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Abstract

Several parallel analogue algorithms, based upon mean field theory ap­
proximations to an underlying statistical mechanics formulation, now exist for
finding approximate solutions to difficult combinatorial optimisation problems
such as the Travelling Salesman (TSP). -These methods have also found ap­
plication in such areas as speech and vision processing, as well as in adaptive
learning and clustering algorithms. However, they all suffer from the substan­
tial drawback of requiring an externally imposed "annealing" schedule similar
to that used in simulated annealing. I show in this paper that any given "de­
terministic" (or "mean field theory") annealing algorithm can be combined
in an extremely natural way with notions from the areas of constrained op­
timisation (Lagrange multipliers) and adaptive simulated annealing to yield
a single homogeneous and parallel relaxation technique for optimisation. In
particular, an externally prescribed annealing schedule is no longer required,
which gives rise to somewhat more efficient procedures. The results of nu­
merical simulations on 50-city TSP problems are presented, which show that
the ensuing algorithms are typically an order of magnitude faster than the
mean field algorithms alone. An analysis of the methods is presented which
shows how their efficiency arises, and which also displays a mechanism al­
lowing some unwanted local minima in the mean field theory methods to be
avoided, thus leading, on occasion, to qualitatively superior solutions as well.
This behaviour is illustrated by the ability of the new algorithms to locate a
higher quality solution than deterministic annealing for a well-known lOO-city
instance of the TSP.
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1 Introduction

The term "deterministic annealing" , or "mean field theory" (MFT) annealing, can
be used to describe loosely several promising parallel analogue algorithms which have
recently been proposed as heuristics for difficult combinatorial optimisation problems
[1,2,3,4,5,6]. The general approach has been applied to many target areas of great
practical interest, ranging widely from the notorious Travelling Salesman Problem
(TSP) [1, 2, 7, 8], to speech processing and computational vision [3, 4]. It has
also been applied in the context of adaptive learning [9], and to the construction of
automatic clustering algorithms for image processing problems [10]. The methods
are labelled by a variety of terms reflecting the diverse fields in which they arose; for
example, the Hopfield/Tank neural network [1], the elastic net method [2] and mean
field annealing [6]. However, they all have a major common feature in that each
attempts to locate the global minimum of a suitably crafted analogue "objective"
function which has its roots in the quite successful simulated annealing heuristic [11,
12]. The latter is in contrast a stochastic procedure, requiring greater computational
resources.

Several authors [13, 14, 15] have considered the alternative analogue approach
of Lagrangian relaxation, a form of constrained optimisation due originally to Ar­
row [16], as a different means of tackling these problems. The various alternatives
require the introduction of a new set of variables, the Lagrange multipliers. Un­
fortunately, these lead in turn to either the inclusion of computationally intensive
"penalty" terms, or the consideration of restricted classes of problem constraints.
The penalty terms also tend to introduce unwanted local minima in the objective
function, and they must be included even when the algorithms are "exact" [17, 14].
These drawbacks severely limit their applicability when a problem is large in scale,
containing say 100 or more variables.

In this paper I show that the technical features of analogue mean field approx­
imations can be merged with both Lagrangian relaxation methods, and with the
broad philosophy of adaptive simulated annealing without, importantly, requiring
the large computational resources that typically accompany the Lagrangian meth­
ods. The result is a systematic procedure for starting with any given MFT algorithm,
and crafting from it a single parallel homogeneous relaxation technique which needs
no externally prescribed annealing schedule. In this way the computational power of
the analogue heuristics is greatly enhanced. The basic idea is to simply recast as a
relaxation variable the annealing, or temperature, parameter which already appears
in the MFT formulations. In conjunction with this, the characteristic structure
of the deterministic annealing objective (or energy) functions can be exploited to
show that the most straightforward Lagrangian relaxation adaptations will suffice for
these recast functions. It is not necessary to introduce expensive and/or complicated
penalty terms to the procedure in the form of exact "augmented" Lagrangians. The
sole stipulation is the introduction of an extremely simple and inexpensive penalty
term. In fact, this term leads directly to a natural dynamics for the former annealing
parameter, now a Lagrange multiplier variable, which roughly mimics the notion of
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an adaptive annealing schedule in the simulated annealing heuristic. Some of the
resulting candidate methods must be tested to ensure that they converge. However,
in general the effective convergence of the methods is shown to be highly plausible.
Furthermore, there are good reasons to expect the new algorithms to avoid some
of the unwanted local minima that occur inevitably in the deterministic annealing
procedures, and I present the results of numerical experiments which support this
assertion.

The basic procedure is quite general in scope, and can be used to construct
"candidate methods" from any of the deterministic annealing algorithms mentioned
earlier. However, I have concentrated in this paper on its application to the well­
known TSP benchmark. In particular, I show that the Lagrangian framework can
be used to construct an efficient adaptation of the elastic net algorithm [2], which is
perhaps the most promising of the analogue heuristics. This method actually has a
structure which at first sight seems to preclude the straightforward use of Lagrangian
relaxation, since the annealing parameter appears awkwardly in the constraint itself.
However, this proves not to be a handicap for the elastic net, and it is demonstrated
why this is so. This slightly surprising result is extremely encouraging, because it
suggests that the simplest and most efficient Lagrangian relaxation adaptation can
be attempted, with some chance of success, upon any deterministic annealing energy
function, even one which does not have a true Lagrange multiplier structure. In ad­
dition, the apparatus can be generalised naturally to a procedure which uses several
multipliers, in a manner that roughly parallels the notion of different temperatures
at different physical locations in the simulated annealing heuristic.

The paper is laid out as follows. In Section 2, deterministic annealing will be
reviewed, together with its relationship to simulated annealing. Lagrange multiplier
methods are discussed in Section 3. The merged algorithms are then introduced
in Section 4, and their convergence properties discussed in Section 5. In Section 6
the TSP problem is introduced, and Lagrangian relaxations of the Hopfield/Tank
and elastic net MFT approximations are discussed. Section 7 presents the results
of numerical experiments with the elastic net adaptations. The results display both
increased computational efficiency, and qualitatively better solutions (avoidance of
some local minima) over deterministic annealing. Section 8 presents a schematic
view of the basic mechanism underlying the new algorithms, and contrasts them with
both deterministic annealing, and with conventional constrained optimisation. After
some concluding remarks, a fuller discussion of convergence properties, including
some rigorous results, is given in Appendix 1. Appendix 2 contains a detailed
discussion of the elastic net adaptation: its implementation, why it represents a
sensible algorithm, and its convergence properties.

2 Deterministic ("mean field") annealing

To briefly review, each deterministic annealing procedure embeds the chosen dis­
crete problem in a space of analogue variables. These variables obey a set of non-
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linear ordinary differential equations, whose coefficients are determined by the data
parameters of the problem, with the addition of an arbitrary "annealing", or "tem­
perature" ,parameter. The common thread of the methods is that in each case, the
relaxation of these equations to a fixed point can be identified with the location
of a local minimum for some "energy function" F(.>li.). Although different for each
method, this energy (or "objective") function is always of the form

(1)

(2)Z = L e-E0!:.)/T
!!;

In this expression, the vector l!:. represents a set of discrete variables which describe
legal solutions (henceforth referred to as configurations) to the original problem, and
E(fl) denotes a "cost function" of these variables which must be minimised to find
the solution: e.g. for the Travelling Salesman Problem, each fl defines a possible
tour through a given set of cities, and E(!!:.) represents the totailength of each such
tour. The required solution is the tour which minimises this length.

The successful heuristic based upon this discrete formalism is known as simu­
lated annealing [11, 12]. It proceeds by beginning at high temperature T, stochasti­
cally generating configurations distributed according to the Boltzmann distribution
e-E0!:.l/T, and estimating the internal energy

U = ~ L E(!!:.)e-E0!:.)/T (3)
Z !!;

where .>li. represents the analogue variables used to describe the particular problem
at hand, and T ::::: 0 is the adjustable annealing/temperature parameter. The form
of the functions U(.>li.) and S(.>li.) is determined by the particular method of interest,
and by the original discrete problem.

The object of the computation is to locate the global minimum of the function
F(.>li.) when T = O. In order to do this, the appropriate set of differential equations
is initially relaxed to a fixed point for some value of the parameter T, which is
chosen large enough so that the corresponding energy function (1) is convex. This
guarantees that the local minimum obtained is in fact the global minimum at that
value of T. The local minimum is then tracked as T is gradually lowered. The
energy function becomes non-convex during this process (in general). Nevertheless,
it is hoped that the local minimum being tracked remains a good approximation
to the global minimum as T approaches zero, and can therefore be accepted as the
"solution" to the original problem when T ~ o. The algorithms are thus particular
examples of continuation methods [18], and are also quite similar to the gradu­
ated non-convexity methods described in [19]. The general procedure is illustrated
schematically in Figure (1).

The efficiency of these algorithms is due in large part to the fact that they can
be considered to supply estimates, in relatively short computational time, of several
important thermodynamic quantities of an underlying statistical mechanics system
which encodes the original discrete problem. This underlying system is defined by
the partition function
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As the temperature is lowered, this average tends to become dominated by the
configuration J.t* which minimises the cost function E(J.t) (or at least, by a configu­
ration with a ~ery low cost function). It thereby supplies an approximate solution
to the original problem. It is customary to re-express the partition function Z as an
equally fundamental function, namely the free energy F. This function is defined
by F = -TlnZ, which in turn can be written as

F = U -TS(U) (4)

where U is the internal energy of the system as defined above, and where S(U) is the
entropy (logarithm of the number of configurations of energy U). The Boltzmann
distribution, which is the basic object generated by simulated annealing at any given
temperature, can be viewed as the distribution which minimises this free energy
function at any given temperature.

Returning now to the analogue deterministic annealing heuristics, it has been
shown that the values of the functions F(z.) , U(z.) , and S(z.) at minima of F(z.)
constitute analogue "mean field theory approximations" for the free energy, internal
energy and entropy respectively of the underlying discrete statistical physics system
defined by (2) [4, 8, 6] (hence the choice of notation, especially the minus sign in
(1)). In particular, the minimisation of the continuous function F(z.) can be thought
of as an approximation to the minimisation of the free energy F of the discrete sys­
tem. It therefore supplies an approximate solution to the original problem as the
temperature is lowered to zero. In this way the deterministic analogue techniques
make contact with simulated annealing. However, they have the advantage of re­
quiring far less computational investment then the stochastic simulated annealing
procedure. The reason for this is that, in very crude terms, a single configuration
of continuous variables in one of the analogue heuristics represents an average over
many different discrete states which must be looked at individually in simulated
annealing. The deterministic heuristics have an obvious appeal in that they offer a
systematic procedure for generating relatively simple yet effective analogue objective
functions from a general and powerful statistical physics formalism.

However, a major drawback of the analogue heuristics is the requirement for an
ad hoc external schedule by which the parameter T must be lowered. This schedule
is usually quite slow, due to the combinatorial complexity of the original problem.
It is a difficulty shared to some degree by simulated annealing, although in the latter
case adaptive annealing schedules have been developed which substantially increase
the efficiency of the algorithm [20, 21]. It would obviously be highly desirable to graft
some of the attractive features of simulated annealing, such as the use of adaptive
annealing schedules, onto the more computationally efficient analogue methods. In
this regard, notice that one consequence of the statistical physics embedding of the
analogue heuristics is that, in each case,

S(Z.min) ---> 0 as T ---> 0 (5)

where Z.min is the local minimum of F(z.) obtained for the parameter value T. This
deceptively simple observation allows the consideration of the somewhat different
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approach of Lagrange multiplier methods to automatically determine the various
values of T for the analogue heuristics, using as a constraint the vanishing of the
entropy function at zero temperature. I note in passing that this particular fact
has not been explicitly used in any previous work based on Lagrange multipliers,
although it is implicit in the work of [13]. Most authors have focussed instead on the
syntactic constraints contained in the function UCr.) when incorporating Lagrange
multipliers. As a result the issue of eliminating an external annealing schedule has
not been directly confronted.

3 Lagrange multipliers

Multiplier methods seek the critical points of a "Lagrangian" function

L(;r., >') = !(;r.) - >.g(;r.) (6)

where !(;r.) is some function to be minimised, subject to the constraint g(~;.) =
0, >. being a Lagrange multiplier. The minus sign is chosen for later notational
convenience. By definition, the critical points of L(;r., >.) obey the so-called Kuhn­
Tucker conditions

'V2!.L(;r., >') = 0 = 'V2!.!(;r.) - W!!2fJ(;r.)
'V"L(;r., >.) = 0 = -g(1i.)

(7)

Thus, at any critical point of this function, the constraint g(1i.) = 0 is satisfied.
Hopefully, in addition, !(1i.) is minimised, subject to the constraint. There are
several iterative methods for locating these critical points [17], in all which>. is
given some kind of dynamical behaviour.

In accordance with the philosophy discussed above, we would like to identify the
function !(1i.) with the internal energy U(;r.) from a deterministic annealing heuris­
tic, the function g(;r.) with the entropy S(;r.), L(;r., >') with the free energy F(;r., T)
and the>. variable with the temperature T. The difficulty with this approach when
used in isolation is that finding the critical points of L(;r., >') entails, in general, the
minimisation of a transformed "unconstrained" function, whose set of local minima
contains the critical points of L as a subset. This transformed function is required
in order to ensure an algorithm which is convergent, because the critical points of
L are saddle points, not local minima. One well-known way to do this is to add
a term g2(1i.) to (6), giving an augmented Lagrangian with the same fixed points
as (6), but hopefully with better convergence properties. Unfortunately, the trans­
formed function is invariably more complicated than L(1i., >'), typically containing
extra quadratic penalty terms (as in the above case), which tend to convert harmless
saddle points into unwanted local minima. It also leads to greater computational
overhead, usually in the form of either second derivatives of the functions !(1i.) and
g(;r.), or of matrix inversions [17, 14]. For large-scale combinatorial problems such
as the TSP these disadvantages become prohibitive. In addition, the entropic con­
straint functions occurring in deterministic annealing tend to be quite complicated
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nonlinear functions of the variables involved, often with peculiar behaviour near the
constraint condition. In these cases (the Hopfield /Tank method is an example) a
term quadratic in the entropy cannot simply be added to (6) in a straightforward
way to produce a suitable augmented Lagrangian (of course, such a procedure is
possible with several of the terms in the internal energy U(;I;.)).

An alternative Lagrange multiplier scheme which avoids these penalty term prob­
lems has been developed in the context of the TSP [13]. This scheme is strongly
in the spirit of the original Lagrangian relaxation method of Arrow [16] (described
below), and is quite efficient. However, it requires a constraint function of no higher
order than linear in ;I;., and indeed in the TSP case the constraint function is piece­
wise linear, resulting in a less than homogeneous technique. We would like to have
less restrictive conditions on the constraints, in order to take full advantage of mean
field theory techniques as a way of determining the best entropy constraint function
S(;I;.). Another scheme containing very little penalty term overhead has also been
constructed [15]. However, while this method comes close in philosophical spirit
to the present work, it still does not directly address the question of avoiding an
external annealing schedule. A method which does feature an automatic adaptive
schedule in an analogue context has been developed as an improvement on the elastic
net [22]. It is also very efficient, although it is not a Lagrange multiplier procedure,
and is specific to the particular form of the elastic net method.

4 Combining Lagrange multipliers with deter­
ministic annealing

To see how to proceed, we begin by making the Lagrange multiplier identifications
discussed above. Since T will now be considered as a variable, denote it by A. Now
consider the efficient first-order algorithm (i.e. containing only first derivatives of
F(;I;., A)) originally proposed by Arrow [16] as a means of locating the critical points
of F(;I;., A). It is specified by the equations

Xi = -'\7,,;F(;I;., A) = -'\7,,;U(;I;.) + A'\7,,;S(;I;.)
A = +'\7-\F(;I;.,A) = -S(;I;.)

(8)

Notice the change of sign between the two parts of (8). This is due to the saddle
point nature of the critical points of F(;I;., A), which means that regular gradient
descent upon the free energy surface does not work. The Arrow algorithm is known
to be convergent provided F(;I;., A) is convex with respect to the variables;I;. [17, 13],
i.e. provided the matrix

(9)

is positive definite. This requirement is quite restrictive. It is clearly not satisfied in
general by the non-convex deterministic annealing free energy functions (the convex
function of [13] is an exception). Sophisticated procedures have been developed to
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deal with situations such as this by grafting the above methods, based upon local
convexity, onto relatively inefficient algorithms which can be proven to be globally
convergent [17]. Unfortunately, the resulting hybrids are not single homogeneous
relaxation techniques, and are therefore difficult to parallelise, as well as to make
serially efficient.

However, we now make the central observation that for fixed A > 0, not only are
the deterministic annealing free energy functions F(l:., A) locally convex with respect
to l:. about desired fixed points (after all, this is how the methods work to begin
with), but that also, these locally convex regions tend to dominate the respective
free energy landscapes. The convexity condition (9) thus holds over a large volume
of the solution space. Hence, provided we insist upon the condition A > 0, a simple
Arrow-style dynamics which allows A to vary can be expected to converge to a fixed
point, since the small non-convex regions are unlikely to have a large effect upon
the long-term dynamics. Therefore, given a deterministic annealing procedure as a
starting point, it ought not be necessary to graft the locally convergent first-order
Arrow algorithms onto less efficient procedures in order to ensure global convergence,
despite the lack of strict convexity of the annealing free energy functions. Notice
that the typical free energy landscape involving large convex regions is of some
importance here. Pathological landscapes are possible in principle which contain
relatively small convex regions, but whose various local minima control the same
volume of solution space. If such cases were generic, it would no longer be possible
to construct an efficient and convergent first-order Lagrangian relaxation adaptation
by relying on the essential convexity of F(l:., A).

The requirement that A be positive can easily be satisfied by adding to (8) a
simple extra "barrier" term in the relevant equation of motion, so a typical proposed
algorithm is given by the equations

Xi = -'V"j'(l:.,A) = -'Vx,u(l:.) +A'Vx,S(l:.)
A = +'VAF(l:., A) = -S(l:.) +c/A

where F(l:., A) is a slightly modified free energy function given by

F(l:., A) = U(l:.) - AS(l:.) + cln A

(10)

(11)

In these expressions, c > 0 is a constant, chosen small on the scale of the other
parameters. The particular form of the extra term that it characterises is not very
important. The main criteria for choosing it should be that it interfere as little as
possible with the dynamics of Aspecified by the entropy term, while at the same time
ensuring that A remain positive. In this way the structure of the original annealing
Lagrangian dominates the behaviour of the new homogeneous system. Indeed, in
the numerical experiments that will be presented, a penalty term for A was not even
used - the algorithm was simply terminated at a suitably small value of A.

The algorithms described by (10) above have several features which distinguish
them from previous work. The first distinctive aspect is that the entropy estimate
S(l:.) has been chosen as the constraint function determining the rate of alteration
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of A. One consequence is that since this function is usually positive for the mean
field theory heuristics, A (the only new variable) decreases monotonically in a man­
ner roughly similar to the temperature decrease schedule used in simulated and
deterministic annealing, but with the adhoc drawback now removed (it also remains
positive, as does the temperature in annealing methods). Moreover, there is no re­
quirement that the system be at or near a fixed point each time A is altered, which
is a requirement for the annealing heuristics - there is simply a single homogeneous
dynamical system which must approach a fixed point only once at the very end of
the simulation. Finally, the algorithms do not require extra structure in the form
of quadratic penalty terms, second derivatives or inverses, in contrast to the usual
Lagrangian relaxation techniques [14, 17]. All of these features can be seen to be
due to the statistical physics setting of the annealing "Lagrangian", and the use of
an entropic constraint instead of the more usual syntactic constraints.

To elaborate, most Lagrangian relaxation methods allow both the multiplier and
the constraint function to oscillate around some equilibrium value, provided there
is eventual convergence consistent with the constraint condition. The equilibrium
value of the multiplier is determined indirectly by the form of the objective func­
tion, including especially quadratic penalty terms. In contrast, the statistical physics
structure of the annealing free energy functions specifies the final equilibrium value
to assign to the multiplier (zero), and also demands that it must not oscillate about
this value, but rather must approach it from above (A > 0). This information is
used to directly set a barrier penalty for A. Hence an extra indirect and usually
costly quadratic penalty term is not needed in the Lagrangian to perform this task,
and an efficient first-order algorithm can be constructed. The efficiency derives both
from the lack of these extra terms, and the fact that the objective function is essen­
tially linear in A except near the end of the procedure, when the simple barrier term
makes its presence felt. This juxtaposition of the technical setting of constrained
optimisation with the philosophical thrust of adaptive simulated annealing appears
to be a crucial ingredient in the efficiency of the technique, and is a major point of
departure from previous algorithms. It allows a rather complicated, but computa­
tionally powerful, entropy function to serve as a perfectly good constraint function
for an effective Lagrangian relaxation scheme.

5 Convergence properties

How can the convergence of the above algorithm be made plausible mathematically?
Consider a new "energy function", similar to the one used by [13], given by

Its time derivative, using equations (10), can easily be shown to be

dE/dt = - 2::2:>i \7;,x,FCr.,A) Xj -c(~ /W
i j
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(See Appendix 1 for more details). Thus E would always be decreasing if F(1:., A)
were always convex with respect to 1:.: it would be a so-called Lyapunov function for
the system of equations. Although this is not the case, the dominance of the locally
convex regions of F(1:., A) should mean that E is usually decreasing for the given
algorithm, i.e. that E is "almost" a Lyapunov function for the method, provided
the small regions of non-convexity of F(1:., A) do not interfere too strongly. The
behaviour is a reflection of the fact that in the original deterministic annealing
methods, where F(1:.) given by (1) is a true Lyapunov function for the dynamics,
the alternative function

(14)

is "almost" a Lyapunov function also.

It can be expected then, that the function E will eventually reach its lower
bound of zero, which of course describes a fixed point of the dynamics satisfying
the Kuhn-Tucker constraints (7). This expectation is indeed born out by numerical
investigations. Shown in Figure (2) is the time evolution of E for a typical TSP
problem. The figure shows E, together with its "kinetic energy" components asso­
ciated with A and 1:.. Notice that apart from an initial region in which E increases
(this is to be expected if the algorithm begins near a local maximum of F(1:., A)), the
function decreases monotonically, so the constraints are gradually fulfilled. Equally
important, however, is the fact that the individual kinetic components exchange
energy during this process, allowing the 1:. velocity to occasionally increase by slow­
ing down the A velocity. This behaviour can be viewed roughly as the presence of
"inertial" influences on the variables, although this inertia is somewhat illusory - the
true equations are first order, not second order as the inertial allusion implies (this
issue is also discussed further in Appendix 1). In any case, this exchange of energy
due to the extra degree of freedom supplies a mechanism by which the algorithm
cal). occasionally overcome energy barriers between different regions of the solution
space. An equivalent deterministic annealing procedure, lacking an inertial aspect,
would in constrast become trapped in the first region it encountered. Of course, this
behaviour by no means guarantees that the solutions found by the new algorithms
will be global optima, but it does offer a way of obtaining qualitatively improved
solutions over deterministic annealing, in addition to improved efficiency.

The Lyapunov function viewpoint can be pursued even further to display the
efficiency of the algorithm(s) described by (10). Observe that at the fixed points,
where E = 0, the K-T conditions (7) are precisely satisfied (setting c = 0). An
alternative algorithm could therefore be constructed which concentrates on directly
satisfying these conditions by regarding the function E simply as a function of A
and 1:., and performing strict gradient descent with respect to A and 1:. upon this
rewritten function

D(1:., A) = 2:= ['VXiU(1:.) - w Xi8(1:.W +8 2
(1:.).

i

Thus, we would have the dynamics

Xi= -'Vxi D(1:.,A)

10
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for which D(z., A) would be a true Lyapunov function. This algorithm is closely
related to an exact Lagrangian procedure due to Di Pillo and Grippo [23]. Its dis­
advantages are that the minimisation of D(z., A) requires second derivatives of U(z.)
and S(z.), and that the sum-of-quadratic form also introduces extra local minima,
a point which has been stressed by Bertsekas [17]. The first-order algorithm (10)
can be thought of as taking a somewhat different trajectory than (16) in the space
of variables, paying the price of not monotonically minimising the function D (z., A),
but in return receiving the twin rewards of much less computational investment
per variable update, and higher quality solutions due to the presence of fewer local
mlmma.

6 Application to the TSP

In order to illustrate the utility of the formalism outlined above, I now describe its
application to a concrete case, the Travelling Salesman Problem (TSP), although it
should be stressed that it applies to a much broader class of problems. The TSP con­
sists of finding the shortest complete tour, beginning and ending at the same city, and
visiting every city once, around a given set of cities with known fixed distances be­
tween each and every pair. Its ease of formulation hides a formidable computational
task (in general), and it is considered a prototypical example of a combinatorially
difficult problem. I will consider in some detail the elastic net heuristic for tackling
the TSP, but before doing so, outline very briefly the application of the apparatus
described by (10) to another analogue heuristic, the Hopfield/Tank algorithm [1].

The Hopfield/Tank method can be described as the minimisation with respect
to z., in conjunction with annealing in the parameter A, of the function

where

and

U(z.) = A/2 2: XaiXaj +B/2 2: XaiXbi
.a,ili a:f;b,i

+C/2[2: Xai - n2]2 +D /2 2: dabxai(Xb,i+l +Xb.i-l)
a,i a¢b,i

S(z.) = -F/22:[xa;lnxai +(1- xai)ln(l- Xai)]
a,i

(17)

(18)

(19)

The indices a and b label the different cities in a TSP problem, while i and j label
the order in which the n cities are visited. The analogue variables Xai, which are kept
in the range [0,1] by the form of S(z.), represent the probability of city a occurring
at the i th step of a tour. The distances between cities a and b are specified by
the parameters dab' while A, B, C, D and F are arbitrary positive parameters which
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must be fine-tuned to obtain an optimal algorithm (alternatively, some of them may
be converted into Lagrange multipliers themselves [24]). If the algorithm is modelled
by an analogue electronic circuit, the parameter A > 0 can be viewed as the inverse
of an adjustable "gain" parameter.

The procedure described by (10) can be implemented immediately to convert
this algorithm into a Lagrangian relaxation procedure. The Lagrange multiplier in
this case is the inverse of the gain parameter. Since the entropy function 8 (;1;.) is
never negative, A will decrease monotonically to zero, at which point the entropy
will also be zero. This is exactly what is expected of the Hopfield/Tank algorithm:
at high initial values of A (low gain), the variables ;1;. occupy the interior of an n 2_

dimensional hypercube, with a corresponding positive entropy, then as A is lowered
(i.e. the gain is increased) the variables move towards the corners of the hypercube,
lowering the entropy until finally it reaches the value zero at the corners themselves
(infinite gain, or zero temperature).

The focus of attention will now be switched to the elastic net method [2], which
is known to be a somewhat superior algorithm to the Hopfield/Tank method. The
reason for this is that it supplies a substantially more precise estimate of the thermo­
dynamic quantities of the relevant underlying statistical physics system than does
Hopfield/Tank [4, 8, 6]. This manifests itself as a formalism with fewer variables and
fewer sub-optimal minima. The numerical experiments reported here therefore con­
centrated on using the elastic net as the initial deterministic annealing procedure.
It can be described as the minimisation by simple gradient descent of the function

where

and

F(;1;., A) = U(;1;.) - A8(;1;., A)

M

U(;1;.) = / L IXi - Xi+11 2

i

N M
8(;1;., A) = a LIn Le-'xi-xa,2/2>.2

" i

(20)

(21 )

(22)

In these expressions, x" is a (fixed) 2-dimensional vector specifying the position of
city a, Xi is a (variable) 2-dimensional vector describing the position of tour point
i, and of course A is the annealing/temperature parameter. The remaining tunable
parameters are a and /. The tour points represent a deformable curve whose shape
is manipulated by the algorithm until it eventually passes through each city once.
In general, the number of tour points M is chosen to be somewhat larger than the
number of cities N. Several other mean field algorithms developed in the context of
image-processing have a very similar free energy structure [5, 4, 3J.

The elastic net works by minimising the "internal energy" term U(;1;.) , which
forces different tour points to be closer together. This tendency is balanced by the
entropic term 8(;1;., A), which at high temperatures tries to pull tour points apart.
As the temperature A is lowered, F(;1;., A) is best minimised by allowing 8(;1;., A) to
approach zero, while minimising U(;1;.). Inspection of the form of 8(;1;., A) reveals that
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at low values of A, the entropy can only be zero if there is associated with each city
x a some tour point Xi = X a , so at low temperatures the cities attract tour points.
This situation guarantees that at low enough temperature the syntax of the original
discrete problem will be satisfied, with the network specifying that there be at least
one tour point located at each city.

There is an obvious impediment to the straightforward conversion of this algo­
rithm into a Lagrangian relaxation procedure: the structure of F(;[;" A) precludes the
use of a true Lagrange multiplier, since Anow appears non-trivially in the constraint
function 8(;[;" A) itself! Nevertheless, applying the Lagrangian relaxation apparatus
regardless leads to the following simple first-order set of equations

Xi = - 'Vx,F(;[;"A) = -'Vx,U(;[;,) + A'Vx,8(;[;"A)
A = +t:'V>.F(;[;"A) = -t:[8(;[;"A) +W>.8(;[;"A)].

(23)

where U(;[;,) and S(;[;" A) are given by (21) and (22) respectively. The first line is
simply the gradient descent term occurring in the original elastic net procedure,
and the second describes the new "annealing dynamics". In this expression, the
constant t: > 0 appears in order to slow the convergence rate of A. It functions as
both an alternative to introducing an extra additive barrier term (this change of
convergence rate does not of course alter the location of the fixed points), and as
the sole remaining means of controlling the annealing schedule and avoiding sub­
optimal solutions. There are two distinct possible sources of difficulty which could
prevent this set of equations from being a useful optimisation algorithm. One is
the issue of whether it can be expected to converge. The other arises from the
fact that the simple constraint condition S(;[;" A) = 0, which is known to satisfy the
syntax of the original problem, is not obviously satisfied at the fixed points of the
new system. This is because A is no longer a true multiplier. The question is, does
the new constraint produce a sensible final configuration which satisfies the original
constraint 8(;[;" A) = 0 at A = O?

Convergence can be dealt with by considering the function

1",.2 1.2
E = - L..J Xi +- A

2 i 2t:

In a similar manner as before, we find that

(24)

dE/dt = - LL Xi 'V;,xjF(;[;"A) Xj -[2'V>.8(;[;"A) + W1S(;[;"A)]5.
2

(25)
i j

All the components of this expression have the correct sign for eventually lowering E,
with the exception of the second derivative of 8(;[;" A) with respect to A. It is negative,
and becomes appreciable for small values of A. In the numerical experiments, this
problem was avoided by choosing t: small enough so that the first term dominated at
all except small values of A. The algorithm was then terminated before this regime
was reached. If desired, a formal barrier penalty term could be used instead, in the
manner of (10).
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The remaining concern is to ensure that the new term AV'>.S(;r., A) appearing in
the constraint condition does not interfere with S(;r., A) in such a way as to lead
to a nonsense final configuration. It is possible, for example, for S(;r., A) to take on
negative values (unlike the corresponding functions in the Hopfield/Tank procedure).
In principle, these could cancel out X'\7"S(;r., A) at awkward places to produce a fixed
point at an illegal solution. Fortunately, a little algebra settles this issue by showing,
firstly, that the constraint function obeys

S(;r.,A) +X'V"S(;r.,A) > 0 for A> 0, (26)

and secondly, that it is zero only when both A= 0 and when there is a tour point
located at each city (for each a, X a = Xi for one value of i). More details concerning
this issue and convergence can be found in Appendix 2. This last condition ensures
that any fixed point of the algorithm satisfies the syntax of the original problem.
The general entropic structure which gives rise to (26) above is not limited to the
elastic net mean field theory approximation to the TSP. The mean field theory
approximations to a variety of problems discussed in [3,4, 5, 10] all satisfy (26), and
can therefore be adapted successfully to Lagrangian relaxation methods.

The form of the elastic net entropy function suggests a further natural general­
isation of the procedure. A different "multiplier" Aa can be assigned to each city
a, each variable being responsible for satisfying a different additive component of
the entropy constraint. The required dynamics and the various new free energy
functions are all straightforward extensions of those discussed above, and the same
arguments concerning convergence and satisfaction of syntactic constraints apply.
A detailed description of the implementation pf the algorithm, including the use of
several multipliers, is given in Appendix 2. The same notion could also be applied,
of course, to the adaptation of the Hopfield/Tank methods, by either assigning a
multiplier to the entropy for each variable Xai individually, or to groups of variables
associated with a given city, etc. In general each of the resulting multipliers will
converge towards zero at different rates, supplying more degrees of freedom to the
problem in a natural way, and hopefully enhancing trap-avoidance. The idea has an
obvious parallel to the notion in simulated annealing of lowering the temperature in
different geographical regions at different rates in response to the behaviour of the
system. The number of extra variables required is a modest computational invest­
ment, since there are typically many more tour points than city points for a given
implementation.

7 Results for the elastic net Lagrangian relax­
ation

Numerical simulations were performed using three different algorithms: the elastic
net method, its Lagrangian adaptation with a single global Lagrange multiplier,
and the modification discussed above involving one Lagrange multiplier for each
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Elastic Net Local Multipliers Global Multiplier
City set Length CPU (# its) Length CPU (# its) Length CPU (# its)

1 5.93 219s (400) 5.93 66s (100) 5.93 34s (60)
2 6.03 215s (390) 6.03 79s (120) 6.03 35s (60)
3 5.74 226s (410) 5.75 65s (100) 5.75 34s (60)
4 5.90 322s (580) 5.90 105s (160) 5.90 45s (80)
5 6.49 274s (510) 6.50 90s (140) 6.50 69s (120)

Table 1: Performance of the 3 heuristics described in the text on a set of 5 randomly
distributed 50-city instances of the TSP generated by [2]. CPU times quoted are
for a SUN SPARC Station 1+. Solutions were obtained by running the algorithm a
single time from a standard starting loop.

city. The results of running the various algorithms on the five 50-city instances used
by [2] are shown in Table 1.

The table displays the final tour lengths obtained, the total running time on a
SUN Sparc Station 1+, and the number of fundamental "iterations" this required,
for each of the methods and each of the 50-city instances. It can be seen that the tour
lengths obtained by the Lagrangian methods are essentially the same as those found
by the elastic net. However, the fundamental number of iterative steps required, and
the total running time, is substantially lower for the Lagrangian procedures, espe­
cially for the global Lagrange multiplier. The latter method appears to be roughly
an order of magnitude faster than the elastic net. Care was taken to compare the
algorithms fairly by refraining from applying special numerical improvements to any
of the methods to improve convergence properties. Several possible improvements,
such as building up the number of tour points only as they are required, were in­
dicated with by [2] in their original elastic net discussion. These improvements can
typically be applied to all three methods quoted above - the main purpose of the
table is to show the effect upon CPU time of the adaptive annealing notion itself,
which can then be combined with other numerical improvements as desired.

The Lagrangian algorithms obtained solutions no more accurate than the elastic
net on the problem instances shown above. However, the form of the algorithm
appears to offer the possibility, discussed earlier, of generating qualitatively better
solutions. The methods were therefore compared on a larger set of 40 randomly cho­
sen 50-city problems, the results of which are displayed in Table 2. For this larger set
of instances, the Lagrangian algorithms show a trend towards better solutions. On
average, they are 0.5% shorter than the elastic net tours. Of course, this difference
is well within a single standard deviation of tour lengths over the various instances,
so the results are suggestive rather than conclusive. They do, however, show that
the procedures hold promise for the TSP, because the problem is notorious for re­
quiring substantially greater investments of computer resources to improve overall
accuracies by small amounts as the optimal tour lengths are approached. Even small
improvements over the elastic net results, occurring as they do in conjunction with
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Elastic Net Local Multipliers Global Multiplier

Tour Length 5.95 ± 0.10 5.92 ± 0.08 5.92 ± 0.09
CPU time (secs) 260 ± 33 82 ± 12 49 ± 5
a 0.2 0.4 0.4

I 2.5 2.5 2.5
€ 0.02 0.012 0.010

Table 2: Performance of the 3 heuristics described in the text on a set of 40 randomly
distributed 50-city instances of the TSP within the unit square. CPU times quoted
are for a SUN SPARC Station 1+. The value of € quoted for the elastic net represents
the proportional decrease in the temperature applied after every 5 iterations.

significantly shorter CPU times, are somewhat encouraging.

The Lagrangian methods were also run on the 100-city problem used by [2].
For this instance, the global Lagrangian procedure succeeded in finding a superior
solution to the annealed elastic net (the local Lagrangian relaxation produced the
same solution as the elastic net). The annealed solution, of length 7.783, is shown
in Figure (3a). The best solution, of length 7.746, found by the global Lagrangian
relaxation is shown in Figure (3b). This represents a 0.5% improvement, and supplies
a tour within 0.6% of the shortest simulated annealing solution found by [2], which
was of length 7.70. At this level of accuracy, such an improvement is extremely
encouraging. The CPU time taken by the global Lagrangian relaxation was about
half that required for the elastic net.

The differences in the displayed solutions can be traced to a few changes in
the south-west portion of the tour. Notice that while these changes consider rear­
rangements of physically nearby cities, they are highly non-local rearrangements in
terms of the topological neighbours of the various cities in a tour. Furthermore, the
two solutions are only distinguished by the algorithm near the end of its run. Hence
other net-based algorithms which operate by severely reducing the topological search
neighbourhood as the method proceeds, or by considering local city rearrangements,
will fail to find the shorter solution, which seems to require the presence of global
information contained in the entropy term right up to the end. On the other hand,
comparison with the best simulated annealing solution shown in [2] reveals that
the global topology of Figure (3b) is still completely wrong in several important
respects. The entire course-featured "basin" into which the algorithm settles early
in its evolution is simply misguided, and cannot be corrected later in a major way.
Although the algorithm uses global information about the problem, it is unfortu­
nately still not global enough! It's clear from this kind of behaviour that the whole
class of deterministic mean-field based procedures are best viewed as efficient local
optimisers, and that stochastic rearrangements must be superimposed at some later
stage if further progress is to be made.

It would be of some interest to correlate the more obvious plateaux in the time
evolution of the A variables (see Figure (2)) with distinctive behaviour in the an-
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nealing of the elastic net. The annealing schedule for the elastic net is determined
by the occasional occurrence of narrow "fingers" in the net [2], and the subsequent
need to anneal slowly at these temperatures in order to prevent the net from self­
intersecting. This behaviour is related to the occurrence of multiple phase transitions
as the temperature is lowered through a series of critical temperatures. These tran­
sitions manifest themselves as bifurcations in the minima of the free energy surface,
which occur along the principle axes of the covariance matrix of the distribution of
cities. Comprehensive discussions of this mechanism may be found in [25, 10]. It
seems possible that the adaptive schedule specified automatically by a Lagrangian
relaxation algorithm is able to rapidly "sense" the need to slow down the schedule
at these critical temperatures, just as the mean field algorithms themselves are able
to rapidly "sense" the effect of many different discrete configurations in the form of
a single configuration of analogue variables. The relationship between this adaptive
schedule and the cascade of phase transitions in deterministic annealing is currently
under investigation.

It should be pointed out that neural net-based algorithms, including this one, do
not yet outperform more classically-based heuristics and exact procedures for the
TSP [26, 27], despite occasional claims to the contrary. Their main drawback is
the frequent inability to obtain solutions within 1-2% of optimal. They do however,
offer at least two appealing features. One is the fact that they can be decomposed
into parallel algorithms with great ease. This indicates the possibility of regarding
network methods as extremely efficient generators of locally-optimal TSP solutions
on parallel computers. The other promising aspect is the simplicity and generality
of their formulation and implementation. With minor modifications, the general
approach can be applied with relatively little algorithmic investment to a wide range
of important problems. The developments reported here have incorporated this
philosophy as a major ingredient, and show that it can be extended further than
previously anticipated.

8 Why it works - computation by valley ascent

The results discussed above show that the Lagrangian relaxation adaptations do
indeed seem to offer improved computational capabilities over pure deterministic
annealing methods. In this section, a schematic view of the new algorithms will be
presented, which displays in a straightforward, if crude, form the main differences
between the two techniques.

Recall the sequence of free energy functions shown in Figure (1), each parametrised
by a different value of temperature. At any given temperature, the absolute val­
ues of the free energy minima are of no great importance in these diagrams. It is
simply the ratio of the internal energy to the entropic term which determines the
all-important location of minima. The new feature of the algorithms described in
the previous sections can be thought of as the assignment of computational signifi­
cance to the actual value of the free energy function as the temperature is altered.
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It is therefore useful to consider the rough features of a free energy "surface" in the
enlarged space (.;1;., ),), as shown in Figure (4).

The foreground of Figure (4) shows schematically the form of the free energy
at high values of temperature. There is of course a single global minimum in this
regime. As one moves towards the background along the axis of decreasing >., the
free energy increases. Bifurcations in the free energy (i.e. phase transitions) show
up as the appearance of multiple valleys in the enlarged free energy surface. Finally,
when the temperature is zero, one reaches a series of saddles, or passes, each of
which describes a possible solution, with entropy zero, satisfying the constraints of
the original discrete problem. The internal energy term places different saddle points
at different heights. Now, a deterministic annealing algorithm can be thought of as
starting at the global minimum in the foreground, and ascending just one of these
valleys. Every time there is a bifurcation of valleys, it is hoped that the mechanism
chooses the deepest and broadest valley, and that this in turn will lead to the lowest
saddle as the final answer. Two possible trajectories are displayed in the figure.

By way of contrast, a typical trajectory on this surface for one of the Lagrangian
relaxation methods is also shown. The overall trajectory consists roughly of the
ascent of one of the valley floors. However, oscillations about this floor now occur
on the way to the final saddle point, a reflection of the interplay between the different
kinetic energy components displayed in Figure (2). It is hoped that the extra degrees
of freedom are a more effective way of locating the deepest valley than simple ascent
along a valley floor, especially near bifurcation points. Although this is by no means
guaranteed, it is certainly plausible for the following reason. Increasing the number
of degrees of freedom will have the generic effect of allowing the depth and broadness
of different valleys to be more fully explored. This improvement would be nullified
if, in the process, too many new sub-optimal valleys and/or saddle points were to
appear in the enlarged system. However, we know from (26) that no extra local
minima are created by the Lagrangian relaxation for the elastic net, and the same
is trivially true for the Hopfield/Tank style free energy functions. We can therefore
be sure that the most immediate potential drawback of enlarging the number of
degrees of freedom is not a problem. The worst that can happen is that one settles
into a less optimal local minimum which already existed in the original deterministic
annealing formulation.

Figure (4) can also be used to illustrate other issues briefly mentioned earlier.
One such issue is the comparision with more usual methods of constrained optimisa­
tion, as exemplified by [13J. An important point in this regard is that the landscape
depicted in Figure (4) becomes discontinuous at ), = O. The whole world must be
restricted to ), > 0, because it is only in this region that the free energy function
behaves in the correct manner. In contrast, more conventional schemes allow one to
pass back and forth at will over the equivalent background saddle regions, while still
ensuring eventual convergence to one of the saddles. The price that must be paid
for this is the use of much simpler and more restrictive constraint functions, which
ultimately lead to less optimal saddle points. Another point is that the), variable(s)
are monotonically decreasing in the new algorithms. All oscillations are restricted
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to the;r. variables. This situation is also unlike more usual constrained optimisation
methods. It is, however, exactly like standard annealing in this respect, although
the use of several multipliers certain allows for different rates of annealing. It might
be interesting and worthwhile to try to develop a Lagrangian-style method which
did allow occasional increases in temperature in an automatic way, thus mimicing
the occasional adhoc use of such expedients in simulated annealing.

9 Conclusions

Both deterministic and simulated annealing methods work by constructing artificial
statistical physics models to represent a chosen optimisation problem at different
non-zero temperatures, with associated non-zero "entropies", in order to make the
problem as "convex" as possible. However, the original problem is only truly repre­
sented by the final system at zero temperature, with an entropy of zero. By viewing
the vanishing of the entropy function as a constraint upon possible solutions, it has
been shown how a bridge can be formed to powerful methods of constrained opti­
misation, especially Lagrangian relaxation. The basic idea of Lagrangian relaxation
is to construct a "soft" mechanism which allows a constraint to be fulfilled grad­
ually, whilst ensuring that it ultimately be fulfilled exactly. In essence, this is the
task performed somewhat awkwardly by the temperature parameter, with respect
to the entropy constraint, in both deterministic and stochastic annealing schemes.
However, the deterministic mean field theory approximations allow this process to
be taken a step further by offering complicated, but closed form, entropic expres­
sions which can serve as perfectly reasonable constraint functions within an enlarged
relaxation scheme.

The result of this point of view is a simple yet effective framework for systemat­
ically generalising any deterministic annealing algorithm described by a mean field
theory approximation of the form (1) into a single homogeneous parallel analogue
relaxation procedure. The same framework generates a rational guess for an optimi­
sation algorithm when the appropriate approximation is of the form (20), in which
the natural candidate for a "Lagrange variable" is no longer even a true multiplier of
the constraint function. The need to conduct several relaxations of a dynamical sys­
tem at different temperature values can therefore be replaced in these cases by the
relaxation of a single dynamical system, with resulting improvements in efficiency
and accuracy. Furthermore, the resulting algorithms now mimic in a rough way the
notion of a temperature being lowered adaptively in simulated annealing [28J.

In the case of the elastic net solution to the TSP, the ensuing adaptation can be
shown to provide syntactically correct solutions, and I find in fact that it substan­
tially improves the speed (and to a smaller extent the accuracy) of that method.
However, it is important to stress that although the TSP was chosen as the test
problem for the algorithms described above, there is nothing special about this par­
ticular problem as far as the structure of the algorithms is concerned, other than its
status as an important bench-mark. Its main relevant feature is simply the ability
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to embed the problem in a general statistical physics framework in such a way that
self-consistent mean-field theory approximations can be made to describe the config­
uration space at low temperatures. This characteristic is shared by many different
combinatorial problems [5,9,4, 3, 10], and in each case a candidate algorithm of the
kind described above may be constructed. Problems of this type are particularly
prevalent in the field of computational vision, and a comprehensive discussion of
them in relation to deterministic annealing can be found in [4]. The methods de­
scribed above should also be applicable to other techniques in computational vision,
such as graduated non-convexity [19], which are similar in spirit to deterministic
annealing, albeit without the same technical grounding in statistical mechanics.

Of course, it is by no means certain that every mean field approximation of the
form (20) will enjoy the same providential properties as the elastic net. Nevertheless,
the procedure generates candidate algorithms whose properties ought to be worth
investigation in general. The procedure is not limited to functions derived from
mean field theory, but this seems to be a particularly promising avenue of inquiry,
as it frees us from the need to artificially guess objective functions for problems
that are somewhat opaque to begin with. As a final observation, the idea of using
entropy as a constraint function can also be applied in a somewhat wider context.
For example, it can be used in the design of objective functions and architectures for
neural networks and other learning mechanisms which seek to generalise, a question
which touches on the related issues of regularisation and the solution of ill-posed
problems in general [29].
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Appendix 1- Convergence Properties of Lagrangian
Relaxations Based Upon HopfieldjTank Style Ob­
jective Functions

In this Appendix I discuss in some detail the convergence properties of the La­
grangian relaxation mechanisms obtained from deterministic annealing objective
functions of the form

(27)

Examples of such functions are the Hopfield/Tank method for solving the TSP [IJ,
and the mean field theory learning algorithms derived as deterministic approxima­
tions to Boltzmann machines [9]. The more complicated case of objective functions
related to the elastic net will be discussed in Appendix 2.

As these functions stand, the temperature parameter T can be interpreted as
a true Lagrange multiplier. However, since we want to endow this multiplier with
dynamics, we consider the slightly modified objective function

where c > O. The algorithm itself is given by

Xi = -\!,,)'(Jl.,>') = -\!",u(Jl.) +>'\!",S(Jl.)
>. = +\!,\F(Jl.,>') = -S(Jl.) +c/>.

(28)

(29)

It is perhaps worth stressing that this Appendix considers only the issue of local
convergence. In order for the method to be genuinely useful, it is necessary to ensure
that the value of c be chosen small enough that the entropic constraint is satisfied
to an appropriate accuracy at the fixed point, but this is a separate issue from that
of convergence itself.

Now consider the energy function

The time derivative of this function is given by

dE/dt = 2: XiXi + jX
i
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The central point in the whole analysis is contained in the last step above. The
two terms involving mixed derivatives of F(!fl., A) with respect to!fl. and Aare equal in
magnitude, and cancel each other out. This situation arises directly because of the
opposite signs of the two gradients in the algorithm described by (29). In addition,
the function F(!fl., A) has been constructed to be concave in A, so that the dynamics
of A also contributes to the lowering of E. As a result of this concavity, and the
cancellation of mixed derivatives, the only regions of the solution space in which
E is not guaranteed to be decreasing with time are those in which the function
F(!fl., A) fails to be convex with respect to !fl.. This convexity structure is of course
independent of the new term cln A in F. Because these regions of non-convexity
are typically small, and in addition, do not seem to occur near desired solutions in
the deterministic annealing free energy functions, it can be expected that E will
decrease monotonically with time, for large enough times, in almost all cases.

The formalism can easily be altered to accomodate several different constraints,
each with a different multiplier Aa • This comes about because the entropy is nearly
always a sum of additive components. A typical free energy function can therefore
be written as

N N

F(!fl.,il) = U(!fl.) - L:AaSa(!fl.) +C L:lnAa (32)
a a

where N is the number of groups one chooses to split the entropy into. The algorithm
itself is now given by

(33)
a

The appropriate energy function is now

1".2 1".2
E = 2' L..,. Xi + 2' L..,. Aa

, a

for which
dE/dt = - L:L: Xi \l;;x/(!fl.,il) Xj -c L:Ua /A a)2

i j a

(34)

(35)

Although the convergence of the algorithm does not require it, the dynamics of A
may also be scaled with respect to the!fl. dynamics by a positive factor E. The energy
function E can easily be altered to take account of this change also. The reason for
this factor is to prevent the algorithm from annealing too quickly. It is a tunable
parameter which must be set at the beginning of the algorithm. It represents the
remaining arbitrary component of the former annealing process.

The function E has been interpreted in Section 5, and in Figure (2), as the sum
of two different "kinetic energies" associated with !fl. and A respectively. It was noted
by [13] that the A component of their algorithm could be interpreted in a natural
way as a "potential energy" function, in conjunction with a second-order differential
equation describing the !fl. dynamics. Such an interpretation is also possible here.
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Consider for example the case of a single global A. By combining the two parts of
(29), one obtains the following second-order equation in ;r for given A:

Xi +I:V';,../(;r,A) Xj +V'..y(;r,A) = 0
j

(36)

where

(37)

(38)E = T +V = ~ I: x/ +~(-S(;r) +c/W
,

This is the equation for a damped mass system with inertia, a damping term, and
an external force given by the negative gradient of the "potential energy" V(;r, A).
The function E can now be written as the sum of a kinetic term T and a potential
term V:

This modification of the elegant construction of [13] shows how the extra degrees of
freedom in the new algorithms can emulate the effects of inertia on the variables ;r.
In the current case, this interpretation might perhaps be considered a little strained
because of the appearance of A in the potential energy function. In the elastic net
procedures, A plays an even more complicated role. From this point of view, the
dual kinetic energy interpretation, treating;r and Aon a single homogeneous footing,
perhaps shows more of the relevant computational flavour of an interplay between
kinetic components, and has therefore been stressed in the body of the paper.

A limited amount can be proved concerning the convergence of (29) or (33). I
describe here a result which ensures local convergence. Consider the case of several
multipliers. Suppose there are n variables Xi and m variables Ai. Assemble them
into vectors, denoted simply by x and A. The basic approach, closely following the
treatment of [17], consists of regarding the algorithm (33) as an iterative process
specified by

Xk+l = Xk -1]V'..F(x, A)

Ak+l = Ak + 1]V''\F(x, A)

(39)

where 1] > 0 is a scalar stepsize. Suppose that (X*,A*) is a fixed point of (33), and
that F(x, A) is twice-differentiable in an open set around this fixed point. Then the
following proposition, a generalisation of Proposition 4.23 in [17], holds.

Proposition: If the matrix V';..F(x*, A*) is positive definite (i.e. if the fixed
point is a local minimum of F with respect to x), then one can find small enough
1] and some initial pair (xo, AO) so that the sequence (Xk, Ak) generated by (39)
converges to (x*, A*). Furthermore, the rate of convergence is at least linear.

Proof: The proof proceeds by considering the mapping G : Rn+m -t Rn+m

defined by the above iterations. This map can be represented as a column vector

(40)
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(42)

(41)

The pair (x*, ,A*) is obviously a fixed point of the map. Now consider the gradient
of this map at the fixed point, which can be represented as an (n +m) X (n +m)
matrix:

\7G(x*, ,A*) = 1- TlB

where the matrix B is given by

B = [ \7;xFi x*, ,A*) \7;;,Fix*, ,A*) ]
-\7ixF(x*,A*) -\7LF(x*,,A*)

Notice that the bottom right-hand component of this matrix is diagonal for the
objective functions (32), and has only positive entries, so it is trivially positive
definite.

The important thing about B is that the real parts of each of its eigenvalues are
all strictly positive. To see this, let (3 be an eigenvalue of B, with corresponding
eigenvector b =J O. Denote by bt = (zt, wt ) =J (0,0) the Hermitian conjugate of b.
Then by definition, we have

Re(btBb) = Re((3)(lzI2 + Iw1 2
) (43)

On the other hand, we also know by considering the form of B that

Re(btBb) = Re(zt\7;xF(x*,,A*)z) - Re(wt\7LF(x*,,A*)w) (44)

The last line comes about because of the exact cancellation of the mixed derivatives
in the non-diagonal components of B. It is precisely the same feature that is used
to obtain the suggestive form of dE / dt above. Now, due to the positive definiteness
of \7;xF(x*, ,A*) (by assumption) and the negative definiteness of \7LF(x*, ,A*) (by
construction), this last expression must be strictly positive: otherwise, we would
violate the assumption that b =J O. Hence from the first expression, Re((3) > o.

The strict positivity of the real parts of the eigenvalues of B implies in turn
that TI can always be scaled so that all the eigenvalues of \7G(x*, ,A*) = 1- TlB lie
strictly within the unit circle of the complex plane. By a theorem which Bertsekas
attributes to Ostrowski [17], this condition guarantees the existence of an open set
S such that if (XO,,AO)ES, then the sequence generated by (39) remains entirely in
S, and converges linearly to the fixed point (x*, ,A*). Q.E.D.

This result demonstrates the local convergence of the algorithm (39) to a fixed
point. In the context of deterministic annealing based objective functions, it means
that a region of the solution space always exists for which the non-convex regions
of the free energy cannot interfere with the Lagrangian relaxation process to spoil
the convergence of the new algorithm. The only requirements are the convexity of
the free energy with respect to x at the fixed point and the concavity of the barrier
functions with respect to ,A at the fixed point (and by continuity, in a neighbourhood
about this point). These conditions are enough by themselves to ensure the existence
of an open set within which the iterations (39) are bounded, and for which the convex
regions of (32) with respect to x enforce convergence to a fixed point. Of course, the
proposition does not prove global convergence, i.e. that the algorithm will always
find such a region, no matter where it starts from.
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Appendix 2 - Convergence Properties of Lagrangian
Relaxations Based Upon Elastic Net Style Objec­
tive Functions

In this appendix I discuss the computational details of the elastic net Lagrangian
relaxations introduced in Section 6, and subsequently used to obtain the TSP results
quoted in Section 7. Although I will discuss the TSP implementation, there has
been substantial recent work concerned with the use of extremely similar schemes to
perform automatic clustering [10], as well as in vision problems [3,4]. The formalism
described here applies with little or no modification to all of these problems. I will
deal in detail with the serendipitous constraint-satisfaction property (26) of Section
6, and will outline briefly the formal convergence properties of the method, which
are quite similar to those discussed in Appendix 1.

To begin with consider the elastic net objective function, but with a different
temperature parameter A. associated with each city a. Thus, the objective function
now reads

N

F(;&.,},) = U(;&.) - L:A.S.(;&., A.)
•

where
M

U(;&.) = '/ L: IXi - Xi+11 2

i

and
M

S (x A ) = Ct In " e-1x,-xal' 12>'~a_, a L..J
i

The local multiplier Lagrangian adaptation is given by the equations

Xi = - V"x,F(;&.,A.) = -V"x,U(;&.) +L: A.V"x,S.(;&., A.)
•

(45)

(46)

(47)

(48)

and

This was the algorithm used to obtain the results shown in Section 7. Simple gradient
descent was used as the fundamental update step. At any given step, numerical
stability considerations suggest that the increments of the variables be modified by
the temperature parameter. In the local multiplier case, this was accomplished by
using Amin, the smallest value of the set of A'S at a given time step. Thus

Xi(t +1) = Xi(t) + 1]Amin(t) Xi
A.(t +1) = A.(t) + 1]Amin(t) ~.
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where 'fJ is a fixed rate constant, typically set to l.

Before considering the convergence of this algorithm, I will first show that at a
fixed point of the Aa dynamics, the appropriate constraints for a legal TSP solution
are satisfied. Dropping the subscript on Ato avoid notational clutter, and defining

(51)

we have

Now as long as A > 0, we know
expression can be written as

(52)-A ex I '\' b. _ 2L:i b;ln bi

n~ • ". b.
t WI t

that L:i bi # O. Hence the numerator of this

I: b;[lnI: bi - 21n bi]
i i

(53)

Since 0 < bi < 1, we know immediately that as long as L: bi 2: 1, the expression is
strictly positive. On the other hand, if L: bi < 1, we have

- 21n bi > lIn I: bd Vi (54)

so the expression is still positive. This establishes that provided A > 0, ), is always
acting to decrease A. Furthermore, the expression can only be equal to zero, thus
specifying a fixed point of the Adynamics, when some bk = 1, with all other bi = O.
This in turn can only occur if both Xk = X a and A = 0, which establishes that the
fixed point satisfies the correct syntax of the TSP.

It's interesting to note that it is perfectly possible to satisfy the entropic con­
straint S(!!l., A) = 0 at some non-zero value of A, without the correct solution syntax
being satisfied. The second term in the A dynamics therefore plays a vital role
in these methods, ensuring that such a sub-optimal situation cannot possibly be a
fixed point of the algorithm. This feature highlights the fact that the full mean field
theory free energy function is the best starting point for constructing a Lagrangian
procedure. In particular, it suggests that every occurrence of the temperature pa­
rameter in the free energy should be wholeheartedly converted into a variable A,
even though this means that A can no longer be truly considered a Lagrange mul­
tiplier. If one insisted on updating each A as a true multiplier, i.e. proportionally
only to S(!!l., A), there is no guarantee that unwanted fixed points corresponding to
illegal solutions could not arise.

Finally, consider the convergence of the algorithm described above. The appro­
priate energy function is now

(55)

From the rather general discussion of the time derivative of the equivalent function
in Appendix 1, it's clear that the important cancellation involving mixed derivatives
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of the Xi and Aa variables does not depend in any way on Aa appearing merely as a
multiplier in F(2<.,Ll). In fact, one can immediately write down for the current case

dE/dt = - LL Xi V;,x/(;r.,Ll) Xj +LL ~a VL.F(2<.,Ll) ~b (56)
i jab

Now, because each entropy component depends upon just one Aa , the second matrix
in this expression is diagonal, leading to

The term containing the second derivative of S(2<., Aa) with respect to Aa is of
the incorrect sign for lowering E. The simple expedient of terminating a simulation
before this term overwhelmed the simple gradient of S(2<., Aa) was found to yield
perfectly good results in the problems tackled. However, if desired a barrier term
can also be added to ensure convergence. Consider, for example, a modified objective
function of the form

N N

F(2<.,Ll) = U(2<.) - L AaSa(2<., Aa) +L fa(Aa) (58)
a a

where possible fa(A a) will be described shortly. We now have

"\"' "\"'. 2 . "\"' 2 2 . 2dE/dt = - L..L..Xi V X , xj F(2<.,A) Xj - L..[2V>..S(2<.,Aa)+AaV>..S(;r.,Aa)-V>../a(Aa)]>.a
i j a

(59)
Hence by choosing each fa(Aa) to be suitably concave so as to overwhelm V1.S(2<., Aa)
at small Aa , it can be expected that E will decrease monotonically with time at large
enough times. More rigorously, suitable concavity ensures that the conditions for
the Proposition in Appendix 1 are fulfilled in this case also, hence local convergence
is guaranteed. Of course, one must be careful to make sure that this occurs at low
enough Aa to leave the resulting method computationally useful.
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Figure Captions

Figure 1. Schematic representation of a generic deterministic annealing algorithm.

(a) A convex objective function occurring for some large value of annealing/temperature
parameter T. An associated dynamical system relaxes to the unique minimum.

(b) As T is lowered, the fixed point solution bifurcates. It is hoped that the system
chooses the lefthand local minimum, which is which is wider and deeper than the
righthand minumum.

(c) As T is lowered still further, the lefthand minimum becomes substantially deeper
than the righthand minimum.

(d) Finally, as T approaches zero, more local minima appear. Once again, it is hoped
that the algorithm chooses the deeper of the local minima, which is then taken as
the solution to the original discrete problem.

Figure 2. A plot of the evolution of "kinetic energies" associated with the system
variables during a typical Lagrangian relaxation algorithm. Shown is the total energy

E = ~ Li x/ + ~.\2 (solid curve), together with the individual kinetic components
associated with", (dash-dotted curve) and), (dotted curve). It can be seen that these
energies all decrease asymptotically, despite regions in which they may temporarily
mcrease.

Figure 3. Two different solutions to the 100-city TSP problem from [2].

(a) The solution found by the elastic net algorithm. It has length 7.783.

(b) The solution found by the global Lagrangian relaxation of Section 7. It has
length 7.746.

Solution (b) is roughly 0.5% shorter than (a), although it is still 0.6% longer than
the shortest simulated annealing tour found by [2J (of length 7.70).

Figure 4. Schematic representation of the free energy "surface" of a generic deter­
ministic annealing free energy function, obtained by plotting the various functions
in Figure (1) along a temperature axis. Shown on the surface are typical trajecto­
ries which might be taken along valley floors by a deterministic annealing algorithm
(dash-dotted curves) and by a Lagrangian relaxation adaptation (dotted curve), as
discussed in Section 8. The Lagrangian relaxation succeeds in locating the lowest
saddle point in the background.
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