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We systematically study and compare damage spreading at the sparse percolation (SP) limit for
random boolean and threshold networks with perturbations that are independent of the network size
N . This limit is relevant to information and damage propagation in many technological and natural
networks. Using finite size scaling, we identify a new characteristic connectivity Ks, at which the
average number of damaged nodes d̄, after a large number of dynamical updates, is independent
of N . Based on marginal damage spreading, we determine the critical connectivity Ksparse

c (N)
for finite N at the SP limit and show that it systematically deviates from Kc, established by the
annealed approximation, even for large system sizes. Our findings can potentially explain the results
recently obtained for gene regulatory networks and have important implications for the evolution of
dynamical networks that solve specific computational or functional tasks.

PACS numbers: 05.45.-a, 05.65.+b, 89.75.-k

Random boolean networks (RBN) were originally in-
troduced as simplified models of gene regulation [1, 2],
focusing on a system-wide perspective rather than on
the often unknown details of regulatory interactions [3].
In the thermodynamic limit, these disordered dynamical
systems exhibit a dynamical order-disorder transition at
a sparse critical connectivity Kc [4]; similar observations
were made for sparsely connected random threshold (neu-
ral) networks (RTN) [5, 6]. For a finite system size N ,
the dynamics of both systems converge to periodic at-
tractors after a finite number of updates. At Kc, the
phase space structure in terms of attractor periods [7],
the number of different attractors [8] and the distribu-
tion of basins of attraction [9] is complex, showing many
properties reminiscent of biological networks [2].

Often, one is interested in the response of dynamical
networks to external perturbations; because these sig-
nals can disrupt the generic dynamical state (fixed point
or periodic attractor) of the network, they are usually
referred to as “damage.” This type of study has numer-
ous applications, e.g., the spreading of disease through a
population [10, 11], the spreading of a computer virus on
the internet [12], failure propagation in power grids [13],
or the perturbation of gene expression patterns in a cell
due to mutations [14]. Mean-field approaches, e.g., the
annealed approximation (AA) introduced by Derrida and
Pomeau [4], allow for an analytical treatment of damage
spreading and exact determination of the critical con-
nectivity Kc under various constraints [15]. It has been
shown that local, mean-field-like rewiring rules coupled
to order parameters of the dynamics can drive both RBN
and RTN to self-organized criticality [16–18].

Mean-field approximations of RBN/RTN dynamics
rely on the assumption that N → ∞ and study the
rescaled damage d(t)/N (where d(t) is the number of
damaged nodes at time t). For an application to real-

world problems, these limits are often not very relevant.
Going beyond the framework of AA, a number of re-
cent studies focus on the finite-size scaling of (un-)frozen
and/or relevant nodes in RBN with respect to N [19, 20];
only few studies, however, consider finite-size scaling of
damage spreading in RBN [14, 21]. Here, of particular
interest is the “sparse percolation (SP) limit” [21], where
the initial perturbation size d(0) does not scale up with
network size N , i.e., the relative size of perturbations
tends to zero for large N . This limit applies to many
of the above-mentioned real-world networks (e.g., the
spread of a new computer virus on the internet launched
from a single computer). In this letter, we systemati-
cally study finite-size scaling of damage spreading in the
SP limit for both RBN and RTN. We identify a new
characteristic point Ks, where the expectation value of
the number of damaged nodes after large number of dy-
namical updates is independent of N . By the definition
of marginal damage spreading, we introduce a new ap-
proach to estimate the critical connectivity Kc(N) for
finite N , and present evidence that, even in the large
N limit, the critical connectivity for SP systematically
deviates from the predictions of mean-field theory.

First, let us define the dynamics of RBN and RTN.
A RBN is a discrete dynamical system composed of N
automata. Each automaton is a Boolean variable with
two possible states: {0, 1}, and the dynamics is such that

F : {0, 1}N 7→ {0, 1}N , (1)

where F = (f1, ..., fi, ..., fN), and each fi is represented
by a look-up table of Ki inputs randomly chosen from
the set of N automata. Initially, Ki neighbors and a
look-table are assigned to each automaton at random.

An automaton state σt
i ∈ {0, 1} is updated using its
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corresponding Boolean function:

σt+1
i = fi(σ

t
i1 , σ

t
i2 , ..., σ

t
iKi

). (2)

We randomly initialize the states of the automata (initial
condition of the RBN). The automata are updated syn-
chronously using their corresponding Boolean functions.
The second type of discrete dynamical system we study
is RTN. An RTN consists of N randomly interconnected
binary sites (spins) with states σi = ±1. For each site i,
its state at time t+1 is a function of the inputs it receives
from other spins at time t:

σi(t + 1) = sgn (fi(t)) (3)

with

fi(t) =

N∑

j=1

cijσj(t) + h. (4)

The N network sites are updated synchronously. In the
following discussion the threshold parameter h is set to
zero. The interaction weights cij take discrete values
cij = +1 or −1 with equal probability. If i does not
receive signals from j, one has cij = 0.
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FIG. 1: Average Hamming distance (damage) d̄ after 200 sys-
tem updates, averaged over 10000 randomly generated net-
works for each value of K̄, with 100 different random initial
conditions and one-bit perturbed neighbor configurations for
each network. For both RBN and RTN, all curves for different
N approximately intersect in a characteristic point Ks.

Results. We first study the expectation value d̄ of dam-
age, quantified by the Hamming distance of two different
system configurations, after a large number T of system
updates. Let N be a randomly sampled set (ensemble)
of zN networks with average degree K̄, In a set of zI ran-
dom initial conditions tested on network n, and I ′

n a set
of zI random initial conditions differing in one randomly
chosen bit from these initial conditions. Then we have

d̄ =
1

zN zI

zN∑

n=1

Nn∈N

zI∑

i=1

~σi∈In,~σ′

i
∈I′

n

dn
i (T ), (5)
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FIG. 2: Upper panels: d̄ as a function of N , for different
K̄. a) K̄ takes values 2.6, 2.0, 1.87, 1.5 and 1.0 (from top
to bottom), b) K̄ takes values 2.6, 1.85, 1.725, 1.5 and 1.0
(from top to bottom). Lower panel: Scaling exponents γ(K̄)
as a function of K̄, as obtained from fits of Eq. (6) for RBN
(+) and RTN (x). The straight dashed/dotted lines mark the
asymptotes as discussed in the text.

where dn
i (T ) is the measured Hamming distance after T

system updates. Fig. 1 shows d̄ as a function of the
average connectivity K̄ for different network sizes N by
using a random ensemble for statistics. For both RBN
and RTN, the observed functional behavior strongly sug-
gests that the curves approximately intersect at a com-
mon point (Ks, ds), where the observed Hamming dis-
tance for large t is independent of the system size N .

To verify this finding, let us now study the finite size
scaling behavior of d̄ in this (SP) limit. For K̄ → 0 and
for large K̄, it is straightforward to estimate the asymp-
totic scaling. In the case K̄ → 0, non-zero damage can
only emerge if the initial perturbation hits a short loop
of oscillating nodes (most likely a self-connection or a
loop of length two, longer loops can be neglected). The a

priori probability to generate these loops is ∼ 1/N 2, and
their number is proportional to the total number of links,
K̄N . Hence, we expect d̄ ∼ K̄N/N2 ∝ 1/N . For large
K̄, damage percolates through the system, consequently,
avalanche sizes are bounded only by the size of the sys-
tem, and we expect d̄ ∼ N . At criticality, the frozen core
of the network always remains undamaged, and asymp-
totic dynamics is determined completely by the relevant
nodes, with a number nr scaling as nr ∼ N1/3 [19]; hence,
we expect d̄ ∝ N1/3 at Kc, which is confirmed with high
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FIG. 3: Upper panels: d̄(K̄) in semi-log scale, as obtained
from high-precision simulations near Kc (ensemble size: 50000
random networks with 100 random initial conditions for each
data-point, transient time: 5000 updates). Lines are fits of
Eq. (8). Lower panels: Scaling exponents γ derived from
equating Eq. (6) and (8), with corresponding errorbars. The
intersection with γ = 0 (dashed line) defines Ks.
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FIG. 4: The critical connectivity Ksparse
c (N) in the SP limit

as a function of N , calculated from Eq. (12). Curves are
power-law fits according to Eq. (13), straight dashed lines
mark Kannealed

c and Ks for RBN and RTN, respectively.

accuracy by our numerical simulations. For arbitrary K̄,
we make the scaling ansatz

d̄(K̄, N) = a(K̄) · Nγ(K̄) + d0(K̄), −1 ≤ γ <
∼ 1. (6)

The two upper panels of Fig. 2 illustrate that for both
RBN and RTN, the numerically measured finite size scal-
ing for 0 < K̄ ≤ 3 obeys this scaling ansatz very well. In
both cases, at some Ks slightly below Kc, we find a tran-
sition of γ from negative to positive values (Fig. 2, lower
panel). The exact determination of the point (Ks, ds)
where γ ≈ 0 is difficult; because of the slow emergence
of large damage events near Kc, measurements with fi-
nite T can substantially underestimate d̄ (in particular

for N ≥ 512). We performed high precision numeri-
cal experiments in the interval 1.6 ≤ K̄ ≤ 2.1, waiting
for T = 5000 update time steps to let the network dy-
namics relax after the initial one-bit perturbation; these
simulations conclusively show an exponential dependence
d̄ ∝ exp(c(N) · K̄) in this interval, with a constant c(N)
depending only on N (Fig. 3, upper panels). This expo-
nential dependence becomes apparent with the following
assumptions: an increase ∆d̄ of the average damage is
proportional to d̄ itself (damage can generate new dam-
age), to an increase ∆K̄ of the average connectivity, and
to some function of the system size N . Actually, it cannot
be directly proportional to N , because frozen nodes re-
main undamaged asymptotically. Hence, a rough upper
limit is given by the number of nonfrozen nodes, which at
Kc scales as N2/3, and a lower bound by the number of
relevant nodes, that almost certainly propagate damage,
i.e. N1/3 [19]. To summarize, we approximate

∆d̄ ≈ c(N) Nα d̄ ∆K̄, (7)

with 1/3 <
∼ α <

∼ 2/3; replacing ∆d̄ and ∆K̄ with differ-
entials and integrating yields

d̄(K̄, N) ≈ c1(N) exp [c2(N) Nα K̄]. (8)

In simulations, we find α ≈ 0.42, which is well within the
range we expect from our theoretical considerations as
discussed above.

We now apply this dependence to obtain high-accuracy
fits of Eq. (6) in the interval 1.6 ≤ K̄ ≤ 2.1 (Fig. 3, lower
panels); these fits yield

(KRBN
s , dRBN

s ) = (1.875± 0.05, 0.62± 0.05) (9)

for RBN and, correspondingly,

(KRTN
s , dRTN

s ) = (1.729± 0.045, 0.51± 0.04) (10)

for RTN.
Interestingly, Ks is close to, but distinct from the crit-

ical connectivities KRBN
c = 2 and KRTN

c = 1.845, as
predicted by mean-field theory. However, a natural com-
parison has to consider possible deviations of KC at the
SP limit from these values. An intuitive definition of crit-
icality for finite N can be formulated in terms of marginal

damage spreading. If at time t one bit is flipped, one re-
quires at time t + 1 [6? ]

d̄(t + 1) = 〈ps〉(Kc)Kc = 1, (11)

where 〈ps〉(K̄) is the average damage propagation prob-
ability. Naturally, the iteration of this map implies d̄ = 1
for all t. Note that the relation: 〈ps〉(Kc)Kc = 1 is exact
only in the framework of the AA. In the SP limit, we in-
stead have to set the right hand side of Eq. (8) to unity;
inversion then leads to

Ksparse
c (N) ≈ −

ln c1(N)

c2(N)Nα
. (12)
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Fig. 4 shows Ksparse
c (N), using the values c1(N), c2(N)

obtained from numerical fits of Eq. (8) for both RBN
and RTN. We find that both systems, in a very good
approximation, obey the scaling relationship

Ksparse
c (N) ≈ b · N−δ + K∞

c (13)

with b = 3.27±0.79, δ = 0.85±0.07 and K∞
c = 1.9082±

0.008 for RBN and b = 3.853 ± 0.76, δ = 0.736 ± 0.05
and K∞

c = 1.7595 ± 0.008 for RTN. Hence, in the limit
N → ∞, we can extrapolate

K∞,RBN
c = 1.9082± 0.008 (14)

for RBN, and for RTN

K∞,RTN
c = 1.7595± 0.008. (15)

Thus, for both RBN and RTN in the SP limit, we make
the surprising observation that Ksparse

c systematically
deviates from Kannealed

c . While we find Ksparse
c (N) >

Kannealed
c for small N < 128, for larger N we observe

a monotonic decay that approaches an asymptotic value
considerably below Kannealed

c , suggesting that the ob-
served deviations from the AA also hold in the large N
limit.

It is beyond the scope of this letter to discuss possible
causes for these deviations in detail (this will be accom-
plished in a longer paper). In simulations, however, we
find that the statistical distributions of damage sizes in
the SP limit are highly skewed, with most configurations
leading to vanishing damage, and a fat tail of large dam-
age events. These skewed distributions imply that with
finite sampling, we always underestimate d̄, and hence
the true Ksparse

c (N) and Ks will deviate even stronger
from the AA. Also, local fluctuations in damage propa-
gation cannot be neglected in this limit, as it is assumed
in mean-field approaches.

Discussion. We investigated finite size scaling of dam-
age spreading in both RBN and RTN near the sparse
percolation (SP) transition. We find that the average
damage d̄, quantified in terms of the Hamming distance
of initially nearby system states, scales ∝ Nγ(K̄) over
the whole range of sparse connectivities 0 < K̄ ≤ 3
studied in this letter. The scaling exponents γ show a
cross-over from negative to positive values at character-
istic points KRBN

s and KRTN
s below the critical points

KRBN
c and KRTN

c . We estimated the critical connectiv-
ities Ksparse

c (N) based on marginal damage spreading,
and found systematic deviations from the annealed ap-
proximation. While extrapolations towards large N still
require some caution, the network sizes investigated in
this study (currently up to N = 32768) are highly rele-
vant for biological applications; compare, e.g., the Yeast
genome (N ≈ 6000) and the E. Coli metabolic network
(N ≈ 1500) [22]. Interestingly, recent studies suggest
that gene regulatory networks appear to be in the or-
dered regime and reside slightly below the phase tran-
sition between order and chaos [14], while theory had

proposed the critical line to be an evolutionary attractor
[1, 2]. Our study may contribute a possible explanation
to these observations: scaling of damage with increas-
ing N (e.g., as a consequence of gene duplications) can
be expected to be under strict selective control. Hence,
the need for robust systems might drive evolution to Ks

rather than to Kc. At the same time, however, Ks is close
enough to criticality to enable rich dynamical behavior,
as required by biological cells. Currently, this question of
where in the dynamical phase space biological networks
reside certainly cannot be answered conclusively. Experi-
mental studies of regulatory networks and further studies
of in-silico evolutionary processes that adapt dynamical
networks, e.g., RBNs or RTNs, to robustly solve specific
computational and functional tasks are required.
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