performance appears to contra-

dict reason: How can people of bounded ability �nd good, and often optimal solutions to

di�cult problems?

In this paper, we demonstrate in a formal model that diversity can resolve the appar-

ent contradiction between boundedly rational problem solvers and optimal decision making.

We construct a model of diverse, boundedly rational problem solvers and analyze this model

both computationally and mathematically, deriving two main results. First, with su�cient

diversity, a collection of bounded problem solvers can locate the optimal solution to di�cult

problems. Second, we develop a general theorem providing su�cient conditions for a group
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of the best problem solvers as ranked by individual performance to be collectively outper-

formed by a group of randomly selected problem solvers. This rather surprising result has

an intuitive explanation. If several thousand bounded problem solvers with diverse problem

solving approaches are ranked by their individual abilities, the best problem solvers tend to

take similar approaches. Therefore, the best ten, twenty, or forty problem solvers may not

be e�ective collectively. In contrast, a collection of randomly selected problem solvers more

likely contains a diversity of approaches, enabling it to locate better solutions.

By a collection of problem solvers, we do not necessarily mean a group of people

sitting in a room together making a joint decision. The problem solvers might also operate

within a hierarchy, where each person works on the problem and passes his solution to the

person above him. We can even interpret the collective performance to be that which would

occur in a market, where problem solving activities are not explicitly coordinated. Whoever

discovers how to improve the steam engine earns economic rents. The ultimate product,

whether it be an automobile, a microwave oven, a movie, or a piece of software, embodies

the e�orts of many individuals. Though it is likely that teams, �rms, and markets di�er

in how they encourage people to locate solutions to problems, we emphasize here that, all

else equal, �rms, teams, and markets perform better when they consist of diverse problem

solvers.

What do we mean by diversity? Do we then mean race, profession, gender, or ide-

ology? We mean all of these and yet none of these. Zenisms aside, to us diversity means

di�erences in problem solvers' perspectives and heuristics | variations in how people encode

and search for solutions to problems.1 These di�erences could result from disparate identi-

ties or ideologies, but they need not. And although we distinguish our approach from the

idea that diversity refers to identity di�erences, i.e. racial, gender, or cultural diversity, we

acknowledge and have sympathy for the idea that these more familiar notions of diversity

may correlate with our formal de�nition. A Korean woman trained as a biologist probably

frames and approaches a problem di�erently than an American man trained in materials

science. Our approach extends beyond this, allowing diversity to arise from life experiences.

Two white males from Oconomowoc, Wisconsin trained as engineers may think about how to

design an engine very di�erently. In sum, diverse agents in our sense probably are more likely

to be diverse in identity as well, though for we consider that to be an empirical question.

Interestingly, empirical research on racially, culturally, and gender diverse work forces

suggests that they may be e�ective when these traditional identity notions of diversity cor-

relate with diversity as we mean it here. In a recent article on diversity in the workplace,

Thomas and Ely (1996) write that \Diversity should be understood as the varied perspectives

and approaches to work that members of di�erent identity groups bring."2

Formulating human capital as perspectives and heuristics extends the standard uni-

dimensional conception of ability employed in many human capital models (Becker 1973),

1Economists often use the term diversity to describe heterogeneous preferences. She prefers chicken to
�sh. He prefers �sh to chicken. Our diversity does not refer to preferences. Similar to McCloud (1996), we
are advocating driving a wedge between behavior and preferences. We borrow the image of the \wedge"
from McCloud.

2The italics are theirs.
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and matching/marriage models (Mortensen 1988). These models focus on how a single vari-

able, IQ for example, determines success (Hernsteinn and Murray 1994). We take a broader

view. We think that economic agents create high value added by being diverse, by bringing

new perspectives and heuristics to a task, not just by possessing raw intelligence. To give

just one example, by focusing on economic incentives, Charles A. Beard, in The Economic

Basis of Politics (1957), led to a new and better understanding of the motivation's of our

country's founders. The brilliance of that work stems from its taking a di�erent perspec-

tive, not from its undertaking a deeper, but similar analysis. This example suggests that

the unidimensional ordering of abilities, though useful as a �rst cut, does not create a su�-

ciently rich instrument to measure potential contribution. Take, for instance, marriage and

matching models. Ideal partners should possess complementary skills, not merely similar

abilities. Two lawyers with identical perspectives and heuristics may not be of much use to

one another as partners. Neither could ever o�er a strategy that the other had not already

considered.

The idea that diverse groups of people �nd better solutions than do homogeneous

groups appears to have wide acceptance among people who study organizational behavior,

with the caveat that heterogeneous groups perform less e�ectively at �rst due to communi-

cation problems (Watson, Kumar, and Michaelsen 1993). The following excerpt was taken

from a well known organizational behavior textbook by Robbins (1994):

When a group is heterogeneous in terms of gender, personalities, opinions, abilities,

skills, and perspectives, there is an increased probability that the group will possess the needed

characteristics to complete its tasks e�ectively. The group may be more conict laden and

less expedient as diverse positions are introduced and assimilated, but the evidence generally

supports the conclusion that heterogeneous groups perform more e�ectively than do those that

are homogeneous. (p 261)

The lack of expediency and potential for conict lead many participants to think

that groups make worse decisions than individuals. Compounding this impression, in many

groups, participants value outcomes di�erently, often creating group decisions that appear

suboptimal to group members. Hiring committees often seem to make silly decisions. The

potential for and prevalence of poor decisions by groups may lead some to think that we have

misstated a stylized fact, and that instead groups perform worse than individuals. Regardless

of these preconceptions, the facts speak to the contrary: groups on average outperform

individuals on di�cult problems.

The main results of this paper add theoretical foundations for these empirical �ndings.

Suprisingly, the results were derived analytically prior to us having any knowledge of the

organizational theory literature on diverse groups. The formal model borrows earlier work

on diverse agents (Hong and Page 1997). As mentioned, problem Solvers di�er along two

dimensions: their encodings of problems, perspectives, and the algorithms they apply in

searching for solutions, heuristics. Confronted with a problem, a problem solver �rst encodes

the space of possible solutions, and then applies the heuristics she has acquired during her

lifetime to locate a local optimum. The use of heuristics is widespread in economics. Several

papers de�ne heuristics for game playing automata (Rubenstein 1986 and Kalai and Stanford
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1988).3 These automata may evolve (Miller 1996, Arifovic 1994, or Marimon, McGrattan

and Sargent 1990) or be rationally selected. In our model, a heuristic de�nes a search

procedure: climb along the gradient, ip a binary variable, etc. Finding a strategy in a game

and attempting to locate a good solution to a problem are similar enterprises. Each requires

search over a multi{variable domain for a good solution to a nonlinear problem. An agent

of bounded abilities, or limited search time, searches by using a heuristic. These heuristics

can become stuck on local optima.

In contrast, our inclusion of diverse perspectives is novel. Standard automata models

assume exogenous and identical perspectives for all agents (Gilboa 1988). Yet in practice,

people di�er in how they encode problems. And game theorist vary in how they encode

strategies. Some use neurel nets, some perceptrons, and some Moore machines. These

di�erences in perspectives can simplify problem solving or make it more di�cult. We all

know that switching from Cartesian to polar coordinates can simplify integration in mul-

tiple dimensions. Polar and Cartesian coordinate systems are exactly what we mean by

perspectives.

Central to our analysis is the idea that all people do not perform identically on

di�cult problems. On simple problems, they may. But once a problem becomes hard,

diversity appears, creating a link between bounded rationality and diversity. Ironically,

critics of bounded rationality models often cite the plethora of suboptimal, though sensible,

rules which could be applied to a given situation as evidence against a particular rule. They

dismiss bounded rationality models as either ad hoc or unstable. We agree that diversity

abounds, but consider the diversity to be a blessing rather than a curse and explicitly model

problem solvers with a variety of encodings and search rules.

Diversity is a subtle concept. Two problem solvers may have distinct perspectives

and heuristics, yet perform identically on a problem (Hong and Page 1997). Therefore,

perspective{heuristic pairs can be partitioned using an equivalence relation. Diversity, then,

must mean variations in movements in the space of solutions. Diversity of perspectives and

heuristics, though necessary, is not su�cient for di�erences in �nal solutions. This begs the

question, why not then simplify the model and consider just movements in solution space?

In fact, in our mathematical analysis, we do just that, abandoning the perspective{heuristic

framework. However, the general model still plays an important role by providing under-

pinnings for diversity. Using the more general model, we can attribute diversity to distinct

encodings of information and unique life experiences that lead to distinct accumulations of

rules of thumb. Unable to rely on diverse perspectives and heuristics, we would be making

ad hoc assumptions about diversity in solution space.

We have two additional motivations for including the full perspective{heuristic model.

First, the mathematical theorems began as conjectures derived from computational experi-

ments. These experiments relied on problem solvers with diverse perspectives and heuristics.

We include two computational experiments in this paper as they provide a more transparent

demonstration of the theory. They also substantiate the mathematical results. The theo-

rems state that there exist an N and an N1 such that the best N1 of N problem solvers do

not perform as well as a random N1 problem solvers. The computational experiments use

3In addition to modeling heuristics with automata, perceptrons have been used (Cho 1993).
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rather small N and N1, in one case N = 60, suggesting that theorems with even weaker

assumptions may be obtainable. In our opinion, the computational experiments should be

interpreted as separate and corroborating support for the intuition that diversity improves

outcomes.

Our second reason for including the full perspective{heuristic model is that it allows us

to distinguish human problem solving diversity from computational problem solving diversity.

Computers and people di�er in their abilities to exploit diverse perspectives and diverse

heuristics. Computers have a di�cult time communicating across perspectives, something

people can learn to do e�ectively. In sum, while abandoning the perspective{heuristic model

may be mathematically convenient, doing so would sacri�ce intuition and realism.

Any weighty interpretations of our analysis rest upon the existence and relevance of

di�cult problems. By a di�cult problem, we mean a nonlinear, isolated problem with many

variables (Page 1996).4 The term isolated implies that a problem can be solved independently

of other problems, that the ordinal ranking of a solution does not change when new solutions

to other problems are located. For example, developing an e�cient gasoline{combustion

engine is a di�cult problem. An engine's e�ciency does not vary depending upon the

pace of progress in other technologies. Similarly, solving a traveling salesperson problem is

di�cult, as are developing computer software, producing a movie, and setting airline prices

in some instances.5

The remainder of the paper is organized into four sections. In the next section, we

describe a general model of diverse problem solvers who rely on perspectives and heuristics.

The following section contains two computational models that demonstrate the main formal

results of the paper: that the collective performance of bounded problem solvers can be

optimal and that a group of randomly selected problem solvers can outperform a group of the

best performing problem solvers. The models also highlight the distinction between diverse

perspectives and diverse heuristics. Section 4 contains a �nite version of our mathematical

results. The general version is in the appendix. The �nal section includes applications and

a discussion of possible extensions of our model.

2 A General Model

We assume a �nite number of problem solvers of limited ability who attempt to maximize a

value function de�ned over a set of objects X. The set X can be �nite or in�nite. All problem

solvers assign the same values to objects as determined by a value function V : X ! <.

We assume that each problem solver has an internal language in which she perceives the

objects. This internal language may be interpreted either at the neurological level|our

brains perceive and store information, and these perceptions di�er across individuals|or at

the metaphorical level|we interpret problems based on our training as economists, lawyers,

etc. We call the representation of objects in the problem solver's internal language her

4Information processing problems of the type studied by Radner (1993) and Radner and VanZandt (1995)
are not, in our classi�cation, di�cult. They are just big.

5When the ordinal ranking of values can change with the actions of others the problem is complex (Page
and Ryall 1998).
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perspective.

Def'n: A perspective M : R! �; where � is the internal language, and R is a subset of

X:

If a perspective is both one to one and de�ned for all of X, i.e. R = X; and M is

a one to one mapping, then we say that it is a complete perspective. In general there is no

reason to assume that a problem solver's perspective is complete. A perspective may not be

de�ned over all of X, i.e. R can be a proper subset of X, in which case an agent has no

internal representation of some objects. Alternatively, a perspective may be many to one,

in which case more than one object are mapped to the same representation in the internal

language.

A problem solver's heuristic, denoted by A; is a mapping from elements of M(R) in

her internal language to subsets of M(R). Given a  2M(R), A() �M(R) is interpreted

as the set of neighboring objects in the internal representation of the problem solver that

she would check to �nd an improvement. Let S = M(R). We restrict attention to a

class of heuristics that consists of a collection of functions de�ned on S. For any j = 1

to m; let fj : S ! S be a function. We then de�ne a heuristic A = ff1; :::; fmg, where

A() = ff1(); :::; fm()g.

Def'n: A heuristic A = ff1; :::; fmg where fj : S ! S for j = 1 to m.

For the moment, we refrain from presenting a precise description of how problem

solvers apply heuristics to problems. We only assume that the heuristic determines those

objects which a problem solver would evaluate given a status quo object. A problem solver

tries each function fj in her heuristic until she can no longer �nd an improvement. When

she arrives at an object from which she can not �nd another improvement by applying her

heuristic, this object is her solution to the problem and it is called her local optimum.

Def'n: Given a problem solver (M;A) where A = ff1; :::; fmg, an object x is a local opti-

mum with respect to (M;A), x 2L((M;A); V ) if and only if V (x) � V (M�1(fj(M(x))))

for all fj 2 A

Clearly, the set of local optima of an agent depends on both her perspective and her

heuristic.

We have yet to describe how the collection of problem solvers attacks a problem. They

can approach the problem sequentially or simultaneously. For the mathematical results

that we derive later, the precise rule does not matter so long as the �nal solution lies in

the intersection of the local optima of all the problem solvers. However, in performing

simulations, a fair comparison of groups of problem solvers requires that the two groups

proceed similarly. In the two computational models that we describe in the next section, the

problem solvers attack the problem sequentially. The �rst problem solver searches until she

attains a local optimum. The second problem solver begins her search at that point. After
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all problem solvers have attempted to locate higher valued objects, the �rst problem solver

searches again. Search stops only when no problem solver can locate an improvement, i.e.

until the object lies in the intersection of the problem solvers' local optima.

3 Two Computational Models

We construct two computational models that support the main �ndings of our mathematical

model: diverse, bounded problem solvers can collectively �nd good solutions to di�cult

problems and groups of random problem solvers outperform groups of the best problem

solvers|those who working alone have the highest expected value from search. The �rst

model considers problem solvers with diverse perspectives. The second model considers

problem solvers with identical perspectives but diverse heuristics.

3.1 Model 1: Diverse Perspectives in R
n

We assume that there are k problem solvers. These problem solvers are confronted with a

multidimensional problem whose domain is the unit ball in Rn.

f(x) =
nX
i=1

�i � xi +
nX

i=j+1

n�1X
j=1

�ij � xi � xj where �i; �ij 2 [�1; 1]

Each problem solver has a perspective: (x1; x2; :::; xn) where xi 2 Bn , the n dimin-

sional Euclidean ball. A perspective is nothing more than a basis. All problem solvers use

the same heuristic. Each problem solver sequentially searches along the vectors that de�ne

her perspective. Formally, a problem solver's heuristic consists of movements along each of

these vectors a distance of 0:1 units. Perspectives generate all of the diversity.

In the simulation data shown below, we set n = 30. We performed similar tests

for n varying between ten and one hundred and found similar results. Notice �rst that

the individuals are not especially good at solving the problems and that even the best

individual performs poorly relative to a simple hillclmbing algorithm or a genetic algorithm.

Collectively, the group of all problem solvers outperforms the genetic algorithm and the

hill climbing algorithm. The computational model demonstrates how a group of bounded,

diverse problem solvers can perform e�ectively on a di�cult problem.

Approach n = 30 Value (s.d)

Individuals 8.1 (0.14)

Best 10.8 (0.18)

Group 14.5 (0.22)

9000 Random 9.7 (0.28)

Hill Climbing 13.3 (0.24)

Genetic Algorithm 14.4 (0.21)
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We next turn to how well collections of the best problem solvers, the worst problem

solvers, and random problem solvers perform. Here, we obtain two surprising �ndings. First,

on average, the worst twenty �nd nearly as good of a solution as the best twenty collectively.

Second, twenty random problem solvers outperform the best twenty problem solvers. One

explanation, the one that we propose in this paper, is that the twenty random problem

solvers have more diverse perspectives than do the best twenty problem solvers.

Approach n = 30 Value (s.d)

Individuals 8.1 (0.14)

Best 20 9.5 (0.17)

Worst 20 6.7 (0.14)

Group 14.5 (0.22)

Group Best 20 14.2 (0.23)

Group Worst 20 13.8 (0.22)

Group Random 20 14.3 (0.22)

To test the claim that diversity explains the increase in performance, we could measure

the diversity of the perspectives, but the calculations of diversity become messy, so we

construct a simple model of diverse heuristics that allows for a cleaner analysis.

3.2 Model 2: Diverse Heuristics on a Circle

In this model, a �nite set of n objects are encoded as n points on a circle. All problem solvers

use the same perspective, i.e., they have the same encoding of the objects. We assume a

random value function mapping f1; 2; :::; ng into the real numbers. The value of each of the

n points is independently uniformly drawn from the interval [0; 100]. We number the points

consecutively from 1 to n on a circle clockwise, so that point n is to the left of and next to

point 1. The heuristic that a problem solver uses allows her to check k (1 � k < n) positions

that lie within l (1 � l < n) points to the right of the status quo point on the circle.

Example: Let n = 200, k = 3 and l = 12. A problem solver with heuristic (1; 4; 11) starting

at the point 194 would �rst evaluate point 195 (194+1) and compare it to 194. If point 194

had a higher value, she would then evaluate point 198 (194+4). If point 198 had a higher

value, she would then check point 9 (198+11-200). If that point had a higher value, she then

would evaluate point 10 (9+1). She keeps evaluating until none of her three searches locates

a point with a higher value.

Def'n: The stopping point of a heuristic � = (�1; �2; :::; �k) applied to object m, where

�i 2 f1; 2; :::; lg and �i 6= �j for i 6= j; denoted by �(m), is de�ned as follows:
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Step 1: a = 0, t = 0, ŝ = m

Step 2: t = t+ 1, st =ŝ

Step 3: If t > k and st�k = st then go to Step 7 else go to Step 4

Step 4: Let a = a+ 1: If a > k, then let a = 1

Step 5 : Let s0 = �a + st: If s0 > n, then let s0 = �a + st � n

Step 6: If V (s0) > V (st); then ŝ = s0, otherwise ŝ = st: Goto Step 2

Step 7: �(m) = ŝ: End

A heuristic, then, maps a point into a point with a weakly higher value. To compute

the expected value for a problem solver, we start the problem solver at each of the n points

on the circle and compute the average value of the points where search stops.

Def'n: The expected value of a heuristic � given V ,

E[�; V ] =
1

n

nX
i=1

V [�(i)]

In these computational experiments, we evaluate all heuristics within a well de�ned

class instead of randomly generating a set of perspectives as we did in the �rst model.

We restrict the set of heuristics to k movements to the right, where each movement has a

maximum length l. The order that a problem solver applies these movements may matter.

The heuristics (5; 6; 9) and (9; 5; 6) typically have di�erent values. Therefore, we consider

these to be distinct heuristics.6 The total number of unique heuristics equals l � (l� 1) � �(l�

k + 1). For example, if l = 12 and k = 3, then the total number of heuristics equals 1320.

The 1320 heuristics can be ranked by their expected values.

The diversity of two heuristics �a and �b can be measured either with respect to order

or not. In the �rst case, we calculate the percentage of �ai that equal �
b
i . In the latter case,

we calculate the percentage of �ai that equal �
b
j for some j. The de�nitions are formalized

below:

Def'n: The ordered diversity of �a and �b,

O�(�a; �b) =
k �

Pk
i=1 �(�

a
i ; �

b
i)

k
where �(�ai ; �

b
i) = 1 if �ai = �bi and 0 else

6In simulations where we only create one heuristic instead of six for each triple of numbers, we �nd
identical qualitative results.
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Def'n: The diversity of �a and �b,

�(�a; �b) =
k �

Pk
j=1

Pk
i=1 �(�

a
i ; �

b
j)

k
where �(�ai ; �

b
j) = 1 if �ai = �bj and 0 else

For example, let �a = (5; 6; 9) and �b = (9; 5; 6): Then O�(�a; �b) = 1 since for any

i 2 f1; 2; 3g; �ai 6= �bi : However, �(�
a; �b) = 0 since for any i 2 f1; 2; 3g; �ai = �bj for some

j 2 f1; 2; 3g: It is easy to see that for any two heuristics, the ordered diversity weakly exceeds

the diversity.

In the computational data we report, we set l equal to either twelve or twenty and

set k equal to three. The number of points on the circle n equals two thousand. We

experimented with l varying between six and twenty, k varying between two and seven, and

n varying between two-hundred and ten thousand. Within these parameter ranges, we found

qualitatively similar phenomena.7

The values of each of the two thousand points on the circle were randomly distributed

uniformly in the interval [0; 100]. We ranked all of the possible problem solvers by their

expected values and created two groups, one consisting of the, say ten best problem solvers|

the problem solvers with the highest expected values|and one consisting of ten randomly

chosen problem solvers. The results from a representative single run looked as follows: The

best problem solver had a score of 87:3. The worst problem solver had a score of 84:3. The

average score of the ten best problem solvers was 87:1, and the average score of the ten

randomly selected problem solvers was 85:6. The group performance of the ten best problem

solvers had a value of 93:2, their average diversity was 0:45, and their average ordered

diversity was 0:72. The randomly selected group's performance was 94:7, their average

diversity was 0:76 and their ordered diversity was 0:92. As in the previous computational

model, the group of random problem solvers collectively performed better. More importantly,

we can now verify that the random group contains more diverse members.8

Below we present data averaged over �fty trials.

Ten Problem Solvers l = 12

Group Composition Group Performance Ordered Diversity Diversity

Best Problem Solvers 92.56 (0.020) 70.98 (0.798) 38.77 (1.59)

Random Problem Solvers 94.53 (0.007) 90.99 (0.232) 75.13 (0.204)

7As the group size becomes large relative to the number of possible problem solvers, the group of the best
agents can outperform a group of randomly selected agents.

8Mathematically, the expected ordered diversity of two randomly selected problem solvers equals 11

12
=

0:9183333. A more elaborate calculation shows that the expected diversity of two randomly selected problem
solvers equals 3

4
= 0:75.
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On average, the group of the random problem solvers signi�cantly outperforms the

group of the best problem solvers. In a typical run, the best problem solver in the population

had an average value of between 86 and 88 in each set of �fty trials and a random problem

solver had a value around two to three points lower. The diversity measures show a striking

di�erence in the constituency of the two groups. The best group does not have nearly as

much diversity as the random group. Two questions immediately come to mind. First, what

if we enlarge the group size, and second, what if we increase the the set of possible heuristics.

The answer to the �rst question is that the same phenomenon occurs. The random

group still does better, but with a less pronounced advantage. The group of the best problem

solvers becomes more diverse. This occurs because the set of heuristics is �nite and �xed.

The Table below provides data from �fty simulations with groups of size twenty.

Twenty Problem Solvers (l = 12)

Group Composition Performance Ordered Diversity Diversity

Best Problem Solvers 93.78 (0.015) 74.95 (0.425) 44.47 (0.612)

Random Problem Solvers 94.72 (0.005) 91.46 (0.066) 74.88 (0.080)

To answer the second question, we present data from computations where problem

solvers can look up to twenty spots ahead on the circle. Now, the total number of problem

solvers equals 6840. Three predictions come to mind. First, the diversity of the random

group should be greater as a result of the increase in the number of heuristics. Second, this

increased diversity should improve the random group's performance. And third, the increase

in the number of problem solvers implies that the group of the best problem solvers should

also �nd a better solution. We see, in fact, that all three occur. The best problem solvers do

better. The random problem solvers do better. And the random problem solvers are more

diverse. The Table below provides data from �fty simulations.

Ten Problem Solvers (l = 20)

Group Composition Performance Ordered Diversity Diversity

Best Problem Solvers 93.52 (0.026) 73.69 (0.843) 44.53 (1.782)

Random Problem Solvers 96.08 (0.006) 94.31 (0.089) 85.17 (0.165)
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4 The Mathematical Model

The two previous computational models demonstrate the bene�t of diversity in group and

collective problem solving. In both models, we found that a randomly formed group of prob-

lem solvers often jointly outperforms a group of the best individuals as ranked by expected

value. The explanation substantiated in the second model is that the best problem solvers

are less diverse in their problem solving approaches then are the members of a randomly

selected group. We now construct a mathematical model that provides su�cient conditions

for this result, for a group of randomly selected problem solvers to outperform a group con-

sisting of the problem solvers who perform best individually. We begin with a set of objects

X. The set can be �nite, denumerable or a continuum. In the main body of the paper,

we present a model where X is �nite and leave the general model to the appendix. The

�nite model has been constructed so as to make the insight more obvious. The relationship

between the assumptions and the result is much more subtle in the general proof.

Let X be a �nite set of objects and V : X ! [0; 1] be a given value function with a

unique maximum at x�; and V (x�) = 1: The problem solvers try to locate a solution that

maximizes V , but they have limited abilities. Each problem solver employs a search rule

to search for the maximum but does not always end up at x�. Suppressing the distinction

between perspectives and heuristics, we characterize each problem solver by a mapping

� : X ! X. We make several assumptions about problem solvers' mappings. The �rst is

that the mappings locate higher valued solutions and that the problem is di�cult.

Assumption 1

(a) 8x 2 X; V (�(x)) � V (x)

(b) �(x�) = x�

(c) (Di�culty) There exists x 2 X; such that �(x) 6= x�:

The mapping � has the following interpretation: for each x, �(x) denotes the local

maximum if the agent starts search at x, that is, it is the stopping point of the search

rule � applied to x: In this interpretation, search is deterministic, an initial point uniquely

determines a stopping point. The image of the mapping, �(X), equals the set of local maxima

for problem solver �.

Next, we de�ne � to be an initial probability distribution on X that assigns a positive

probability to each x 2 X.

Assumption 2

� : X ! [0; 1] such that (a) 8x 2 X, �(x) > 0 and (b)
P

x2X �(x) = 1

A problem solver � begins search by drawing an initial point according to the prob-

ability distribution �. If the initial point is x, then the search ends at �(x). We call the

expected value of the search the performance of �, given � and V . We denote this expected

value as E(�; V ): E(�; V ) =
P

x2X V (�(x))�(x):

Let � denote a collection of problem solvers, a set of �'s that satisfy Assumption 1.

Notice that because the sets of initial and �nal points are both �nite, that � must also be
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�nite. The next assumption guarantees a diversity of problem solvers.

Assumption 3 (Diversity)

8x 2 Xn fx�g, 9� 2 � such that �(x) 6= x

This diversity assumption says that there are no solutions other than the global

optimum that are local optima for all of the problem solvers. We next assume a probability

distribution � on � that assigns a positive probability to each � in �.

Assumption 4

� : �! [0; 1] such that (a) 8� 2 �, �(�) > 0 and (b)
P

�2� �(�) = 1

>From �, the set of problem solvers, we select a group of N agents, each agent is

selected independently from � according to the probability distribution �. These N agents

are ordered by their individual performance, E(�; V ). Choose the best N1 agents. We

compare the joint performance of this group of N1 agents with that of another group of N1

agents which is formed by selecting each from � independently according to �.

We make the following uniqueness assumption before we present the theorem. We

discuss the role this uniqueness assumption plays and its validity after stating and proving

the theorem.

Assumption 5 (Uniqueness)

argmaxfE(�; V ) : � 2 �g is unique.

Theorem 4.1 Suppose V;�; �; and � satisfy Assumptions 1 - 5. Then, with probability 1, a

sample path will have the following property: there exist positive integers N and N1, N > N1;

such that the joint performance of the N1 independently drawn problem solvers exceeds the

joint performance of the N1 individually best problem solvers among the group of N agents

independently drawn from � according to �.

Here, there are in fact two independent random events: one is to independently draw

a group of problem solvers and the other is to independently draw a group of problem solvers

and then select a subgroup according to their individual ability. The sample path we speak

of in the theorem is the joint sample path of these two independent events.

The following two ideas are used in the proof. First we show (Lemma 1 below) that for

the �rst random event of drawing independently a group of problem solvers, with probability

1, the joint performance of the group will asymptotically converge to 1 | the best one can

hope for. This is quite intuitive given that agents are drawn independently thus are very

unlikely to have common local maxima. As the number of agents in the group grows, the

probability of them having common local maxima converges to 0. The second idea uses

the uniqueness assumption to show that in the second random event, with probability 1,

asymptotically there exists a given size such that the subgroup of the best individuals of

that size consists of one type of agents, namely, they are all �� | the unique problem solver

of the highest individual ability in �: This establishes an upper bound of a value strictly

less than 1 on the performance of the best group since �� can not always reach the global
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maximum (recall from Assumption 1 that we do not allow any individual problem solver to

always locate the optimum.)

Consider the �rst random event of forming a group of problem solvers, each problem

solver is independently selected from � according to the probability distribution �. Fix a

sample path of this random event, !1. Let �
1(!1); :::; �

n1(!1) denote the group of the �rst n1
problem solvers selected on the sample path !1: The joint performance of these n1 problem

solvers is the expected value of V (ey) where ey is a common local maximum of all n1 agents.

The distribution of ey is induced by the probability distribution of the initial draw, �, and

a precise model of how agents work together. Here we want to point out that our theorem

holds for any speci�cally given model of agents working together. The proof of the theorem

that follows does not depend on a speci�c model. Without being explicit, we assume that ey
follows the probability distribution �n1!1 : X ! [0; 1], i.e., for any x 2 X, Pr(ey = x) = �n1!1 (x):

Lemma 1 Pr
n
!1 : limn1!1

P
x2X V (x)�n1!1 (x) = 1

o
= 1

Proof: Fix any 0 < � < 1. De�ne An1 =
n
!1 : 1�

P
x2X V (x)�n1!1(x) > �

o
: Obviously,

An1 � f!1 : �
1(!1); :::; �

n1(!1) have common local maxima other than x�g : Thus,

Pr(An1) � Pr
n
!1 : �

1(!1); :::; �
n1(!1) have common local maxima other than x�

o
:

Let m = min f�(�) : � 2 �g : By Assumption 4, m > 0: For any x 2 Xn fx�g ; we

have �(f� 2 � : �(x) = xg) � 1�m. This is because of Assumption 3 that there is at least

one � in � for whom x is not a local maximum.

By independence,

Pr f!1 : �
1(!1); :::; �

n1(!1) have common local maxima other than x�g

�
P

x2Xnfx�g Pr f!1 : x is a common local max of �1(!1); :::; �
n1(!1)g

�
P

x2Xnfx�g(1�m)n1

� (jXj � 1) (1�m)n1

Therefore,
1X

n1=1

Pr(An1) =
jXj � 1

m
<1:

By the Borel-Cantelli Lemma, we have

Pr

(
!1 : 1�

X
x2X

V (x)�n1!1 (x) > � i.o.

)
= 0

which implies

Pr

(
!1 : lim

n1!1

X
x2X

V (x)�n1!1 (x) = 1

)
= 1:

We now prove the theorem.

Proof of the theorem: Consider the second random event where a group of n agents

are drawn independently from � according to � and then a subgroup of a given size that
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consists of problem solvers with the best individual abilities among n agents is formed. By

Assumption 5, the uniqueness assumption, there is a unique problem solver in � with the

highest individual ability. Call that agent ��: By the law of large numbers, we have

Pr

(
!2 : lim

n!1

# fi 2 f1; :::; ng : �i(!2) = ��g

n
= �(��)

)
= 1:

The fraction in the above expression is the frequency of �� in the draw. Let 
 be the set of

sample paths ! = (!1; !2) that have both of the asymptotic properties above, i.e., de�ne


 =

8<
:! = (!1; !2) :

limn1!1

P
x2X V (x)�n1!1(x) = 1

and limn!1
#fi2f1;:::;ng:�i(!2)=�

�g
n

= �(��)

9=
;

By Lemma 1, we have

Pr(
) = 1:

Fix any ! 2 
: Let �1 = 1 � E(��; V ) which is positive since the perfect agent is excluded

from our consideration and that � has X as its support. From the �rst limit above, we know

that there exists an integer n1 > 0 such that for any n1 � n1;X
x2X

V (x)�n1!1 (x) > 1� �1 = E(��; V ):

From the second limit above, there exists an integer n > 0 such that for any n � n;

# fi 2 f1; :::; ng : �i(!2) = ��g

n
>

�(��)

2
:

Let N1 = n1 and N = max
n

2n1
�(��)

; n
o
. Then

X
x2X

V (x)�N1

!1
(x) > E(��; V ):

The left hand side of the above inequality is the joint performance of the group of N1

agents independently selected according to �. We now prove that the right hand side term

is the joint performance of the group of N1 best agents from the group of N agents. By

construction, N � n: Therefore,

# fi 2 f1; :::; Ng : �i(!2) = ��g

N
>

�(��)

2
:

That is,

#
n
i 2 f1; :::; Ng : �i(!2) = ��

o
>

�(��)N

2
� n1 = N1

since N �
2n1
�(��)

: This means that there are more than N1 numbers of agents among the group

of N agents that are the highest ability agent ��: Thus, the best N1 agents among the N

agents are all ��. Obviously their joint performance is exactly the same as the performance
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of �� which is E(��; V ): To summarize, for each ! 2 
, there exist N1 and N , N > N1

such that the joint performance of the group of N1 agents independently drawn according

to � is better than the joint performance of the N1 best agents from the group of N agents

independently drawn according to �. Since the set 
 has probability 1, the theorem is

proven.

Remark 4.1 The uniqueness assumption plays an important role in the proof. It allows us

to show that as the group size increases, the best subgroup becomes homogeneous, i.e., they

are all the unique best and therefore, they are of no use to each other. This is a stronger

assumption than we need. Suppose instead that there is a set of problem solvers that all

have the highest expected value. All we need is that the intersection of the images of these

problem solvers' mappings has a cardinality strictly greater than one. Thus, we can replace

Assumption 5 with the following weaker assumption.

Assumption 50

Problem solvers in argmaxfE(�; V ) : � 2 �g have a common local maximum not

equal to x�:

Remark 4.2 We might also ask what assumptions would lead to a violation of the unique-

ness condition? Suppose the value function, V , does not assign unique values to each element

of X. For simplicity, assume that there x0 and x00 both have the second highest value under

V . Suppose further that the probability distribution � according to which the initial point of

search is drawn, is the uniform distribution on X. Then, there could be two best problem

solvers: ��1 : X ! X, who map x0 to itself and maps everything else to x�, the global op-

timum, and ��2 : X ! X, who maps x00 to itself and maps everything else to x�. Working

together these two agents would always locate the global optimum.

Remark 4.3 The previous example violates the spirit of the di�culty assumption. Di�cult

problems should have many, not just two, local optima for each problem solver. Moreover, the

basin of attraction for the global optimum should be small. Problem solvers who are similar

will have sets of local optima that do not di�er by much. Diverse agents will tend to have

less overlap in their sets of local optima. This suggests that the diversity assumption can also

be weakened. And, in fact, in the general proof presented in the appendix, we do just that.

5 Discussion and Extensions

The main results of this paper rely on straightforward logic. If people are bounded, they

probably di�er in how they solve di�cult, i.e. multi-dimensional nonlinear problems. Di�er-

ences in perspectives and heuristics enable collections of agents to design particle accelerators,
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pharmaceuticals, and basketball shoes. Being boundedly rational only sties good decisions

if we are boundedly rational in the same way. If the best problem solvers tend to think about

a problem similarly, then it stands to reason that as a group they may not be very e�ective.

Random groups may be better owing to their diversity. This paper investigates the strength

of this logic. The computational experiments demonstrate the robustness of the argument,

the �nite model describes a set of su�cient conditions, and the general model provides much

weaker su�cient conditions.

If the argument itself seems provocative, the implications are even more so. For

problem solving �rms, an employee's value depends upon her ability to improve decisions.

The diversity of her problem solving approach, as embedded in her perspective{heuristic

pair, relative to the other problem solvers appears to be an important predictor of her value.

It may be even more relevant than her individual expected value on the problem. Though

IQ tests, SAT scores, and college grades may be excellent predictors of raw problem solving

ability, they may not be useful in determining the value added of an employee. Maintaining

a diversity of problem solving approaches may be as, and possibly more important than

hiring people of high individual ability when putting together a group, team, or collection

of problem solvers. Therefore, employers might want to focus on the relative uniqueness of

applicants' human capital, admittedly something that could prove hard to measure.

The need for a diversity of perspectives and heuristics for �rms that solve problems

may in part explain the increased prevalence of consultants (Frank and Cook 1996). Firms

confronting di�cult problems may bene�t from bringing in outsiders especially if people

within the �rm think about problems similarly. Internal group thinking could arise from a

corporate culture. Over time, employees may evolve common perspectives and heuristics.

Group thinking could also arise if the �rm hired only the best people because the best

people may tend to think alike. Firms with only a few perspectives, or in extreme cases a

single perspective at their disposal could easily become stuck on local optima, generating

a need for outside consultants. The consultants need not be \smarter" than the �rm to

locate improvements. They only need to possess perspectives and heuristics that locate

improvements over the status quo.

The results also speak to the power of markets. If the value of an object equals its

market value and if rents from locating improvements are appropriable, then markets should

lead to improving solutions to economic problems. An agent who locates an improvement to

an economic problem receives a rent. In a market setting, anyone knowing of an improvement

has an incentive to implement it or to sell their idea to someone who will. The diversity

of human perspectives and heuristics implies that no local and non global optimum should

be sustainable. Someone eventually builds a better mousetrap, not because that person is

smarter than anyone who ever contemplated the mousetrap, but because that person sees or

approaches the problem di�erently. While incentive e�ects may cause delays in innovations,

eventually any improvement should either come to market or become obsolete.

In contrast, the incentives to implement an improvement may be stied within a

problem solving �rm. A worker may know how to speed up an assembly line, but the decision

may not lie in his problem domain, or the costs of mentioning the improvement may outweigh

the bene�ts. In cases where the improvement is su�ciently large, the worker may have an
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incentive to create his own competing enterprise, but otherwise, the improvement may never

be implemented. It follows that our theory of optimization based on a common value function

and diverse problem solving approaches also has strong implications for organizational forms

and management styles, especially for problem solving �rms such as computer software

companies. In an environment where competition depends on continuous innovation and

introduction of new products, �rms with organizational forms that are decentralized and

consist of interdependent confederations of project teams linked by informal communications,

and management styles based on teamwork, openness and participation, should ourish. All

else equal, �rms with these organizational forms and management styles take full advantage

of the diverse problem solving approaches of their employees. In a recent book, Saxenian

(1994) documents the superior performance of Silicon Valley �rms relative to that of Route

128 �rms which she attributes partly to the organizational forms and management styles that

evolved through regional cultural inuences. Our paper provides a theoretical underpinning

for such observations.

The ideas put forth in this paper could also be adapted to the study of political

decision making. Throughout, we have assumed that problem solvers have identical ordinal

rankings of the outcomes. In political contexts this is decidedly not the case. Democrats

and Republicans often profess opposing views on tax rates, environmental policy, and welfare

plans. Each party probably has its own value function. Nevertheless, an extended version of

our model would say that the party in power would still bene�t from listening to proposals

from the minority party if the minority party has a di�erent perspective and heuristic. Of

course, the potential for the diversity of perspectives and heuristics to be bene�cial should

vary with the level of correlation of the value functions.

The current model ignores several important features including incentives, communi-

cation, and learning. Incentives matter for two reasons. They could create diverse preferences

over outcomes: One problem solver may prefer outcome A to outcome B because she ob-

tains higher income under A, or because she does not have to work as hard to achieve A.

And, as we mentioned earlier, incentives may temporarily lead a problem solver to not re-

veal an improvement because she wants a leg up in searching for subsequent improvements.

Revealing a better solution may be informative to competitors. Second, our strong assump-

tion of costless communication reveals another potential extension: the perspective{heuristic

framework could be used to provide micro{foundations for communication costs. Problem

solvers with nearly identical perspectives, but diverse heuristics should communicate with

one another easily. But, problem solvers with diverse perspectives may have trouble un-

derstanding solutions identi�ed by other agents. Firms then may want to hire people with

similar perspectives yet maintain a diversity of heuristics. In this way, the �rm can exploit

diversity while minimizing communication costs. Finally, our model also does not allow

problem solvers to learn. Learning could be modeled as the acquisition of new perspectives

and heuristics. Clearly, in a learning model, problem solvers would have incentives to acquire

diverse heuristics and perspectives.
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Appendix
In the appendix, we present a general mathematical model that encompasses the �nite

model in the main body of the paper as a special case. Since the discussion in the appendix

is self-contained, the numbering system should not be confused with the numbering system

of the main body of the paper.

Consider a set of objects X: X can be a �nite, a denumerable or a continuum set. Let

V : X ! [0; 1] be a given value function which has a unique maximum at x�; and V (x�) = 1:

Again, we consider problem solvers who have limited ability in trying to maximize V: Each

problem solver employs some kind of search rule to search for the maximum but does not

always end up at x�. A problem solver is de�ned by a mapping � : X ! X which satis�es

the following assumptions:

Assumption 1

(a) 8x 2 X; V (�(x)) � V (x)

(b) �(x�) = x�

For each x 2 X; �(x) is the local maximum of the problem solver if the search starts

at x. �(X) is then the set of local optima for problem solver �. Since X can be a continuum,

we need some technical assumptions.

Let F be a �-�eld of X. Let � be a �nite measure of (X;F): Assume that a problem

solver � also satis�es the following assumption:

Assumption 2

(a) 8x 2 X; ��1(x) 2 F

(b) �(X) is countable.

Let 	 be the set of all problem solvers that satisfy Assumptions 1 and 2. Then it is easy to

show that for any �1; �2 2 	; fx 2 X : �1(x) 6= �2(x)g 2 F ::

Problem solvers in 	 may di�er only on a set of �-measure 0. We want to consider

such problem solvers as the same.

De�nition 1 Two problem solvers �1; �2 from 	 are called equivalent if

�
�n
x 2 X : �1(x) 6= �2(x)

o�
= 0:

This de�nes an equivalence relation on 	. Consider the quotient space of 	 with regard to

this equivalence relation. For the rest of the discussion, we are only going to refer to this

quotient space. We therefore still denote it by 	 without confusion. 	 refers to any set of

all problem solvers that are not equivalent. We now de�ne a metric on 	.
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De�nition 2 De�ne d : 	�	! <+ such that

d(�1; �2) = �
�n
x 2 X : �1(x) 6= �2(x)

o�
:

Lemma 1 (�; d) is a metric space.

Proof: To show that the triangle inequality holds, we only need to notice that

fx 2 X : �1(x) 6= �2(x)g

� fx 2 X : �1(x) 6= �3(x)g [ fx 2 X : �3(x) 6= �2(x)g :

Let � denote a probability measure on (X;F). A problem solver � starts her search for

the maximum of V by �rst drawing an initial point according to the probability distribution

�. The expected value of the search by � is then de�ned to be the performance of the

problem solver �: E(�; V ) =
R
X V (�(x))d�(x):

Assumption 3

� and � are mutually absolutely continuous.

Assumption 3 means that sets of �-measure 0 and sets of �-measure 0 coincide. Since both

are �nite measures, they will be treated exactly the same for our purposes without loss of

generality. For the rest of the discussion, whenever � appears, it will be replaced by �:

Lemma 2 E(�; V ) : (	; d) ! [0; 1] is uniformly continuous.

Proof: For any �1; �2 2 	;

jE(�1; V )� E(�2; V )j

�
R
X jV (�

1(x))� V (�2(x))j d�(x)

=
R
fx2X:�1(x)6=�2(x)g jV (�

1(x))� V (�2(x))j d�(x)

� � (fx 2 X : �1(x) 6= �2(x)g)

= d(�1; �2)

The uniform continuity follows.

Let � be a compact subset of 	 that satis�es the following assumption:

Assumption 4

(a) a = sup fV (y) : for y 6= x� and y = �(y) for some � 2 �g < 1

(b) (Di�culty) There exists a constant p; 0 < p < 1; such that for any � 2 �; � (fx 2 X : �(x) = x�g) <

p:
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Assumption 5 (Uniqueness)

There exist �� 2 � and � > 0 such that for any 0 < � < �, E(�00; V ) > E(�0; V ) for any

�00 2 f� 2 � : d(��; �) < �g and �0 2 f� 2 � : d(��; �) � �g :

Consider E(�; V ). Since it is continuous on 	 and � is a compact subset of 	, there is at

least one maximum on � for E(�; V ). We are actually assuming slightly more than this. We

need that in addition that there is a small ball around ��, the unique maximum, that does

not contain any other local maximum for the function. What we are ruling out is a sequence

of mappings that have values converging to the value of �� that are all local optima.

Let � be a probability measure on (�;B) where B is the set of Borel sets of � generated

by the metric d. � is a measure on the space of problem solvers. Assume

Assumption 6

(a) Every open set of (�; d) has positive �-measure.

(b) (Diversity) There exists a q; 0 < q < 1; and a �nite partition of Xnfx�g denoted by

fB1; :::; Bkg s.t. 8k = 1; :::K;

� (f� 2 � : 9y 2 Bk; s.t. y = �(y)g) < q:

The diversity assumption says that the problem space can be partitioned into a �nite number

of regions such that the probability of problem solvers who have local maxima in any given

region is bounded away from probability 1.

With this general model, we still have the following theorem:

Theorem 5.1 Suppose V;�; �; and � satisfy Assumptions 1 - 6. Then, with probability 1, a

sample path will have the following property: there exist positive integers N and N1, N > N1;

such that the joint performance of the N1 problem solvers independently drawn according to

� exceeds the joint performance of the N1 individually best problem solvers among the group

of N problem solvers independently drawn from � according to �:

The proof of the theorem follows ideas similar to the proof in the �nite model. The

details of the proof however are more elaborate given the general nature of the model. We

prove the theorem with the help of two lemmas. Lemma 3 below shows when we draw

problem solvers independently from 
, that with probability 1, the joint performance of the

problem solvers converges to the global optimum asymptotically. This lemma relies on the

assumption of diversity. The diversity assumption guarantees that the intersection of the

sets of local maxima of the problem solvers shrinks to a point: the global optimum. In

Lemma 4, we establish an upper bound for the joint performance of a group of the best

problem solvers. The proof of this lemma depends heavily on the uniqueness assumption.

From a large enough sample of problem solvers, the best problem solvers all lie near the best

problem solver in d-distance. Therefore, they tend to have similar sets of local maxima.
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In the proof, we consider a randomly formed group of problem solvers and compare

its performance to that of a group of the best solvers. Consider �rst the random event of

forming a group of problem solvers, each problem solver is independently selected from �

according to the probability distribution �. Fix a sample path of this random event, !1. Let

�1(!1); :::; �
n1(!1) denote the group of the �rst n1 problem solvers selected on the sample

path !1: The joint performance of these n1 problem solvers is the expected value of V (ey)
where ey is a common local maximum of all n1 problem solvers. Assume that ey follows the

probability distribution �n1!1 : The joint performance of �
1(!1); :::; �

n1(!1) is
R
X V (x)d�n1!1(x):

Lemma 3 Pr
n
!1 : limn1!1

R
X V (x)d�n1!1(x) = 1

o
= 1

Proof: Fix any 0 < � < 1. De�ne An1 =
n
!1 : 1�

R
X V (x)d�n1!1(x) > �

o
: Obviously, An1 �

f!1 : �
1(!1); :::; �

n1(!1) have common local max other than x�g : Thus,

Pr(An1) � Pr f!1 : �
1(!1); :::; �

n1(!1) have common local max other than x�g :

By diversity and independence,

Pr f!1 : �
1(!1); :::; �

n1(!1) have common local max other than x�g

�
PK

k=1 Pr f!1 : �
1(!1); :::; �

n1(!1) have common local max in Bkg

�
PK

k=1 Pr f!1 : �
1(!1); :::; �

n1(!1) each has local max in Bkg

�
PK

k=1 [� (f� 2 � : 9y 2 Bk; s.t. y = �(y)g)]
n1

� Kqn1

Therefore,
1X

n1=1

Pr(An1) =
K

1� q
<1:

By Borel-Cantelli Lemma, we have

Pr

�
!1 : 1�

Z
X
V (x)d�n1!1 (x) > � i.o.

�
= 0

which implies

Pr

�
!1 : lim

n1!1

Z
X
V (x)d�n1!1(x) = 1

�
= 1:

In the next lemma, we give an upper bound for the joint performance of a group of

n problem solvers who are close to each other in d.

Lemma 4 For any � > 0 and any positive integer n such that (n�1)� < 1�p (Recall p appears

in Assumption 4), consider any n problem solvers �1; :::; �n that are within � d-distance from

each other, i.e. d (�i; �j) < � for any i; j 2 f1; :::; ng : Then the joint performance of these n

problem solvers, denoted by E(�1; :::; �n;V ); is bounded by 1� (1� a)[1� (n� 1)�� p]: I.e.,

E(�1; :::; �n;V ) < 1� (1� a)[1� (n� 1)�� p]:

Proof: Suppose the group starts their search at x such that �1(x) = ::: = �n(x) 6= x�. Then

the search of the group will get stuck at �1(x) = ::: = �n(x) which is a common local max
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of all n problem solvers but is not a global max x�. We consider the set of such x. If such

set has a positive measure, then the joint performance of these n problem solvers will be less

than 1. Notice that

fx 2 X : �1(x) = ::: = �n(x) 6= x�g

= fx 2 X : �1(x) = ::: = �n(x)g

n fx 2 X : �1(x) = ::: = �n(x) = x�g :

First, since

fx 2 X : �1(x) = ::: = �n(x)g

= Xn [n�1
i=1 fx 2 X : �1(x) = ::: = �i(x) 6= �i+1(x)g

we have

� (x 2 X : �1(x) = ::: = �n(x))

= 1�
Pn�1

i=1 � (fx 2 X : �1(x) = ::: = �i(x) 6= �i+1(x)g)

� 1�
Pn�1

i=1 � (fx 2 X : �1(x) 6= �i+1(x)g)

= 1�
Pn�1

i=1 d(�
1; �i+1)

> 1� (n� 1)�

The last inequality holds since d (�i; �j) < � for any i; j 2 f1; :::; ng : Now consider fx 2 X : �1(x) = ::: =

Since

fx 2 X : �1(x) = ::: = �n(x) = x�g � fx 2 X : �1(x) = x�g ;

we have

� (fx 2 X : �1(x) = ::: = �n(x) = x�g)

� � (fx 2 X : �1(x) = x�g) < p:

The last inequality is because of part (b) of Assumption 4. Thus we have

� (fx 2 X : �1(x) = ::: = �n(x) 6= x�g)

= � (fx 2 X : �1(x) = ::: = �n(x)g)

�� (fx 2 X : �1(x) = ::: = �n(x) = x�g)

> 1� (n� 1)�� p > 0

given that (n� 1)� < 1� p.

Then, the joint performance of this group of n problem solvers has the following

property:

E(�1; :::; �n;V )

� V (x�) [1� � (fx 2 X : �1(x) = ::: = �n(x) 6= x�g)]

+a� (fx 2 X : �1(x) = ::: = �n(x) 6= x�g)

< 1 � [1� [1� (n� 1)�� p]] + a � [1� (n� 1)�� p]

= 1� (1� a)[1� (n� 1)�� p]:

The �rst inequality holds because the right hand side is the joint performance if (1) whenever

problem solvers end up with di�erent �i(x), they are eventually taken to x� (2) whenever
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problem solvers get stuck together, they achieve the highest value for all the local max. Both

assume the most optimism.

Now we prove the theorem using Lemma 3 and Lemma 4.

Proof of the Theorem: Let 
1 =
n
!1 : limn1!1

R
X V (x)d�n1!1 (x) = 1

o
: Let � be a positive

number such that 0 < � < (1� p)(1�a): Then for any !1 2 
1, there exists n1(!1) > 1 such

that for any n1 � n1(!1);
R
X V (x)d�n1!1(x) > 1� �:

Let �(n1(!1)) = min
n

1

n1(!1)�1

�
1� p� �

1�a

�
; �
o
. Recall that � is a parameter in the

uniqueness assumption (Assumption 5). Since � < (1� p)(1� a) and � > 0, �(n1(!1)) > 0:

For any � > 0; let O(��; �) = f� 2 � : d(�; ��) < �g where �� is the unique best

problem solver in �: Since O(��; �) is open, by part (a) of Assumption 6, � (O(��; �)) > 0:

Consider � = �(n1(!1))

2
. Let � denote �(O(��; �(n1(!1))

2
)): Consider the second random event

mentioned above. De�ne


2(n1(!1)) =

8<
:!2 : limn!1

#
n
i 2 f1; :::; ng : d(�i(!2); �

�) < �(n1(!1))

2

o
n

= �

9=
; :

By the law of large numbers, Pr(
2(n1(!1))) = 1: This is true for every !1 2 
1:

Then 8!2 2 
2(n1(!1)); 9n > 1 s.t. 8n � n;

#
n
i 2 f1; :::; ng : d(�i(!2); �

�) < �(n1(!1))

2

o
n

>
�

2

or equivalently,

#

(
i 2 f1; :::; ng : d(�i(!2); �

�) <
�(n1(!1))

2

)
>

�

2
� n:

For any !1 2 
1 and !2 2 
2(n1(!1)); let N1 = n1(!1) and N = max
n
2

�
� n1(!1); n

o
:

Since N � n; we have

#
n
i 2 f1; :::; Ng : d(�i(!2); �

�) < �(n1(!1))

2

o
> �

2
�N

� n1(!1)

= N1:

This means that amongN problem solvers along the path !2; there are more thanN1 problem

solvers who are within �(n1(!1))

2
d-distance from ��: Since �(n1(!1))

2
< �(n1(!1)) � �; by the

uniqueness assumption (Assumption 5), the individual performance of each such problem

solver is strictly better than that of problem solvers who are more than �(n1(!1))

2
d-distance

away from ��: Therefore, the best N1 problem solvers among the group of N problem solvers

are all strictly within �(n1(!1))

2
d-distance from ��: By the triangular property of d, these N1

best problem solvers are strictly within �(n1(!1)) distance from each other.

By de�nition, �(n1(!1)) �
1

N1�1

�
1� p� �

1�a

�
: Since � > 0, we have (N1�1)�(n1(!1)) <

1 � p: By Lemma 4, the joint performance of these N1 best problem solvers among those
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N problem solvers is strictly less than 1 � (1 � a)[1 � (N1 � 1)�(n1(!1)) � p]: But since

�(n1(!1)) �
1

N1�1

�
1� p� �

1�a

�
; 1� (1� a)[1� (N1 � 1)�(n1(!1))� p] � 1� �. Here notice

that N1 = n1(!1):

>From the beginning of the proof, we have
R
X V (x)d�N1

!1
(x) > 1 � �: Thus the joint

performance of the N1 problem solvers along !1 is better than the joint performance of the

N1 best problem solvers among the group of N problem solvers along !2:

Let 
2 = \n1(!1)
2(n1(!1)): Since it is a countable intersection and Pr(
2(n1(!1))) =

1 for each n1(!1); Pr (
2) = 1: Regarding 
1; by Lemma 3, we have Pr (
1) = 1:

To summarize then, we have for any !1 2 
1 and !2 2 
2; there exist positive integers

N1 and N , N1 < N , such that the joint performance of the N1 problem solvers along !1
is better than the joint performance of the N1 best problem solvers among the group of N

problem solvers along !2: Since !1 and !2 are independent and Pr (
1) = 1 and Pr (
2) = 1;

we have Pr (
1 � 
2) = 1:
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