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Abstract
A mathematical formalism is developed for the existence of unique invariants
associated with wide classes of observed discounting behavior. These invariants
are ‘exponential discount rate spectra,’ derived from the theory of completely
monotone functions. Exponential discounting, the empirically important case of
hyperbolic discounting, and so-called sub-additive discounting are each special
cases of the general theory. This formalism is interpreted at both the individual
and social levels. Almost every discount rate spectrum yields a discount
function that is ‘hyperbolic’ with respect to some exponential. Such hyperbolic
discount functions may not be integrable, and the implications of non-
integrability for intertemporal valuation are assessed. In general, non-stationary
spectra lead to discount functions that are not completely monotone. The same
is true of discount rate spectra that are not proper measures. This formalism
unifies theories of non-constant discounting, declining discount rates, ‘gamma’
discounting, and related notions.
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I Introduction: Two Distinct Motivations

A growing body of empirical research has demonstrated that the
conventional present value calculus is unsatisfactory as a description of
how humans value the future [e.g., Frederick, Loewenstein et al. 2002].
The process of multiplying time-labeled monetary valuations by
exponential discount factors and then summing from the present time to
infinity—the normal formalism—amounts to making very specific
assumptions about the character of impatience, the time separability and
consistency of preferences, and the constancy of discount rates. Such
assumptions, while theoretically useful are, unfortunately, unsupported
by empirical evidence [Thaler 1981; Herrnstein and Mazur 1987]. Instead
of discounting exponentially, people seem to discount the short run more
than exponentially and the long run less. This so-called hyperbolic
discounting has received significant attention in the experimental and
behavioral economics literatures [Chung and Herrnstein 1961;
Loewenstein and Thaler 1989; Ainslie 1992; Loewenstein and Prelec
1992; Loewenstein, Read et al. 2003].

Exponential discounting is also unsatisfactory as a description of
aggregate behavior when the economic aggregate has components being
discounted at heterogeneous exponential rates. For example, consider
two individuals discounting the same good at different rates. Because the
sum of two exponentials is not generally an exponential function, the
combined discounting of the two will not be representable by an expo-
nential function. Conventional practice is to average the two discount
rates, then characterize the aggregate by exponential discounting at this
average rate [e.g., Lave 1981], but this is merely a heuristic device, not a
precise mathematical description of the actual discounting.

Below we review these two distinct motivations for non-exponential
discounting. We then go on to propose an alternative formalism that
subsumes exponential and hyperbolic discounting as special cases.

A.  Behavioral Discounting

Experiments with a variety of subjects have clearly demonstrated
that the way animals, including humans, value the future deviates
significantly from the conventional constant exponential discounting that
is widely used in a variety of economic and financial contexts . For
example, Ainslie [1992] and co-workers [Ainslie and Herrnstein 1981]
have demonstrated in experiments with pigeons that they discount the
near term considerably more than exponentially, while discounting the
distant future considerably less. This hyperbolic discounting behavior
has been corroborated in other experiments on non-humans.

However, most of the experimental results on valuation over time
have been performed on humans. Experimental results involve both
monetary [e.g., Thaler 1981; Loewenstein 1987; Horowitz 1991; Green,
Myerson et al. 1997; Harrison, Lau et al. 2002] and non-monetary
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rewards [e.g., Horowitz and Carson 1990; Cairns and van der Pol 1999;
van der Pol and Cairns 1999; van der Pol and Cairns 2001]. From this
empirical work there have been attempts to develop a theoretical basis
for choice behavior over time that relaxes the usual assumptions of
preference separability, constant discounting, etc. [Harvey 1986;
Loewenstein and Prelec 1992]. These efforts leave little doubt that people
do not value the future in accord with simple compound interest.

Most recently, various brain imaging experiments in decision-
making environments [Glimcher 2003] have demonstrated that different
parts of the brain are active when short term and long run decisions are
being made. This leaves little doubt that the underlying mechanisms
responsible for discounting behavior are unlikely to be simple.

B.  Heterogeneous Discount Rates at the Social Level

At any instant in time, a great variety of discount rates are at work
in any real economy. A single household might have loans at different
interest rates for their home mortgage, automobile, line of credit, and
credit cards. They may have investments that are appreciating at fixed
rates, like certificates of deposit and bonds, in addition to equities having
market-determined returns. Over an entire economy there will be a fairly
broad distribution of such rates, with an average and standard deviation.

Or consider a particular intertemporal valuation issue across
households and individuals. Do people weight the present versus the
future in the same way? Essentially all survey data of this type gives
evidence of robust heterogeneity [Hausman 1979; e.g., Horowitz and
Carson 1990; Moore and Viscusi 1990; Holden, Shiferaw et al. 1998].
Even among economists there is little consensus on how to discount the
future, as in Weitzman’s survey concerning the appropriate discount rate
to use for cost-benefit analysis [Weitzman 2001].

Does the existence of an average discount rate mean that credit
and investment activities in an economy are mathematically well-
represented by the exponential discount function that corresponds to
this average rate? Or is it instead the case that a combination of
exponential discount functions is not well approximated by an
exponential? This is the question we resolve in this paper.

In particular, with respect to agent heterogeneity, we will
demonstrate that a population of exponential discounters is generally not
well-represented by exponential discounting overall. Instead, a non-
exponential discount function results from aggregation, an aggregate
discount function whose explicit functional form depends on the
distribution of exponential rates present in the population.

In the next section a mathematical formalism is described for a
generalized discount function having exponential and hyperbolic
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functions as special cases.1 The subsequent section develops a
methodology for rationalizing observed discounting behavior in terms of
this formalism. Section IV gives applications of the generalized discount
function, and section V extends the formalism in a variety of ways.

II Discount Functions Generated by Discount Rate Spectra

Let us take, for the moment, the notion that people discount the
immediate future more than exponential and the distant future less than
exponential. Call this ‘weak’ hyperbolic discounting, as opposed to
following an exact hyperbolic function, what might be called ‘strong’
hyperbolicity. Now note that a simple combination of distinct exponential
discount functions is ‘weakly hyperbolic’ with respect to an exponential
function having an interior rate. That is, for r1 < r 2 < r3, [exp(-r1t) +
exp(-r3t)]/2 is initially less than exp(-r2t), and then sometime later the two
curves intersect, while for long times the relationship is reversed.

In lieu of such a composite discount function, it is more common
to simply average r1 and r3—call it   r —and then perform exponential
discounting at rate   r . Examples of the use of this approximation in
economic theory and practice are manifold, from macroeconomics
wherein 'social welfare functions’ are discounted at the 'social discount
rate' (see any standard text, e.g. Blanchard and Fischer [1989] or Sargent
[1987]) to problems of environmental economics in which the 'contingent
value' of public resources is ascertained by averaging individual
'willingness-to-pay' valuations and then discounting exponentially (cf. the
special issue of the Journal of Environmental Economics and Management
on the 'The Social Discount Rate' edited by Howe [1990], even to practical
problems involving the use of discount rates in governmental cost-benefit
project analyses [Lyons 1990]. In all of these areas the main empirical
question regarding this approximation appears to involve finding the
'right' effective discount factor,   r , to use.2

To make somewhat more formal this comparison of an exponential
average rate with an average of exponential rate, suppose that the
economic entity engaged in discounting has several distinct discount
rates it uses in order to value economic streams that run into the future.
Specifically, write the discount function that obtains in such a case as

(1)

    

d t( ) =
i
exp r

i
t( )

i=1

n

,

                                                
1 Independently, Jamison and Jamison [2003] have explored many of the same issues. They do
not base their inquiry on discount rate spectra underlying discount functions, but rather on the
properties of discount functions themselves. Ok and Masatlioglu [forthcoming] have similar
objectives to ours—to provide a mathematical foundation for intertemporal valuation—but take
an axiomatic approach through preferences.
2 For now we treat r as constant. Time-varying discount rates [cf. Blanchard and Fischer 1989]
are the subject of section V.
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where the i provide the appropriate (normalized) weighting, i.e.,

    

i
= 1

i=1

n

.

In the limit of a large number of exponential rates, this expression is

(2)
    
d t( ) S r( )exp rt( )dr

0

where S(r) provides the weights, i.e., 
    

S r( )dr = 1
0

. We call this function,

S(r), the (exponential) discount rate spectrum.3 Note that for

    

S r( ) =
i

r r
i( )

i=1

n

,

where (.) represents the Dirac delta function, (2) becomes (1). In the

remainder of this section we shall develop a formal rationale for
representing discounting functions via (2).

A natural interpretation of this discount rate spectrum is via so-
called multiple selves, in which a single individual is conceived of as
having both myopic and farsighted interpersonal selves, with various
ways for mediating between them [e.g., Schelling 1984; Ainslie and
Haslam 1992]. As opposed to having just a few such ‘selves,’ the discount
rate spectrum approach we adopt here facilitates an interpretation in
which a single individual has a potentially large number of selves,
perhaps even a continuum of such selves. In what follows we will be less
concerned with such interpretations and more concerned with the
economic meaning of the mathematical formalism.

A.  Necessary Conditions for a Discount Function

In order for a function to be a discount function it must have
certain properties, which we treat as axioms. These are simply:

Axiom 1: d(0) = 1, that is, no discounting of the present;
Axiom 2: d(t) must be strictly monotone decreasing, d '(t) < 0, i.e., the
value at any two distinct future times is larger at the nearer time.

Functions having these properties are many, of course. It turns out that
conventional discount functions typically possess one additional
property, complete monotonicity.

B.  Completely Monotone Discount Functions

A function is said to be completely monotone (CM ) when its
derivatives alternate in sign [cf., Feller 1971: 439]. It is well known that:

Proposition 1: Exponential discount functions are completely monotone.
                                                
3 An alternative and equivalent formulation of (2) reads 

    
d t( ) = R( ) d

0
, with  = exp(-r)

and R( ) = S(ln(1/ )).
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Proof: The nth derivative of the exponential function is

    
d

n( )
t( ) = 1( )

n

r
n exp rt( ) = 1( )

n

r
n
d t( ), which clearly alternates in sign.

It is not difficult to see that a linear combination of CM functions is CM,
meaning that (1), for instance, is CM. Next we show that hyperbolic
discount functions have this same property:

Proposition 2: Hyperbolic discount functions are completely monotone.

Proof: Noting the discount function by p/(p+t)q,

    

 d t( ) =
pq

p + t( )
q+1

, 

    

  d t( ) =
pq(q +1)

p + t( )
q+2

,

with the general case given by 

    

d
n( )

t( ) = 1( )
n

p q + i( )
i=0

n 1

p + t( )
q+n

.

Because these common discount functions have the CM property, we
replace the second axiom above with the following:

Axiom 2’: d(t) is completely monotone and decreasing.
This sufficiently restricts the class of admissible discount functions such
that we can now completely characterize this class, and do so in a way
commensurate with the heuristic development that led to expression (2).

C.  Existence of Discount Rate Spectra

Each CM function has associated with it a unique spectrum, which
generates the function through an integral transformation:

Theorem 1 (Bernstein [1928]): Every completely monotone discount

function, d(t), can be represented as 
    
d t( ) = S r( )exp rt( )dr

0

 

where S(r) is a

probability density function having support on a subset of [0, )4.

Proof: Feller [1971: 439-440]

Notice that this representation is the same as (2). S(r) acts as a kind of
weighting function over the domain of all feasible discount rates. Stated
differently, d(t) has all discount rates 'in it' in varying degrees according
to S(r). The function d(t) specifies a generalized discount function. 5.
                                                
4 Negative discount rates could be admitted to the definition of d (t)—e.g., Ayres and Mori [1989]
discuss negative discount rates in the context of a product life-cycle model—however, such rates
invalidate the Laplace transform interpretation. See § 5.C below for more on this topic.
5 Note that it is not  a universal discount function since complete mono-tonicity (axiom 2’) is a
stronger condition than monotonicity (axiom 2).
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D.  Determination of Discount Functions

Given a discount rate spectrum, there are a variety of ways to
determine the discount function, in addition to integration as in (2).

D.1.  Discount functions as Laplace transforms

A function g: R+ a R has a Laplace transform, G: R+ a R, defined6

    
L g x( )[ ] G s( ) g x( )

0
exp sx( )dx .

From (2) it can be seen that d(t) is just the Laplace transform of the
discount spectrum in the (real) transform variable t.7 With this
knowledge it is an easy matter to determine the generalized discount
function, d(t), that corresponds to a particular spectrum, S(r), for so-
called Laplace transform pairs are tabulated in a great many places
[Doetsch 1961; Abramowitz and Stegun 1964; Doetsch 1970; LePage
1980; Wolfram 1991]. The only caveat to note regarding employment of
such tables is that S(r) must be a probability density function (pdf),
defined on r  0. We present a short table in the Appendix (table A).

D.2.  Discount functions via characteristic functions

Calculating a particular d(t) from a specified S(r) by integration—as
one needs to do if available Laplace transform tables are inadequate—
can be a tedious undertaking. However, there is a rather more succinct
way to obtain d(t), through the characteristic function, , of the discount

rate spectrum S(r). The characteristic function (chf) of a measure is its
Fourier transform [Billingsley 1986], i.e., for a random variable X,

    X s( ) E exp isX( )[ ] = exp isx( ) f X x( )dx

where i = -1 and f(.) is the pdf of X. Since the Laplace transform can be
thought of as half a Fourier transform, or as a Fourier transform of a
function defined only on R+, it can be seen that d(t) is just the

characteristic function of S(r) in the variable s = it, with the integration
performed over [0, ). Thus, if the chf is available for a particular
spectrum it is an easy matter to obtain the associated discount function.

Example 1: Characteristic function used to obtain the generalized
discount function from a specified discount rate spectrum
For a Pearson Type III spectrum [Abramowitz and Stegun 1964], i.e.,

S(r) =

    

1

p( )
r 

 
 

 

 
 

p 1

exp
r 

 
 

 

 
 

                                                
6 It is conventional to treat s as a complex variable but much of the theory of Laplace transforms
goes through with s real-valued [Kreider, Kuller et al. 1966], which is closer to our purposes.
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for r > ,   R, and , p  R++, one simply looks up the chf as (s) =

exp(i s) [1 - i s]-p. Therefore, d(t) = (it) = exp(- t) [1 + t]-p. Note that

this is a combination of exponential and hyperbolic discounting.

D.3.  Discount functions via moment-generating functions

Given the close relation between the characteristic function of a
probability measure and its moment-generating function (mgf), it will
come as no surprise that it is easy to determine the corresponding
discount function from a measure’s mgf. Since

    
M X s( ) E exp sX( )[ ] = exp sx( ) f X x( )dx

we have that d(t) = M(-t) for whatever discount rate spectrum is under
consideration. Interestingly, the moments of the discount rate spectrum
are readily available in this formalism as –d’(0), d”(0), and so on.

In the next section we investigate the problem of determining
discount spectra from generalized discount functions. It is the inverse
problem of that which we have analyzed above.

III Determination of Discounting Spectra from Behavior

Given empirical data on discounting behavior, it is possible to
reconstruct a discount rate spectrum. That is, an economic actor reveals
its (unique) discount spectrum through its valuation over time. Formally,
given d(t) it is possible to obtain S (r) from (2) by solving the inverse
problem where the unknown function appears under the integral. This is
a linear Fredholm integral equation of the first kind. In general,
Fredholm equations of this type are notoriously difficult to solve:
solutions may not exist, if they exist they may depend sensitively on
parameters or not be unique, and so on. However, in the present case no
such difficulties are encountered due to the monotone nature of the
kernel—exp(-rt). In particular, we have the following uniqueness result:

Proposition 3: Distinct discount spectra have distinct discount functions.

Proof: Feller [1971: 430].

What is more, an explicit inversion formula exists which is applicable to
differentiable d(t) functions.8 In particular it can be shown [Feller 1971:
440]

    

lim
n

1( )
n 1

n 1( )!
n

r

 

 
 

 

 
 

n

d
n 1( ) n

r

 

 
 

 

 
 = S r( ).

                                                                                                                                                
7 In discrete time one must use the z-transform [Cadzow 1973; Luenberger 1979] and S (r)
becomes a probability mass function.
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Example 2: Use of the inversion formula

From table A we find that the exponential discount rate distribution
in parameter p possesses generalized discount function p/(p+t).9 The
kth derivative of d(t) in this case is given by

    

1( )
k

k!p

p + t( )
k +1

.

Inserting this into the inversion formula and taking the limit we obtain

    

S r( ) = lim
n

p

p +
n

r

 

 
 

 

 
 

n

n

r

 

 
 

 

 
 

n

= lim
n

p 1 +
pr

n

 

 
 

 

 
 

n

The goal is to show that this last expression is in fact p exp(-pr). Clearly
the prefactor p is right and the question that remains is whether the
second term equals the negative exponential function in the limit. The
traditional representation of the negative exponential is as follows

    

exp pr( ) = lim
n

1
pr

n

 

 
 

 

 
 

n

.

But it is not difficult to see that this expression is the same as the last
term of the previous one in the limit of large n—they just approach the
limiting value from opposite directions. Thus we have shown what we
started out to prove.10

Having demonstrated how to determine d(t) from S(r) and vice-
versa, we next show that exponential discounting is a very special case.

A. Conditions for Exponential Discounting

It is easily inferred from all that has been said above that setting
d(t) = exp(-r0t), i.e., exponential discounting, is a very special case of the

generalized discounting formalism.11 Intuitively it would seem that
discounting an aggregate value stream with this functional form would
be valid only when all component value streams have the same discount
rate, that is ri = r0 for all i. This intuition proves correct:

                                                                                                                                                
8 The standard Laplace transform inversion formula will also produce S(r) from d(t). However,
economists may not find this convenient since it involves contour integration, and because d(t) is
a function of a real variable.
9 Harvey [1995] calls this proportional discounting; see also Kenley and Armstead [2003].
10 The utility of the inversion formula for other discount functions depends on one's ability to
recognize elementary functions from their representation as limits.
11 The ubiquity of this discount formulation in economic theory is commonly ascribed to an
influential paper of Samuelson [1937].



A General Theory of Discounting                                                                 Axtell and McRae

9

Proposition 4: A discount rate spectrum having Dirac measure is
necessary and sufficient for exponential discounting.

Proof: Call SE(r; r0) the discount spectrum that produces d(t) = exp(-r0t), It

is obtained by solving the following equation:

    
exp r0t( ) = S

E
r;r0( )exp rt( )dr

0
.

To do this, consider the last entry of table A. Notice that the Dirac
spectrum of (r-r0) corresponds to d(t) = exp(-r 0t), which proves

sufficiency. Necessity then follows from proposition 3.

Summarizing, the only way to produce exponential discounting is
with a discount rate spectrum having all its mass on the exponential rate
in question. Any heterogeneity in the spectrum whatsoever leads to a
departure from the exponential form.

B. Conditions for Hyperbolic Discounting

A version of this problem was solved as example 2: an exponential
distribution of discount rates yields pure hyperbolic discounting.
Mathematically, this result—that an exponential distribution having its
parameter exponentially or -Erlang distributed gives the Pareto

distribution (hyperbolic law)—has been known for some time [Maguire,
Pearson et al. 1952; Harris 1968]. It has been rediscovered several times
in discounting contexts:

Proposition 5 [Axtell 1992; Sozou 1998; Weitzman 2001]: A discount rate
spectrum having -Erlang measure is necessary and sufficient for

hyperbolic discounting.

Proof: Let S(r ) = 
    
pqr q 1 exp pr( ) q( ) for p, q > 0. Performing the

integration in equation (2) leads to d(t) = 
  
p

q
p + t( )

q

.12 Necessity follows

directly from proposition 3.

Note that this result is shown on the third row of table A. Weitzman
[2001] has termed this ‘gamma discounting.’

Example 3: Hyperbolic discounting in the neoclassical growth model

In his extension of the neoclassical growth model to hyperbolic
discounting, Barro [1999] employs the following functional form,

                                                
12 This form of hyperbolic discounting is equivalent to, for example, Loewenstein and Prelec

[1992], who write it as 1/(1 + t) / ; substituting p = 1/  and q = /  produces their formulation

from mine, although yields a non-standard representation of the underlying -Erlang

distribution. Furthermore, since the mean of this distribution, μ, is q/p and the variance, 2 is

q/p2, the hyperbolic discount function can be written in terms of these parameters as d(t) = 1/(1 +

2t/μ)μ
2
/

2
, as Weitzman [2001] does.
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d
B

t( ) = exp t
b

1 exp t( )( )
 

 
 

 

 
 ,

where b, , and  are positive constants. The initial discount rate is 

and it declines over time at rate . Elementary albeit tedious

calculations reveal this function to be CM: 
    

 d 
B

t( ) = + bexp t( )( )dB
t( ),

    

  d 
B

t( ) = + bexp t( )( )
2

+ b exp t( )
 

 
 

 

 
 dB

t( ),

    

   d 
B

t( ) = + bexp t( )( )
2

+ 3b exp t( )
 

 
 

 

 
 + bexp t( )( )

 
 
 

 
 
 
d

B
t( ) ,

and so on. Therefore, it must be the case that there exists a discount
rate spectrum, SB(r), that generates Barro’s discount function; that is,
L[SB(r)] = dB(t). We want to solve this for SB(r) to see what spectrum
underlies dB(t). To accomplish this we will use table A. First note that

    

L SB r +( )[ ] = exp t( )L SB r( )[ ] = exp
b

1 exp t( )( )
 

 
 

 

 
 .

Furthermore,

    

L exp
b 

 
 

 

 
 SB r +( )

 

 
 
 

 

 
 
 
= exp

b 

 
 

 

 
 L SB r +( )[ ] = exp

b
exp t( )

 

 
 .

Next, expand the RHS to read

    

L exp
b 

 
 

 

 
 SB r +( )

 

 
 
 

 

 
 
 
=

1

j!

b
exp t( )

 

 
 

 

 
 

j

j=0

=
1

j!

b 

 
 

 

 
 

j

j=0

exp j t( ) .

From the earlier discussion of exponential discounting it is easy to see
that the spectrum that generates the RHS function above is

    

1

j!

b 

 
 

 

 
 

j

j=0

r j( ),

a weighted sum of Dirac measures at equally-spaced intervals.
Therefore, the spectrum underlying Barro’s version of hyperbolic

discounting amounts to 

    

SB r( ) =
1

j!

b 

 
 

 

 
 

j 1

j=0

r j( ) an infinite sum of

Dirac measures at equal intervals of size —a so-called Dirac

comb—beginning at r = , with declining weights in b/ .

C.  Sub-Additive Discounting

So-called ‘sub-additive’ discounting has been suggested as an
alternative to hyperbolic discounting [Read 2001; Scholten and Read
2006]. A variety of functional forms for sub-additive discount functions
have been proposed, including d(t) = exp(-pt ) with 0 < s < 1. In this

section we investigate this class of discount functions.
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Proposition 6: The discount function d(t) = exp(-pt ) with   (0, 1) is

completely monotone.

Proof: Calculations that are elementary but (again) tedious reveal:

    
 d t( ) = pt 1d t( ),

    
  d t( ) = pt 2

1 1 pt( )[ ]d t( ),
and

    
   d t( ) = pt 3

2 3 1 pt( ) + 2
1 3pt + p2t2( )[ ]d t( ).

It is difficult to write out the general case but not difficult to convince
oneself that this discount function is indeed CM.

What discount rate spectrum underlies this discount function?
Perhaps surprisingly, there is a straightforward answer to this question:

Proposition 7: A stable discount rate distribution, S (r), is necessary and

sufficient to generate the discount function d(t) = exp(-pt ) with   (0, 1).

Proof: Feller [1971: 448-9]

A stable distribution is one having the property that if independent
random variables have that distribution then their sum, appropriately
normalized, will also have that distribution [Samorodnitsky and Taqqu
1994]. For example, the normal and Cauchy are two well-known stable
distributions, for  = 2 and 1, respectively. However, they do not underlie

the sub-additive discount function d(t) = exp(-pt ) due to the restriction of

 to (0, 1). There is only one stable distribution in the feasible range

whose pdf is known:

Example 4: The Lévy distribution of exponential discount rates

Consider the following discount rate spectrum, known as a Lévy
distribution:

    

S r( ) =
p

2 r 3
exp

p2

4r

 

 
 
 

 

 
 
 .

This is the stable distribution having  = 1/2. Its moments do not

exist. Inserting this into equation (2) and integrating reveals that it

corresponds to the sub-additive discount function 
    
d t( ) = exp p t( ) .

The Lévy spectrum is plotted in figure 1a for various values of p (and
is the eighth entry in table A). In figure 1b the sub-additive discount
function is compared with exponential discounting.
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Figure 1, a and b: The discount rate spectrum that corresponds to sub-additive
exponential discounting (top plot) and the resulting discount function compared to a

conventional exponential discount function (bottom plot); the cross-over point is t = 25.

So far our main results have been analytical. We now investigate
how to use empirical data to determine underlying discount rate spectra.

D. Computation of Discount Spectra from Valuation Data

The results of experiments with human subjects are not usually
analytically-precise data. Rather, intertemporal valuation experiments
typically generate noisy data at discrete times. How might one go about
inferring an underlying discount rate spectrum from such data?

It turns out that there are well-known and reasonably robust
procedures for computing the inverses of Laplace transforms from
numerical data. These are particularly efficient when the spectrum can
be assumed to be a probability measure [Abate and Whitt 1995], as in
present circumstances. In fact, specialized algorithms are available when
CM functions are present [Abate and Whitt 1999].

E.  Generic ‘Weak Hyberbolicity’ of Discount Functions

Hyperbolic discounting has two distinct interpretations. There is
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the literal interpretation, in which the discount function follows a hyper-
bolic function exactly. Then there is a more qualitative interpretation,
corresponding to any discount function that gives more discounting than
some exponential amount in the near term followed by less discounting
than exponential in the long term. Let us call these different versions of
hyperbolic discounting ‘strong’ and ‘weak’ hyperbolicity, respectively. So
far we have been essentially concerned with ‘strong hyperbolicity’,
focusing on explicitly hyperbolic functional forms. While this has been
mathematically tractable, it is unlikely that human subjects, in departing
from exponential discounting, will behave in ways that are literally
hyperbolic. We now turn our attention to ‘weakly hyperbolic’ discounting:

Proposition 8: Almost all discount rate spectra yield weakly hyperbolic
discount functions.

Proof: Consider a nondegenerate discount spectrum, S(r), having support
on the interval [r1, r2], with 0  r1 < r2 < . Pick some r0 in this interval
and form the discount function, exp(-r0t). The mass of S(r) for r  < r 0

corresponds to less discounting of the distant future than exp(-r0t), while
S(r) for r > r0 corresponds to more discounting of the near term (see fig 2).

Figure 2:  For any nondegenerate (non-Dirac) spectrum, S(r), the corresponding
discount function is ‘weakly hyperbolic’ with respect to some exponential discount
function, exp(-r0t); the mass of S(r) for r < r0 corresponds to less discounting of the

distant future than exp(-r0t), while for r > r0 there is more discounting of the near term.

Thus, the discount function generated by S(r) will be weakly hyperbolic
with respect to exp(-r0t). Furthermore, since the set of degenerate spectra
has measure zero in the space of all probability measures, the discount
function formed by an arbitrary discount rate spectrum is almost surely
weakly hyperbolic with respect to some exponential discount function.

The two facets of ‘weak hyperbolicity’—more discounting than
exponential in the near term, less than exponential in the long term—is
thus a generic property of completely monotone functions.13

                                                
13 That only the first of these is a property of ‘quasi-hyperbolic’ discounting [Phelps and Pollak
1968; Laibson 1997] is problematical. For instance, the integrability properties of discount
functions, investigated in § IV.B below, do not come into play for quasi-hyperbolic discounting.

Region of large r, contributes to
more rapid discounting than
exp(-r0t)

Region of small r,
contributes to less
rapid discounting than
exp(-r0t)

S(r)

r0 r
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IV Some Properties of Generalized Discount Functions

In this section we describe two important issues associated with
generalized discount functions, time (in)consistency and integrability.

A.  Time Inconsistency and Preference Reversals

An important issue arising in inter-temporal valuation is the time
consistency of optimal paths. Strotz [1956] investigated this in the
context of recursive, time-additive preferences. Time consistency requires
that economic decision-making be performed such that future
recalculations of optimal policies will not generate different paths from
the one decided upon at the start. Strotz proved that the only discount
functions that are time consistent are exponential ones. Since then there
has emerged a large literature on time consistency and preference
reversals [e.g., Marschak 1964; Pollak 1968; Ainslie and Herrnstein
1981; Thaler 1981; Mischel 1984; Loewenstein and Thaler 1989;
Horowitz 1992; Green, Fristoe et al. 1994; Kirby and Herrnstein 1995].

A.1.  Micro Consistency Does Not Imply Macro Consistency

Consider an economic aggregate composed of many individuals,
each of whom discounts exponentially. At the 'micro-level' of individuals
everyone behaves in a time consistent fashion. However, non-exponential
generalized discount functions obtain for the aggregate for nearly any
distribution of micro-level exponential rates. These non-exponential
aggregate discount functions are not time consistent paths. Thus we
have something of a paradox: microeconomic time consistency, macro-
economic time inconsistency. The only way in which microeconomic time
consistency can result in macroeconomic consistency is when the
components of the aggregate have identical discount behavior.

A.2. Macro Consistency Implies Micro Time Consistency

By macro-time consistency we mean exponential discounting in the
aggregate. As has been shown above, this is possible iff all micro-level
components are time consistent and have identical discount rates.14

B.  Integrability

Exponential and hyperbolic discount functions are CM. However,
in contrast to the exponential form, hyperbolic discount functions may
not be elements of L1(0, ), the space of functions having finite norm over
                                                
14 Horowitz [1991; 1992] has reported what is apparently the exact opposite result from a series
of economic experiments. In particular, in the context of a portfolio choice experiment he
observed inconsistent behavior among many agents but approximate time consistency in the
aggregate. However, discounting behavior is not present in these experiments; his work is a test
of intertemporal stationarity instead of time consistency.
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[0, ).15 That is, generalized discount functions may not be integrable.
Basically, those functions having infinite L1 norm do not approach

zero 'fast enough' as time increases, this despite the fact that they are
CM. The economic implication of this slow decrease is there is no point
beyond which it is possible to neglect the future. Stated differently, for
discount functions not having this norm one must explicitly select a time
beyond which economic considerations are neglected.

B.1.  Infinite Time Horizon

We want to establish the properties that S(r) must possess in order
for d( t) to be integrable.16 We have the following characterization of
integrable discount functions:

Theorem 2: Discount spectrum S(r)  d(t)  L1(0, ) iff 
    

S r( )
0

dr

r
  L1(0, ).

Proof: Begin by writing the discount function in terms of the discount
rate spectrum and compute the L1 norm

    
d t( ) S r( )exp rt( )drdt

00

Rearrange the order of integration to yield

    
d t( ) = S r( ) exp rt( )dtdr

00

Performing the integration yields 
    

d t( ) = S r( )
0

dr

r

Clearly, a necessary condition for the discount function to be integrable
is that S(r)  0 as r  0. In words, every discount rate distribution that

evaluates to a positive number at r = 0 will produce a generalized
discount function which is not in L1. Many of the distributions listed in
table A, for instance, have S(r)  0, at least for some set of parameters.

There are at least two important implications of this theorem. First,
in the case of a public good, if a single individual believes that the good
should not be discounted then any aggregation that takes account of this
person’s valuation must be not integrable. That is, the distribution of dis-
count rates, S(r), will have finite mass at r = 0 thus, no matter what dis-
tribution of discount rates other people report, it is as if everyone
demands r = 0. The person with r = 0 is a kind of dictator.17

A second implication of the theorem is a formalization of the notion
                                                
15 L1(0, ) is usually abbreviated simply as L1 in what follows.
16 In the mathematics literature, results establishing asymptotic properties of S(r) from those of
its Laplace transform—d(t) herein—are called Tauberian. Alternatively, Abelian theorems describe
the behavior of the transform in terms of properties of the spectrum.
17 For example, in Weitzman’s [2001] survey of some 2160 economists as to what discount rate
should be applied to combat global warming, several respondents said 0% (and a few even gave
negative discount rates!). His fit of a gamma distribution to the empirical data neglects this lower
end of the reported discount rates, thus he obtains an integrable discount function despite the
fact that the data do not support this.
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of existence values for environmental and natural resources. An im-
portant topic in current discussions of biodiversity issues associated with
global change, existence value refers to the intrinsic value of maintaining
a resource in its unexploited state [Page 1977]. It is not an economic
value and it is not even clear that it is monetizable in any well-defined
way. It is most commonly invoked when an ecological object has no clear
economic functionality—and cannot, therefore, be called a good—but is
sufficiently appreciated, in some sense, by some fraction of the current
generation. When an object has finite value but is not discounted (r = 0),
the usual present value calculus must assign an infinite present value to
the object, while if one integrates out only through T then the present
value can be made arbitrarily large by selecting T large. It does not seem
that such an enormous valuation could ever be overturned such that
complete consumption or extinction of the object would be justified on
economic grounds. Thus we propose that assigning a zero discount rate
is nominally equivalent to saying that an object has existence value.

B.2.  Finite Time Horizon

For generalized discount functions not in L1 a more general
definition of present value is needed, where the time horizon, T, is taken

into account explicitly, i.e., 
    
PV T( ) = d t( )V t( )dt

0

T
. Here it is easy to see that

PV can be an increasing function of T, i.e., PV'(T) > 0. Of course, for those
functions that are in L1 the two definitions coincide, either for all T
beyond some finite one or in the limit as T  . To compare this new

definition with the traditional one it is instructive to build a table for the
effective time horizon, T, in the traditional method as a function of the
fraction of total (T  ) present value achieved in time T, as well as of the

discount rate. Representative calculations are given in table 1:

Fraction of PV( )

Discount Rate 90% 99% 99.90%

2% 115.13 230.26 345.39

4% 57.56 115.13 172.69

6% 38.38 76.75 115.13

8% 28.78 57.56 86.35

10% 23.03 46.05 69.08

20% 11.51 23.03 34.54

Table 1:  Time for percent devaluation as a function of the discount rate

For example, at a rate of 8% a little more than 57 years are needed for
extraction of all but one percent of the value stream. So depending on
which fraction of PV one considers, employing an 8% discount rate is
equivalent to having either a 29, 58 or 86 year time horizon.18

                                                
18 Note that increasing the discount rate by a factor of 10 causes a decrease in the time horizon,
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The present value function the requires explicit specification of T is
very different from the usual one. Use of it in practice would generate
very different results. But the methodology of its use is far from clear;
e.g., a priori it is ambiguous how T would be specified for a given project.

In the specific case of a pure hyperbolic discount function, which is
not integrable, a finite time horizon, T, must be specified if one is to
make use of this functional form. In the case of the individuals behaving
with effective hyperbolic discount functions perhaps a useful T is simply
the expected lifetime of the individual.19

V Extensions: Beyond Complete Monotonicity

Here we explore non-CM discount functions and their spectra, non-
stationary spectra first followed by spectra that are improper measures.

A.  Non-Stationary Discount Rate Spectra

In principle, there is no reason why the discount rate spectrum
cannot vary with time, i.e., replace S(r) with S(r|t), where the distribution
has been written as a conditional one. The defining relation for the

generalized discount function is then 
    
d t( ) = S r,t( )exp rt( )dr

0
. If d(t) is to

be defined for all t   [0, ) then S (r|t) must be a valid pdf at each t,

including t = 0. Note that this formulation of generalized discounting
includes time-varying discount rates [e.g., Epstein and Hynes 1983] as a
special case. In this section we explore the effects of non-stationary
discount rate spectra on generalized discount functions.

A.1.  Forward problem: Discount function from a spectrum

It is straightforward to compute the generalized discount function
from a non-stationary spectrum, as the following example illustreates.

Example 5: Non-stationary discount spectra from table A

Since for any feasible numerical value of the parameters p and q in
table A the resulting spectra are well-defined pdfs, it is also true that
one can substitute any positive function of t for the parameters and
obtain a conditional pdf. (Note that it is not possible to merely
substitute t for either p or q since these parameters cannot equal zero,
while the discount function must be defined at t = 0.) For example,
substituting /t for p in the exponential distribution there results

                                                                                                                                                
T, of the discount rate by a factor of 10, this due to the linearity of the present value integral. Also
note that because of the way the fractional PVs were chosen, the last two columns are simply
multiples of the second one, 2X and 3X, respectively.
19 The relationship between the area under the exponential discount function and the T
necessary to produce the same area under a hyperbolic discount function has been explored in
Ayres and Axtell [1996], where the relationship between the parameters in these functions is also
analyzed in detail.
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S(r|t) = exp(- r/t)/ t. Since the mean and variance of the exponential
distribution in table A are 1/p and 1/p2, respectively, these same
moments of S(r|t) are t/  and t2/ 2. This distribution starts out as
something like a Dirac measure centered at r = 0 and then shifts over
time in the direction of positive r with its mean moving away from 0
such that, in the limit of t   its density is completely dispersed
along the r-axis. This is displayed in figure 3 for  = 1, with S on the
vertical axis, t increasing to the left and r increasing out of the page.

Figure 3:  Example of a non-stationary discount rate spectrum

Carrying out the Laplace transform to reveal the generalized discount
function is particularly easy in this case, but it is even easier to use
table A, substituting for p in the expression for d(t) to obtain

    

d t( ) = t

t
+ t

=
+ t

2
.

Furthermore, it is easy to see that for a -Erlang distribution in

parameter q and with /t substituted for p (see the table) that

    

d t( ) =
q

+ t2( )
q

.

We now treat an example that serves to illustrate the ways in
which non-stationarity can complicate things.

Example 6: Distinct non-stationary discount rate spectra can generate
the same generalized discount function

In the previous example it was shown that the generalized discount
function generated by the non-stationary -Erlang discount rate
distribution in parameter q and with p replaced by /t was d (t) =
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q/( +t2)q. We now ask whether this discount function could be
generated by some other non-stationary discount rate spectrum. In
particular, does there exist some function of time, (t), which can be
substituted for the parameter p in the exponential distribution, say,
such that the same generalized discount function obtains? Start out by
making the substitution in the parameterized form of d(t) from Table A
and equating the result with the desired function, like

    

t( )
t( ) + t

=
q

+ t
2( )

q
.

Now solve for (t) and after some algebra there results

    

t( ) =
q
t

+ t
2( )

q
q

.

Substituting this expression for p into the original discount rate
spectrum one obtains the non-stationary spectrum

    

S r t( ) =
q

+ t2( )
q

q

exp
qtr

+ t2( )
q

q

 

 

 
 
 

.

The non-stationary -Erlang distribution can be written in a way that

facilitates direct comparison

    

S r t( ) =
qr q 1

tq q( )
exp

r

t

 

 
 .

Algebraically, these appear to be very different, although notice that for
q = 1 they are the same. They are compared graphically in figure 4 for q
= 1/2 and  = 1, where the conditional density is along the vertical axis,

r increases to the lower right and t increases to the upper right:

Figure 4, a and b:  Comparison of two distinct discount rate spectra that generate the
same generalized discount function
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Clearly these are very different spectra. This can also be seen from the
moments of the spectra. The mean and variance of the -Erlang

spectrum can be shown to be qt/  and qt2/ 2, respectively, while for the

derived spectrum these moments are more complicated,

    

+ t
2( )

q
q

q
t

,

+ t
2( )

q
q

 

  
 

  

2

2q
t

2

respectively. Once again, note that in the case of q = 1 the spectra
share the same moments, i.e., they are one and the same spectrum.

The main implication of non-stationarity is now clear. While in the
stationary case there is a one-to-one relationship between a discount rate
spectrum and the generalized discount function it produces (proposition
3), no such relationship holds in the non-stationary case. In particular,
there are an infinite number on non-stationary spectra which produce a
given generalized discount function. Thus the assumption of stationarity
in dealing with data is a very strong assumption indeed.

Non-stationary discount rate spectra are capable of producing
generalized discount functions that are not only not CM but possibly not
decreasing. To see this we have only to differentiate wrt time, obtaining

    

 d t( ) =
t

S r t( )exp rt( )[ ]dr
0

=
S r t( )

t
rS r t( )

 

 

 
 

 

 

 
 
exp rt( )dr

0

where use has been made of Leibniz's rule for differentiating an integral
[Kreider, Kuller et al. 1966]. When the first term in the second integral
vanishes, i.e., when the spectrum is not conditional on t, the previous
results on stationary spectra apply. If this first term is small vis-a-vis the
second term then it will turn out that d (t) will at least be monotone
decreasing. However, if the first term is large than it is possible for the
generalized discount function to actually increase with time.

The ability of non-stationary spectra to generate discount functions
that are not CM  was actually displayed in example 5 above. For

    
d t( ) = + t

2( ), d'(t) < 0 for all t, but the 2nd derivative can be written as

    

  d t( ) = 2
3t

2

+ t
2( )

3
.

This expression is negative on t  [0, 
  

3 ), and therefore d(t) is not CM.

It would appear that d(t) functions having very complicated be-
havior over time can be adequately modeled with the non-stationary ver-
sion of the discount rate spectrum approach described above. It remains
for empirical work to determine whether the formalism is sufficiently
powerful to handle most observed discounting behaviors. It may turn out
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that discount functions that are not CM are relatively rare in practice.

A.2.  Inverse problem: Spectrum from a discount function

When the spectrum is known to be non-stationary the problem of
determining the discount spectrum from the generalized discount
function is significantly more complicated. In this case the unknown

function, S(r|t), has two arguments and appears under the integral sign
in equation (19) above. In general, we cannot expect to be able to solve
this equation uniquely; in general there will be an infinite number of
solutions. Non-uniqueness was illustrated in example 8 above, where two
distinct spectra produced the same generalized discount function. That
is, the addition of the second independent variable in the spectrum has
imparted an additional degree of freedom to the problem. This non-
uniqueness may manifest itself problematically in a number of ways.
First, one may never be certain about the validity of the spectrum
obtained unless it can be said without doubt that the spectrum is
stationary. Second, small perturbations in the data may produce quite
different spectra. Third, the set of non-stationary spectra that generates
a particular discount function may be dense in the space of all non-sta-
tionary spectra and therefore individual spectra are not distinguishable.

One can study this equation under special assumptions on the
non-stationary spectrum in order to obtain somewhat stronger results.
For example, if the spectrum is degenerate then it can be written as
S(r|t) = S1(t) S2(r) and the second term can be taken outside the integral:

    
d t( ) = S1 t( ) S2 r( )exp rt( )dr

0

Insofar as we are treating d(t) as given throughout this section, we can
consider S1(t) as a nonlinear transformation of the data—which we have
the freedom to specify—and solve the resulting equation for the now
unique20 S2(r). That is, for each particular transformation of the data by
dividing d(t) by S1(t), there exists a discount rate spectrum S2(t) that
solves the equation that defines the generalized discount function. So we
recover uniqueness when we have separability.

Since the generalized discount rate functions produced by
stationary spectra are CM, it must be the case that when a discount
function is encountered which is not CM that it is the result of a non-
stationary spectrum of rates. Alternatively, if the discount function is not
completely monotone over some significant portion of the time domain it
may be the case that the entire generalized discount function formalism
developed herein is not well-suited to treat it. There is a definite sense,
however, in which the generalized discounting apparatus is something
like the minimum structure necessary for preserving 'exponential-like'
discounting, since the generalized discount functions it produces can
                                                
20 Uniqueness is a consequence of Proposition 3.
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always be interpreted as possessing a 'mixture' of exponential rates.
Some of these matters are illustrated in the following example.

Example 7: Cropper, Aydede and Portney on time preference for saving lives

Cropper et al. [1992; 1994] used a direct survey to investigate
individuals' implicit discount rates for saving lives. They found
extensive heterogeneity in time preferences and observed discounting
behavior that was apparently non-exponential. To model this latter
phenomenon these authors assumed the discount function to be of
standard exponential type with time-varying discount rate, i.e., d(t) =
exp[-r(t)t]. In particular, they postulated a rate linearly decreasing with
time like r(t) = r0 - r1t, producing d(t) = exp[-r0t + r1t2]. This yielded a
significant fit of the data with one set of constants r0 and r1 over a short
time horizon and a different set for a long horizon.

Clearly this model is only valid over limited times for eventually the
discount rate will become negative—i.e., for t > r0/r1—as the authors
point out. This discount function is not CM over the range of t for which
it displays a positive discount rate. The first derivative is

    
 d t( ) = r0 + 2r1t( )exp r0 + r1t

2( ) = r0 + 2r1t( )d t( )
This expression is positive for all t > r0/2r1, i.e., d (t) is increasing over
the latter half of the range of t for which the discount rate is positive.

The linear variation of discount rate with time is certainly just an
analytical convenience and the authors hypothesize that the “discount
rate follows a negatively sloped, convex pattern." Here we investigate
whether or not a discount function produced by such a rate function
can fit into the generalized discounting formalism. Start by checking for
complete monotonicity with the derivatives of d(t) = exp[-r(t)t], with r(t) >
0, r'(t) < 0 and r"(t) > 0 for all t, by assumption. If d(t) is CM then we are
assured there exists a discount rate spectrum which produces it. The
first derivative, which needs to be negative for complete CM, is

    
 d t( ) = r t( ) t  r t( )[ ] exp r t( )t[ ] = r t( ) t  r t( )[ ]d t( ).

Since r'(t) < 0 for all t, d(t) will be completely monotone up through the
first value of t, say t'—the 'cross-over' time—that solves t = -r(t)/r'(t);
indeed, there may be more than one t that makes this expression true.

However, this is not the whole story. For certain functional forms of
r(t) the cross-over time, t', may not exist. To see this we can take
advantage of the monotone structure of the problem to solve for the
marginal rate function, call it r*(t), for which the discount function, d(t),
is never CM. That is, solve -r(t) - tr'(t) = 0 and the r*(t) obtained will be a
kind of border of feasible r(t). This equation is a linear homogeneous
ODE, whose solution is r*(t) = k/t, with k a constant.

In particular, consider the class of r(t) functions that scale like t- .
We will show that for   [0, 1), CM discount functions are produced.
For  = 0 the discount rate function, r(t), is constant and the usual
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exponential discount function obtains. For  < 0 the discount function
eventually increases with time—as happened above in the case of r(t)
varying linearly, i.e.,  = -1. For  > 1 the cross-over time, t', exists and
is finite. To see this first calculate r'(t)  t- 1. Then tr'(t)  t-  and r(t)
- tr'(t)  t-  + t-  = ( 1)t- . This last expression is clearly greater than 0
for  > 1 and so implies that d(t) will not be CM in this part of the
parameter space. The restrictions placed on r(t) by Cropper et al.— that
it be "negatively sloped" and "convex"—are clearly not sufficient to
insure that d (t) does not possess certain pathological and seemingly
unreasonable properties, such as being an increasing function of time
(i.e., d'(t) positive). While there seems to be no a priori reason why dis-
count functions need to be CM, they should at least be not increasing.

Analysis of higher derivatives of r(t) produces a similar picture. We
have shown that the set R of discount rate spectra that yield feasible
d(t) is somewhat smaller than the set C implicitly specified by Cropper
et al., i.e., C  R. It is not apparent how to characterize R but it turns

out that it is possible to completely specify the set M  R of discount

rate functions which produce CM discount functions. To do this
succinctly, an additional result on complete monotonicity is necessary:

Proposition 9: If y(x) is CM and z(x) is positive with CM derivatives then
y(z(x)) is CM.

Proof: Feller [1971: 441]

Let 1/exp(.) assume the role of y(.) in the proposition; clearly it is CM.
Then specify R(t)  r(t)t be z(x). R(t) is positive for all t and can be seen to
have monotone derivatives whenever r(t) scales like t-  with   [0, 1),
since this makes R(t) scale like t  with   (0,1] and so R'(t) goes like t 1.
Therefore, for this set of parameters exp[-r(t)t] is CM. The set of all r(t)
having elements that scale like t-  with   [0, 1) is M from above.

B.  Spectra that are not Measures

The requirement that d(0) = 1, i.e., no discounting of the present, is

formally equivalent to the requirement that
    

S r( )
0

dr = 1. Clearly, a

sufficient condition for a function to be a valid discount rate spectrum is
that it be a measure. However, this is not a necessary condition.
Functions that are not everywhere positive, and therefore not standard
measures, may have this property.

Complete monotonicity is the main casualty of spectra of this type.
To see this compute the discount function derivative with respect to time:

    
d

(k )
t( ) = 1( )

k

r
k
S r( )exp rt( )dr

0

For S(r) not everywhere positive it is no longer possible to guarantee that
the derivatives have uniform sign over the whole range of t.
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B.1.  Discount functions from non-measure spectra

Spectra that are not valid measures are the subject we explore
here. Specifically, spectra that are not everywhere positive—that have, in
essence, negative probability—are considered.

Example 8: Variations on a theme of Aris [1991]

Consider the following spectrum composed of an infinite number of
equally-spaced Dirac measures having hyperbolically declining weight:

    

S r;r0( ) =
1

ln 2( )

1( )
j 1

jj =1

r jr0( ),

Note that the odd terms in the sum are positive while the even ones are
negative. Because its components alternate in sign this spectrum is not
a valid probability measure (in the conventional sense). However, it is a
straightforward matter to show that

    

d t;r0( ) =
1

ln 2( )

1( )
j 1

j
exp jr0t( )

j =1

is a reasonably well-behaved discount function, albeit not CM.
Actually observing such discount rate spectra in reality would depend on
careful transform inversion [Abate, Choudhury et al. 1994]. For instance,
if one postulates that a normal probability measure underlies one’s data
then non-measure spectra would be excluded by assumption.

B.2.  Non-measure spectra from non-CM discount functions

We have just derived a non-CM discount function from a peculiar
(non-measure) spectrum. It is also possible to do the reverse, to derive
properties of S(r) from discount functions that are not CM. For example:

Proposition 10: If S(r) has n changes of sign then the derivatives d(k)(t)
possess exactly n real zeroes for sufficiently large k. When S(r) has a
change of sign at r0 then d(k)(t) possess a zero tk with

    

lim
k

k

t
k

= r
0
.

Proof: Doetsch [1961: 204-5].

Using this result may not be easy, especially when experimental
discounting data are involved, as numerical differentiation is an
inherently noisy process. However, if the data are first fit to some
functional form, the derivatives could subsequently be computed.

C.  Negative Discount Rates

Negative discount rates are an important feature, empirically [e.g.,
Loewenstein and Prelec 1991; Samwick 1998]. Consider a stationary
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spectrum having some of its support in the negative half of the real line.
Such a spectrum will not generally be integrable, because of the positive
mass at the origin as well as for negative values of r. Therefore, the only
way to deal with such spectra, and the potentially quite peculiar discount
functions that result, is to associate with them a finite time horizon.

VI Summary and Conclusions

Empirically, microeconomic agents do not normally discount
exponentially. Socially, there are many practical situations in which
there exists a distribution of discount rates over the components of an
economic aggregate. These two distinct motivations have led us to
develop a general mathematical formalism for non-exponential
discounting. The main features of this formalism have been described.

It has been shown that exponential discounting obtains only in the
special case of a Dirac measure of discount rates. Any discount rate
heterogeneity creates non-exponential discounting that is ‘weakly hyper-
bolic’ with respect to some exponential discount function. In the special
case of a -Erlang distribution of discount rates, ‘strongly hyperbolic’ dis-

counting obtains overall. Sub-additive discount functions also fall nat-
urally within this formalism, the result of stable discount rate spectra.

The t ime  consistency  and preference reversal behavior of
generalized discounting has been explored. It was argued that micro-level
time consistency does not generally imply macro-level time consistency.
However, macro-time consistency does imply micro-time consistency.

The integrability of generalized discount functions has been
studied, and a theorem proved concerning the structure of discount rate
spectra necessary and sufficient to make present value integrals finite.

The inverse problem—of determining a discount rate spectrum
from observed discounting behavior—has been investigated. The
manifold effects of spectrum non-stationarity have been elucidated.

The present theory is an explanation of discounting behavior in
terms of an underlying spectrum of exponential discount rates. It is
closely related to multiple selves interpretations of non-exponential
discounting. It remains to work out just what spectra govern human
behavior in specific experimental and real-world situations. Doing so will
lead to empirical progress in modeling economic behavior.

Appendix
A table of discount rate spectra and associated discount functions

Here we provide a short table of discount rate spectra and the
corresponding generalized discount functions, developed from a variety of
sources, including Feller [1971] and LePage [1980]. Some of these
spectra are quite simple, some rather complicated. Table A includes
several well-known pdfs and some less common ones.
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Table A:  Discount rate spectra and associated discount functions21

Example A: Use of table A to find a generalized discount function

For a uniform distribution of r on [0.03, 0.08], from the first line of
the table d(t) = [exp(-0.03t) – exp(-0.08t)]/0.05t.. Figure A is a plot of
this function, compared to two exponential discount functions, one
each from the limits of the range on r, i.e., with r = 0.03 and r = 0.08;
the generalized discount function is the interior one.

                                                
21 In this table r  R+, p and q  R++, erfc(.) is the complementary Gaussian error function, Ip(.)

is the modified Bessel function of order p, Ci(.) and Si(.) are the cosine integral and sine integral,

respectively, and (.) is the Dirac delta function.
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Figure A:  Generalized discount function resulting from a uniform discount rate
distribution on [0.03, 0.08]

Note that very early on the generalized discount function closely
resembles the discount function with the larger rate, while for long
time it approaches the function having the smaller rate.

Applying this discount function will produce different present
values than that obtained from using the average rate, as is common
practice [cf. Lave 1981]. The generalized discount function accurately
'weights' the average to account for all values of r in the distribution.
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