
On the Emergence of Cities
Scott E.  Page

SFI WORKING PAPER:  1998-08-075

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute.  We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print.  Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis.   Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works  may  be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

 



On the Emergence of Cities

Scott E. Page�

July 16, 1998

Abstract

This paper contains a description of a general class of city formation models.
Individual economic agents have preferences for locations that depend upon the pop-

ulation distribution. A location's attractiveness depends upon some combination of
its population and its average distance to other agents. Economic variables enter in-

directly. Taking this broad perspective leads to a deeper understanding of how cities
form as well as of the sensitivity to initial conditions of their locations and sizes. In
addition, this class of models supports scenarios where cities emerge: without any

assumptions that agents wish to live near or with one another, agents cluster into
cities.
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1 Introduction

In this paper, I analyze city formation by constructing a class of models where agents'

preferences depend on a location's population and its separation (its average distance

to other agents). Taking this minimalist modeling approach increases our understand-

ing of how individual preferences over population distributions map into �nal con�g-

urations. While assuming preferences over population distributions omits economic

variables explicitly, so long as agents' preferences are consistent with the economic

forces that cause cities to form, the gains from abstraction can outweigh the costs.

And, if you strip the process of city formation down to its bare essentials, popula-

tion and separation seem to be the most relevant characteristics. Population captures

multiple economic forces. Prices, space (O'Hara [22]), range of goods (Krugman [19]),

externalities (Arthur [1]), city characteristics, public goods, and per capita market

setup costs (Berliant and Konishi [3]) all depend upon city size. Separation also

serves as a proxy for multiple economic forces, several of which stem either directly
or indirectly from transportation costs. Clearly, commuting time and costs depend
on distance. Commodity prices and wages within a city also vary with the extent

of competition from other cities which in turn depends on distance. Separation may
also capture a desire to avoid city generated negative externalities such as pollution,
crime, and tra�c, which dissipate with distance.

Not surprisingly, city size and transportation costs have been prominent in
the city formation literature since its inception (see Christaller [4] and Henderson

[10]). And, as would be expected, they continue to play large roles in present models.
Fujita [7] includes both transportation costs and positive externalities, and Krugman
[17], whose model features imperfect competition among producers of di�erentiated

products, also relies on transportation costs and pecuniary externalities to generate
cities.

I allow for preferences over population and separation to be positive or nega-
tive, and linear or nonlinear, enabling an investigation into what causes cities to form.
If everyone wants to maximize the population at their home location or to minimize

their separation from others, then they form a single city. Much less transparently,
if agents prefer to maximize their distance from others, they too form cities. In this
case, cities emerge (Forrest [6]). This result contradicts the intuition that for cities

to exist there must be some external bene�ts from agglomeration (Lucas [20]).1 I

also analyze the sensitivity of city location and the city size distribution to initial

conditions. The di�erence is crucial. Sensitivity of the former type occurs far more
frequently than does the latter. This implies that it might be easier to �nd regularities

in the size of cities than in their locations.

1Many others besides Lucas have made this claim. For example, Thisse [26] states \In order to

account for the polarization of space, one must �rst recognize that increasing returns are essential

for explaining the geographical distribution of production activities." (pg 299). These preferences

for agglomeration need not be large. Papageorgiou and Smith [24] derive rather mild conditions on

the externalities between locations necessary for agglomeration.
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Though this paper discusses city formation within a country, several of the

results can be interpreted as describing the location of �rms and people within a

city.2 For example, O'Hara [22] constructs a model of a central business district on a

square that relies on the same separation measure that I use here. His model di�ers

in that he includes land rents, an economic variable that I omit. Also, Beckman [2]

analyzes locational choice within a city. In his model, agent utility depends upon

average distance, space, and consumption. Only the last of these is missing from my

model, and it enters his model linearly. That said, to call these models special cases

of my model would be incorrect. They provide richer micro foundations. Instead, my

model should be interpreted as providing an organizing perspective through which

these separate contributions can be interpreted.

A general model that captures the salient features of the city formation process

has value given the renewed emphasis on cities within economics. This resurgence
stems from a combination of intellectual forces. On the one hand, the engaging
historical accounts of Jacobs ([13] and [14]) and Cronon [5] and a recognition of the

importance of increasing returns in the economy writ large (Arthur [1]) have led
economists to re-evaluate the role of cities in creating economic growth. As more
economists come to accept that cities play a central role in the economic fortunes

of a country, i.e. that as in Jacobs' theory they form the nucleus of the atom, then
how and where cities form and how large cities should be and will tend to be become

important questions. On the other hand, simultaneous advancements in endogenous
growth theory and formal models of imperfect competition have enabled economists
to construct formal models of city formation, a point elaborated by Krugman [18].

Many of these recent models include individuals and �rms with preferences
over economic variables: wages, land prices, the array of goods, etc., others de�ne

preferences over the population distribution as I do here. A third alternative cre-
ates variables, such as market potential, that are neither features of the population
distribution nor economic variables (Harris [9]. Not surprisingly, market potential

models have been criticized for lacking economic underpinnings. While valid, this

criticism does not necessarily extend to models that depend on spatial variables. The
distinction between economic and spatial variables can be blurry. Assumptions on

economic variables that yield positive externalities from agglomeration generate pref-
erences where people prefer to live in locations with greater populations. In some

cases, it may be more elegant (and tractable) to just assume a preference for pop-

ulation. People who desire the externalities generated by agglomeration might rank
cities by size. Whether size then becomes an economic variable becomes a semantic

question.
The remainder of this paper proceeds as follows: Section 2 contains the basic

model of location choice and section 3 presents mathematical and computational

results for the eight cases with linear preferences, In section 4, I analyze two nonlinear
cases. The discussion at the end of the paper addresses possible extensions of the

2I would like to thank a referee for making this suggestion.
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model.

2 A Model of City Formation

The model is purposefully simple so that it captures how spatial population accumu-

lation depends upon agents' preferences. A �nite number of agents (individuals or

�rms 3) reside on an N by N lattice. I do not connect the edges of the lattice to form

a torus.4 The assumption of a square lattice matters. Several �ndings depend upon

it. This shortcoming appears unavoidable and suggests the need for future work with

irregular lattices and lattices approximating actual geography.

Def'n: The set of agents M = f1; 2; 3; :::mg

The set of all possible locations is an N by N lattice.

Def'n: The set of locations N �N , where N = f1; 2; 3; :::ng

Agents choose locations. More than one agent can occupy the same location
on the lattice. An agent's utility level, and, perforce, her location decision depend
upon the distribution of agents on the lattice. Let F denote a distribution of agents

on the set of locations. F implicitly maps the set of locations into M so that Fij
denotes the number of agents residing in the ith row and jth column of the lattice.

Def'n: The set of distributions of agents

	 = fF : N �N !M [ f0g; and
nX

i=1

nX

j=1

Fij = mg

Agents have identical preferences over the distributions of agents. An agent's
utility depends upon her own location, and on the entire distribution.

Def'n: The utility function u : N �N � F ! <

Given identical agents, a distribution F can be considered utility maximizing if
it maximizes a utilitarian social welfare function. All agents have identical preference,

implying that a utility maximizing distribution is also Pareto E�cient.

Def'n: The distribution F 2 	 utility maximizing if and only if

nX

i=1

nX

j=1

Fij � u(i; j; F ) �
nX

i=1

nX

j=1

F 0

ij
� u(i; j; F 0) for all F 0 2 	

3In several of the scenarios considered, �rms may be a more appropriate interpretation.
4I also do not consider the case where agents locate on the surface of a sphere. Although the

earth is round, most countries are topologically equivalent to the square.
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An agent's utility depends upon at most two characteristics of the population

distribution: the population at her home location and the average distance from her

home location to the other agents. Many underlying economic variables generate

preferences that are consistent with home location's population entering utility posi-

tively. Technological externalities, market setup costs, the creation of infrastructure,

and returns to scale in the production of public goods all create preferences for living

in large population centers. Alternatively, the population may enter the utility func-

tion negatively. This assumption applies if agents require land, either for agriculture

or suburban pleasures.

An agent's utility from a location may also depend upon its average distance

to other agents, what I call separation.5 If agents face signi�cant transportation

costs, and if they trade with a signi�cant percentage of the other agents, then they

may wish to minimize their average distance to other agents. Average distance could
also enter into utility positively; agents may wish to be as far from other agents as
possible. Supposing for a moment that the agents represent �rms. Some �rms might

impose negative externalities on others (coal plants and laundries come to mind).
Preferring to live far from other agents subtly di�ers from preferring to live with few
other agents, but as we shall see the equilibrium distributions they generate di�er

signi�cantly.
Distance measures can be based on city block or Euclidean metrics. City block

distance measures the number of city blocks vertically and horizontally separating two
locations. The city block distance between location (1,1) and location (3,3) equals
four. Think of walking in a city. A city block path from (1,1) to (3,3) �rst proceeds

two blocks to (1,3) and then from (1,3) two more blocks to (3,3) for a total of four
blocks. I denote the city block measure by dc(i; j; F ).

Def'n: The city block measure from (i�; j�), given F ,

dc(i�; j�; F ) =
1

m(n� 1)2

nX

i=1

nX

j=1

Fij � (j i
� � i j + j j� � j j)

The m(n � 1)2 divides the total distance by the number of agents multiplied

by the maximal possible distance to create a normalized average. The subsequent

analysis includes only the city block measure as it lends itself more readily to formal

analysis. Similar results hold if the Euclidean distance measure is used.

2.1 Equilibria

Equilibria distributions of cities depend on the ability of agents to relocate. If agents

can move anywhere, the equilibrium distribution of cities will be much di�erent than
if they can only move locally. To capture these di�erences, I consider two rules: global

5Note that for population preferences the entire population distribution does not matter, only

the population at the location. The separation variable relies on information about the entire

distribution.
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relocations and local relocations. Under global relocations, each agent chooses the

location on the lattice generating the highest utility. Agents take into account the

e�ect of their own movement on population.6 In the event of a tie, an agent chooses

the �rst location evaluated from among those generating the highest utility.

Def'n: The distribution F is an equilibrium with respect to global relocations

if and only if Fij > 0 implies u(i; j; F ) � u(i0; j 0; F � �ij + �i0j0) for all i0; j 0, where

�ij : N �N ! f0; 1g where �ij(i; j) = 1 and �ij (̂i; ĵ) = 0 for (̂i; ĵ) 6= (i; j).

Under local relocations, agents possess limited vision preventing them from

searching the entire lattice for the best location. Agents move to the location within

a �xed neighborhood that generates the greatest utility. Once there, they may become

aware of an even better location and move again. However, agents cannot look ahead.

An agent could not move from a city with twenty agents to one with �ve agents
because the latter was in the neighborhood of a city with sixty agents.

Despite the fact that locally relocating agents do not know the entire popu-
lation distribution, they can compute their utility from each location in their local
neighborhood. This assumption may appear problematic for preferences that include

separation. Utility calculations use the entire population distribution, something the
agents do not know. This apparent contradiction is resolved if the population distri-

bution determines economic variables, such as prices, that in turn determine utility.
The map from the distribution to the economic variables need not be invertible, so
the agents cannot always deduce the population distribution given prices.

Def'n: The distribution F is an equilibrium with respect to local relocations

of distance d if and only if Fij > 0 implies u(i; j; F ) � u(i0; j 0; F � �ij + �i0j0) for
all i0; j 0 such that (j i � i0 j + j j � j 0 j) � d where �ij(i; j) = 1 and �ij (̂i; ĵ) = 0 for

(̂i; ĵ) 6= (i; j).

In the examples described below the size of a neighborhood equals one (d = 1).
The city block measure restricts agents' movements to one of the four locations above

and below and to the right and left on the lattice. An agent residing at a corner
location has only two alternative locations.

Two methodological issues remain: the timing of relocation decisions and the

initial population distributions. The timing of updating, whether synchronous or
asynchronous, often qualitatively e�ects both dynamics and end states (Huberman

and Glance [12]). Given that relocation decisions might be made at any time, in
this model agents do not move simultaneously but instead relocate at di�erent times.

The order of the asynchronous updating occurs randomly.7 Agents can be identi�ed

6This contrasts with many Tiebout models that assume that agents do not consider the e�ect of

their own relocations.
7An alternative approach would be to use incentive based asynchronous updating. Under in-

centive based asynchronous updating, utility di�erences determine the order of agents' relocations.

Those agents with the most to gain from relocating, move �rst. Page [23] shows that incentive based

asynchronous updating alters both dynamics and the distribution over end states for several classes

6



by numbers ranging from 1 to m and placed in a queue. In each period, the agents

sequentially choose to reside in the location o�ering the highest utility given the

relocations of all agents ahead of them in the queue. Initially, agents choose locations

randomly according to a uniform distribution: equal probability of each location.

Prior to industrialization, most countries' economies were agriculturally based. As

farmers tend to spread throughout the countryside, the uniformity assumption accords

with reality.

3 Linear Preferences

I begin by considering linear preferences over separation and its population. The

analysis consists of two parts. I �rst analyze models where agents' preferences in-

clude only one the two variables. In the second part, I consider all possible linear
combinations of location population and separation.

3.1 Population Preferences

As mentioned, population may enter agents' utilities either positively or negatively,
creating two scenarios that I call agglomeration and isolation. Within each scenario,

agents may relocate either globally or locally.

3.1.1 Agglomeration

In the �rst scenario, an agent's utility equals the population at her home location:

an agent residing at location (i; j) obtains a utility equal to Fij. The larger the
local population, the more utility accruing to the agent. In the global relocations
scenario, the �rst agent to relocate chooses from among those locations with the

largest population. All subsequent agents choose the same location as the �rst agent.
Similar to Arthur [1], this scenario exhibits substantial sensitivity to initial conditions

in location, the lattice site initially containing the most agents becomes the large city.

But it exhibits no sensitivity in the population distribution (only one city is formed).

The next two claims state that a distribution F is an equilibrium with respect

to global relocations if and only if all agents reside at a single location and that these

equilibrium distributions maximize utility.

Claim 1 If u(i; j; F ) = Fij then F is an equilibrium with respect to sequential global

relocations if and only if there exists an (i; j) such that Fij = m

pf: If Fij = m then the utility from remaining at (i; j) equals m and the utility from

any other location equals 1. Thus, F is an equilibrium.

To prove the other direction, let K = max(i;j)f Fijg where K < m and

show that this leads to a contradiction. There are two cases to consider. First,

of cellular automata.
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suppose there exists a unique (i�; j�) such that Fij = K. For all (i; j) 6= (i�; j�),

u(i; j; F ) < u(i�; j�; F ), implying that all agents must be located at (i�; j�), a con-

tradiction. Second, suppose Fij = Fi�j� = K and that (i; j) 6= (i�; j�). Consider an

agent located at (i; j). Her utility equals K. Her utility from (i�; j�) equals K + 1, a

contradiction. 2

Claim 2 If u(i; j; F ) = Fij then F is utility maximizing if and only if there exists an

(i; j) such that Fij = m

pf: Maximizing the utilitarian social welfare function can be shown to be equivalent

to the following constrained maximization problem.

max
nX

i=1

nX

j=1

Fij � Fij

subject to

nX

i=1

nX

j=1

Fij = m and Fij � 0 for all (i; j)

The convexity of the objective function implies that optimum must occur at a corner.

All corners obtain an identical value of m2. 2

In the local relocations scenario, the dynamics become more complicated. Each
agent in turn chooses a location in her neighborhood with maximal population. In

this and other simulations, I used one thousand agents on a nine by nine lattice. The
percentage of agents in each location from a representative run are shown in Figure
1.

Place Figure 1 Here

In the �rst round of relocations, all agents do not choose to reside at the same

location. This occurs for two reasons. First, agents' neighborhoods need not intersect,

so some agents cannot possibly choose to reside at the same location. Second, even

among those agents whose neighborhoods do intersect, the locations within their
neighborhoods with maximal population may di�er. After a few rounds of relocations,

the population pattern consists of a collection of small villages. For a distribution to

be an equilibrium, any two locations with nonzero populations may not be adjacent
(see Figure 1).

Under local relocations, the equilibrium population distributions exhibit lim-
ited sensitivity to initial conditions both in location and in distribution. By changing

the initial locations of a few agents, not only can the location of the small villages

change but so can their populations, but the populations and locations of those vil-
lages far from the relocated agents usually remain una�ected.
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3.1.2 Isolation

As would be expected, cities do not form if agents want to live in lightly populated

areas. If u(i; j; F ) = �Fij, then under global relocations, the agents spread themselves

uniformly over the lattice as stated in Claim 3.

Claim 3 Assume m = � � n2, where � is an integer. If u(i; j; F ) = �Fij , then F is

an equilibrium with respect to global relocations if and only if Fij = � for all (i; j)

pf: First, Fij = � for all (i; j) is shown to be an equilibrium. Given this distribution,

all agents obtain a utility equal to ��. The utility to an agent currently located at

(i; j) from an alternative location equals �(� + 1), thus F is an equilibrium.

The uniqueness of the equilibrium is shown by contradiction. Suppose that there

exists an (i; j) such that Fij � (� + 1). It follows that there exists an (i0; j 0) such
that Fi0j0 � (� � 1). Any agent located at (i; j) would obtain strictly greater utility

by moving to (i0; j 0). 2

The next claim states that the equilibrium under global relocations also max-
imizes utility.

Claim 4 Assume m = � � n2, where � is an integer. If u(i; j; F ) = �Fij then F is

utility maximizing if and only if Fij = � for all (i; j):

pf: The relevant Lagrangian is

maxF;�

nX

i=1

nX

j=1

�Fij � Fij + � � (
nX

i=1

nX

j=1

Fij �m)

The �rst order necessary conditions:

2 � Fij = � for all (i; j)

nX

i=1

nX

j=1

Fij = m

are su�cient because of the strict concavity of the function. Therefore, the interior

critical point describes a unique maximum where all locations have identical popula-

tions. 2

Under local relocations, the equilibrium distributions resulting from computa-

tional experiments appear close to uniform. If the initial distribution deviates from
uniform, then the �nal distribution may di�er substantially as shown in Figure 2.

place Figure 2 here
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By the previous claim, this distribution does not maximize utility. As for ag-

glomeration preferences, under local relocations, equilibrium distributions exist which

do not maximize utility. This occurs because population preferences do not create

smooth utilities over the lattice. Utility equals either population or its negation.

Therefore, the utility function has multiple local peaks that collect agents of limited

search ability.

3.2 Separation Preferences

Separation preferences assume that agents care about their average distance to other

agents, and not on the population at their home location. Separation preferences

capture economic features like transportation costs and pollution that depend upon

distance. For example, if agents trade extensively, they may wish to be as close on
average as possible to other agents. Alternatively, if agents do not trade and if other
agents create pollution that destroys air, land, and water quality, then agents may

wish to distance themselves from other agents.8

Separation preferences di�er from population preferences in that they create

smooth utility functions on the lattice. Given a distribution of agents, the graph
of the utilities at each location on the lattice does not contain any non{global, local
peaks in equilibrium, implying identical equilibrium sets for agents who rely on global

and local relocations. I formalize this intuition in the next claim.

Claim 5 If u(i; j; F ) = h(dc(i; j; F )) where h is a strictly monotonic real valued

function then F is an equilibrium with respect to global relocations if and only if it is

an equilibrium with respect to local relocations.

pf: see appendix.

Identical equilibrium sets need not imply similar dynamics under the two sce-
narios. Therefore, beginning with identical initial distributions, global and local re-
locations typically do not generate the same equilibrium.

3.2.1 Attraction

I �rst assume that agents prefer to be close to other agents. Therefore, u(i; j; F ) =
�dc(i; j; F ). In the global relocation scenario, the �rst agent to relocate chooses the

location with the minimal average distance to all other agents. Given the assumption

of a uniform initial distribution of agent locations, this agent locates near the center
of the lattice. The location chosen by the next agent and all subsequent agents will be

either be the same, or di�er by a small distance.9 After a few rounds of adaptation,

8If agents hate visitors and if the probability that an agent visits another agent decreases linearly

in distance, then agents would have preferences which increase in separation.
9If for example, every agent except for one locates in the center, and the outlying agent resides

far to the north, then the �rst agent to relocate (unless he is the outlier) may move out of the city.

If the northerner relocates next, then she will chose to live in the city.
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typically two or three, all agents reside in a single location. The end states di�er

from the agglomeration scenario in that here the resulting single city lies at or near

the center of the lattice. There is little sensitivity to initial conditions in location and

none in population distribution.

Under local relocations, the convergence is even slower, but again one city

forms. In each time period agents march towards the center of the lattice. Eventually,

all agents reside at a single location at or near the center of the lattice.

The next two claims state that the unique equilibrium consists of a single city

and that this equilibrium maximizes utility.

Claim 6 If u(i; j; F ) = �dc(i; j; F ) then F is an equilibrium with respect to global

and local relocations if and only if there exists an (i; j) such that Fij = m

pf: First suppose that there exists an (i; j) such that Fij = m. It follows that
u(i; j; F ) = 0. If any agent relocates, her utility would be strictly negative. Therefore,

F is an equilibrium. The other direction is proven by contradiction. Suppose that
all agents do not reside at one location. Choose (i; j) and (i0; j 0) such that Fij > 0,

Fi0j0 > 0, and i < i0. It su�ces to show that an agent can bene�t by relocating. Let
s(i) =

P
n

j=1 Fij denote the number of agents in row i on the lattice. Ignoring the
constant term in the city block measure, if an agent moves from (i; j) to (i + 1; j),

her change in utility �i given by

�i = 1�
iX

k=1

s(k) +
nX

k=i+1

s(k)

�i consists of three terms. The �rst term, 1, takes into account the fact that the
agent does not move one unit away from herself when she relocates. The second term

captures the fact that she moves one unit away from all agents in rows 1 through i.
The third term captures the fact that she moves one unit closer to all agents in rows
i + 1 to L. Similarly, when an agent moves from (i0; j 0) to (i0 � 1; j 0), her change in

utility �i0 given by

�i0 = 1�
nX

k=i0

s(k) +
i
0
�1X

k=1

s(k)

There are two cases to consider. i0 = i+1 and i0 > i+1. If i0 = i+1 then �i+�i0 = 2.

If i0 > i + 1, then

�i +�i0 = 2 + 2 �
i
0
�1X

k=i+1

s(k)

In either case, �i+�i0 > 0 implying that one of the terms exceeds zero and completing
the proof. 2

11



Claim 7 If u(i; j; F ) = �dc(i; j; F ) then F is utility maximizing if and only if there

exists an (i; j) such that Fij = m

pf: u(i; j; F ) � 0 for all F . Therefore, it su�ces to show that there exists an (i; j)

such that Fij = m if and only if

U(F ) =
nX

i=1

nX

j=1

u(i; j; F )Fij = 0

Suppose Fij = m, then Fi0j0 = 0 for all (i0; j 0) 6= (i; j). A straightforward calculation

shows that U(F ) = 0. To prove the other direction, suppose that Fij < m for all

(i; j). Choose (i; j) and (i0; j 0) so that Fij > 0 and Fi0j0 > 0. It follows that dc(i; j) > 0

and dc(i0; j 0) > 0 implying that the U(F ) < 0. 2

The theorem does not say that the equilibria and utility maximizing distribu-
tions have an inherent bias towards the center. Yet, in computational experiments,
the city always lies near the center because initially, agents move to locations close to

other agents. In equilibrium, the central location plays no role. Thus, although this
scenario creates outcomes similar to those found by Krugman ([15] and [16]) (both

generate single cities near the center with slight sensitivity to initial conditions), they
do so for di�erent reasons. In Krugman's models, farmers remain in the surrounding
areas and the city lies near the center to be close to agricultural products. In the

model presented here, in equilibrium, the city's location is immaterial. It is a histor-
ical artifact of the initial distribution and the city formation process. A glimpse at
any map reveals that many cities lie on rivers even though currently those rivers have

only marginal impacts on the economy.

3.2.2 Repulsion

The alternative assumption that agents wish to maximize their average distance to

other agents, leads to a counter{intuitive result. Agents end up living in cities. More
precisely, they form four cities in the four corners of the lattice with opposite corners

having equal populations. (See Figure 3) Here, a macro phenomenon emerges in

the true sense. The aggregation of population in the corners runs counter to the
microlevel incentives to disperse. Cities form even though no one wants cities.

place Figure 3 here

Distributions like those shown in Figure 3 are both equilibria and utility max-
imizing for agents who want to maximize separation.

Claim 8 Assume m is even. If u(i; j; F ) = dc(i; j; F ), then F is an equilibrium with

respect to global relocations if and only if F satis�es the following equalities:

F11 = Fnn
F1n = Fn1
Fij = 0 if fi; jg 6� f1; ng

12



pf: see appendix.

Claim 9 Assume m is even. If u(i; j; F ) = dc(i; j; F ), then the distribution de�ned

in Claim 8 is utility maximizing.

pf: see appendix

Given these preferences, the dynamics di�er slightly between the local and

global relocation scenarios. Under global relocations, the �rst agent chooses a corner,

as do all other agents in turn. If the populations in opposite corners di�er, then agents

continue to relocate until attaining equilibrium. In the local relocation scenario,

agents crawl towards the corners of the space, and after a few iterations, all agents

reside along the edges of the lattice. From there they converge to the corners. Both

cases exhibit moderate sensitivity to initial condition in population distribution, but
none in location.

This �nding can be criticized because both for its reliance on the square lattice

and for being unrealistic. The �rst criticism is moot for two reasons. First, whether
looking at cities forming within a country or locational decisions within a city, the
relevant topology is two dimensional. Second, I can generate a similar emergence

on a sphere by allowing nonlinear preferences as I show in section 4. As for this
not being realistic, that point is accepted. I do not intend this to be a realistic

description of why cities form. Instead, the result serves a pedagogical purpose. It
demonstrates that cities can form without an explicit preference for agglomeration or
against separation. Such assumptions, though su�cient, are not necessary for cities.

To borrow from Schelling [25], micromotives and macrobehavior need not appear
consistent.

3.2.3 Summary

The table below summarizes the four cases with pure separation and agglomeration.10

Notice that some of the scenarios exhibit extreme sensitivity to initial conditions in

the location of cities, others exhibit moderate sensitivity in the distribution of city

sizes but not in city location.

Summary of Single Component Models

u(i; j; F ) Global Relocations Local Relocations Utility Max

Fij one city anywhere isolated villages one city anywhere

�Fij uniformly spread uniformly spread uniformly spread
dij four corners four corners four corners

�dij one city near center one city near center one city anywhere

10In the case where agents relocate locally and wish to minimize population, there exist nonuniform

equilibrium distributions, but the typical simulation yields a uniform, or near uniform distribution.
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3.3 Separation and Agglomeration

I now include both variables in the agents' utility functions but retain the linearity

assumption. For expediency, I employ a genetic algorithm to search for optimal

population distributions rather than attempting to prove theorems (Holland [11],

Goldberg [8]).11 The coe�cients of population and distance may be either positive or

negative, resulting in four cases. I assume that the coe�cient on the agglomeration

term is either plus or minus one and that the coe�cient on the separation term is

plus or minus �, where � is a positive real number greater than zero.

3.3.1 Isolated Attraction (�F � �dc)

With negative coe�cients on both population and separation, agents prefer lightly

populated locations, spatially near other agents. The variable � > 0 measures the
relative weight on the distance component. With either global or local relocations, the

equilibria resemble piles of sand near the center of the lattice, in which agents balance
their desire to be nearer other agents with their preference for a less crowded home
location. (See Figure 4) In hundreds of simulations, the sand pile always appeared

(up to translations and rotations). Hence, there is no sensitivity to initial conditions
in either location of population distribution. The sand pile has many of the features

of the original central place models of Christaller [4]. The city in the center has the
largest population, and city population decreases with distance to the center. The
core assumptions of central place theory, that farmers want to be close to markets

but live in isolation, are consistent with these preferences.

place Figure 4 here

Changes in the relative weight of the two components changes the equilibrium

distributions in intuitive directions. As � increases (decreases) the piles of sand grow
taller (shorter) and encompasses a smaller (larger) area. Larger � imply that the
agents want to be closer together, thereby increasing the population at the center.

The sand pile formation appears to vary smoothly with changes in �. A genetic
algorithm searching the space of distributions discovered the sand pile formation and

was unable to �nd another distribution generating higher utility.

3.3.2 Agglomerated Attraction (F � �dc)

Switching the sign on the coe�cient of Fij creates agents who prefer to live in large
cities and close to other agents. Under global relocations, a single city forms near

the center of the lattice. The separation component makes the location of the city
less sensitive to initial conditions than in the case where utility depended only on

population. The proof that this distribution maximizes utility follows from Claim 2

11The genetic algorithm I employed uses tournament selection and uniform crossover to search for

utility maximizing population distributions.
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and Claim 7. With local relocations, agents can become stuck in moderately sized,

spatially segregated cities. The �ndings vary depending upon the relative weights on

population and separation. If the population term predominates, then the equilibrium

distributions may be similar to those shown in Figure 5, while if the coe�cient of the

separation term predominates, then the agents move to a single city in the center.

place Figure 5 here

3.3.3 Agglomerated Repulsion (F + �dc)

With positive coe�cients on both population and separation, agents prefer to live

in cities but far from other people. These are somewhat contradictory preferences,

and as might be expected, the end states vary signi�cantly under local and global

relocation. Under global relocation, the agents move to two opposing corners in the

�rst iteration. Typically, one of these corners has a larger population than the other.
In the second generation, all agents move to the corner with the larger population.
This occurs because the population term begins to predominate. Therefore, we see

some sensitivity to initial conditions in location, but none in population. It can
be shown that the single city in the corner maximizes utility for � < 2. Under

local relocation, the agents move towards the corners. Within a few generations, the
population spreads unevenly over the four corner locations. When the population
term predominates, then in addition to the four corner location, there may also be

locations just o� center with positive population as shown in Figure 6.

place Figure 6 here

3.3.4 Isolated Repulsion (�F + �dc)

In the �nal scenario, agents prefer locations with small populations that are far from

other agents on average. Under global relocation, the agents reside along the edges
of the lattice, with a concentration of agents near the corners (See Figure 7).

place Figure 7 here

This end state appears to occur regardless of the initial distribution, so their
is little or no sensitivity to initial conditions. Under local relocation, the agents move
towards the edges and often converge to the same equilibrium distribution as under

global relocation. Sometimes the end states di�er slightly as asymmetries cannot be

overcome by local movements. Computations using a genetic algorithm suggest that

these con�gurations also maximize utility. The following table summarizes the four
two component linear cases.12

12By utility maximizing I mean the best that could be found by a genetic algorithm
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Summary of Linear Models

Preferences Global Local \Utility Maximizing"

Fij + dij one city in corner cities in four corners one city

Fij � dij one city in center several cities near center one city
�Fij + dij edges with corner peaks edges with corner peaks edges with corner peaks

�Fij � dij central sand pile central sand pile central sand pile

Note the substantial additivity in the equilibrium con�gurations. Attraction

leads to a city in the center, and isolation leads to a uniform distribution. Combining

the two (isolated attraction) yields a centrally located sand pile. Checking other pairs

of e�ects reveals a common pattern. No externalities between the two e�ects reveal

themselves in the equilibrium distributions.

4 Nonlinear Preferences

I now extend the model to include nonlinear e�ects. I consider two cases: one with

a nonlinear population term demonstrating that equilibria need not be e�cient and
that e�cient equilibria need not be attained, and one with a nonlinear separation

term exhibiting extreme sensitivity in both the location and size distribution of cities
to initial conditions.

4.1 Crowding E�ects

The �rst scenario assumes a negative second order e�ect on population. It replicates
well known results within the literature, that if the negative externality from agglom-
eration is not priced, cities will grow too large. Standard explanations for negative

external e�ect include congestion, pollution, crime, or ine�ciencies in public good
provision. The utility to an agent from being in location (i; j) can be written as

u(i; j; F ) = Fij � � � (Fij)
2

where � is a positive constant. In the global relocation scenario, the dynamics begin
similar to the pure agglomeration case. The �rst agent chooses from among the

locations with the largest population, and the second agent chooses the same location.

At some point the city becomes overcrowded, and an agent chooses the location with

the second largest population. The result at the end of one round of relocations will be
several cities, the exact number varies directly with �. All but the last of these cities to
form will have identical populations. In the second round of relocations, agents move

from the larger cities to the one smaller city until all cities have equal populations.

The cities that form tend to be just shy of twice their optimal size. These oversized
cities generate utility only marginally higher than the initial uniform distribution.
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The utility maximizing size of the cities is 1

2�
. And distributions consisting of only

cities of size 1

2�
are locally stable equilibria as well.13

That crowding e�ects can create non optimal equilibria is not a new idea (Mills

[21]). What merits mentioning is that although there exist utility maximizing, locally

stable equilibria (cities of size 1

2�
) these equilibria have small basins of attraction, i.e.

few initial distributions lead to them. Thus, mathematical proofs of the existence of

e�cient, stable equilibria should be viewed skeptically, unless these equilibria have

also been shown to be unique or to have large basins of attraction.

4.2 Partial Separation

Finally, assume that agents like separation but that they do not want to be too far

from the other agents. These preferences can be written as follows.

u(i; j; F ) = dc
ij
� � � (dc

ij
)2

For small values of �, cities form near the corners, just as in the pure separation case.
There are multiple equilibria in this case. The proof of this hinges on their being a

separation dc� = 1

2�
, that maximizes utility. Any population distribution where every

agent is separated from the others by 1

2�
is utility maximizing, and an equilibrium.

Furthermore, it can be shown that these are the only equilibria given these preferences
provided the lattice is large enough and has enough sites (i.e. n must be large).14

The set of distributions where all agents have identical separation is huge. It includes

a large set of horizontally and vertically symmetric distributions. For example, in
addition to the distribution shown in Figure 8, a distribution consisting of two cities
separated by 2dc� lattice sites will generate identical separation for all agents.

Place Figure 8 Here

This scenario merits attention for two other reasons. First, once again, cities
emerge. Agents prefer neither agglomeration nor distance minimization. Second,

it exhibits extreme sensitivity of both the location and the population distribution
of cities to initial conditions. Changing the location of one agent can lead to very
di�erent equilibria, though of course both equilibria generate the same utility. Inter-

estingly, I did not �nd extreme sensitivity to initial conditions in all cases despite the

enormous number of equilibria.

13By locally stable, I mean that if you randomly relocate a few agents, subsequent relocations will

return to these equilibria.
14The proof is straightforward. Any agent not the ideal distance from other agents can always

relocate so she is.
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5 Discussion

In this paper, I have constructed an agent location model where agents' preferences

depend upon a location's population and its distance to other agents. Within this

simple framework, I examined the formation and emergence of cities, their equi-

librium spatial distributions, the optimality of these equilibrium distributions, the

sensitivity of equilibria to initial conditions, and the di�erences between global and

local relocation scenarios. The model does not include economic variables explicitly,

though economic forces underpin the behavior captured by separation and popula-

tion. By considering a variety of preferences in this framework, I captured some of

the behavior described in more sophisticated models: Sensitivity in location to initial

conditions results from preferences for population; Central placement appears to be

the residue of preferences to minimize distances to other agents; And central places

with decreasing population gradients result from preferences favoring proximity to

others but local isolation. I also generated some new insights: Many equilibria can
be shown to be e�cient; Preferences for greater separation lead to emergent cities;
With crowding e�ects, e�cient, stable equilibria may exist but the stable, ine�cient

equilibria tend to emerge from a uniform starting distribution; and nonlinearities in
preferences for distance can create emergent cities whose size and location are both
extremely sensitive to the initial population distribution.

The two variable model described in this paper can be extended to include
natural advantage, heterogenous agents, and population growth. Natural advantages

requires giving agents higher utility from residing at or near certain locations. In
preliminary simulations in the pure agglomeration model, natural advantage tends
to reduce the sensitivity to initial conditions. Heterogeneous preferences reveal sur-

prising additivity across equilibrium distributions. Combinations of two microlevel
preferences tend to generate convex combinations of their individual equilibrium dis-

tributions. Heterogeneity also makes emergent cities more likely. It is straightforward
to construct models with k types of agents, each with di�erent nonlinear preferences
over separation, where the equilibrium distribution consists of k cities. Finally, al-

lowing population growth can cause novel dynamics. In the case of negative second
order agglomeration e�ects, cascades occur. New cities form and spur relocations by
many agents.
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Figure 1: (local)

u(i; j; F ) = Fij
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Figure 2: (local)

u(i; j; F ) = �Fij
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Figure 3:

u(i; j; F ) = dc(i; j; F )
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Figure 4:

u(i; j; F ) = �Fij � �dc(i; j; F )
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Figure 5: (local)

u(i; j; F ) = +Fij � dc(i; j; F )
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Figure 6: (local)

u(i; j; F ) = Fij + dc(i; j; F )
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Figure 7:

u(i; j; F ) = �Fij + dc(i; j; F )
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Figure 8:

u(i; j; F ) = dc(i; j; F )� �(dc(i; j; F ))2
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Appendix
Claim 4 If u(i; j; F ) = h(dc(i; j; F )) where h is a strictly monotonic real valued

function then F is an equilibrium with respect to global relocations if and only if it is

an equilibrium with respect to local relocations.

pf. The only if direction holds by de�nition. Therefore, it su�ces to show that if a

distribution F is an equilibrium with respect to local relocations, then it is also an

equilibrium with respect to global relocations when u(i; j; F ) = h(dc(i; j; F )) and h is

monotonic. Without loss of generality, assume that h is monotonically increasing. It

su�ces to show that the result holds for the case where h is the identity function.

The proof proceeds by contradiction. Suppose that an agent residing at (i; j)

would bene�t by moving to (i0; j 0), where i0 > i and j 0 � j. The utility increase in

moving from (i; j) to (i0; j 0) is the sum of the increase of moving from (i; j) to (i0; j)

and the increase in moving from (i; j) to (i; j 0). Therefore, let �i equal the change in

utility if the agent moves from (i; j) to (i0; j) (suppressing the constant term 1

m(n�1)2

It is su�cient to prove that if this is strictly positive then �1, the change in utility if

the agent moves from (i; j) to (i + 1; j) is also strictly positive. Let s(i) =
P

n

j=1 Fij.
It is straightforward to show that

�1 = 1�
nX

k=i+1

s(k) +
iX

k=1

s(k)

If i0 � i = 1 then �i = �1. Assume i0 � i � 2, it follows that

�i = (i0 � i) +
nX

k=i0

(i0 � i) � s(k) +
iX

k=1

(i0 � i) � s(k) +
i
0
�1X

k=i+1

((i0 � i)� 2(k � i)) � s(k)

Multiplying �1 by (i0 � i) and subtracting �i yields

(i0 � 1) ��1 � �i =
i
0
�1X

k=i+1

2(k � i)s(k)

Since all of the s(k)'s are greater than or equal to zero, it follows that �1 > 0. 2

Claim 6: Assume m is even. If u(i; j; F ) = dc(i; j; F ), then F is an equilibrium with

respect to global relocations if and only if F satis�es the following equalities:

F11 = Fnn
F1n = Fn1
Fij = 0 if fi; jg 6� f1; ng

pf: The proof proceeds in two parts. First, if fi; jg 6� f1; ng then it is shown that
Fij = 0. Then, the equality of the populations in opposite corners is shown.

Part 1: Suppose that an agent resides at (i; j) and fi; jg 6� f1; ng. Without loss of
generality assume that i 6 inf1; ng. Let s(i) =

P
n

j=1 Fij. Let �+ equal the change in
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utility if the agent moves to (i+ 1; j) and �
�
equal the change in utility if the agent

moves to (i � 1; j), again without the constant term. It is straightforward to show

that

�+ = 1�
nX

k=i+1

s(k) +
iX

k=1

s(k)

and that

�
�
= 1 +

nX

k=i

s(k)�
i�1X

k=1

s(k)

adding the two terms obtains �++�
�
= 2+2 � s(i). Since the sum of the two terms

is strictly positive, one of the two terms must be positive, completing the �rst part

of the proof.

Part 2: A straightforward calculation shows that if F11 = Fnn and F1n = Fn1 then
no agent increases her utility by relocating. By symmetry it su�ces to show that if

Fij = 0 for all fi; jg 6� f1; ng and if F11 < Fnn then an agent would relocate from
(n; n) to (1; 1). Given these conditions, it follows that

u(1; 1; F )� u(n; n; F ) = 2(n� 1) � [Fnn � F11] > 0

which completes the proof. 2

Claim 7 Assume m is even. If u(i; j; F ) = dc(i; j; F ), then F is utility maximizing

if and only if F satis�es the following equalities:

F11 = Fnn
F1n = Fn1
Fij = 0 if fi; jg 6� f1; ng

pf: The Lagrangian for this problem is as follows:

maxF;�2�
n�1X

i=1

X

i0>i

nX

j=1

nX

j0=1

(i0�i)�Fij�Fi0j0+2�
n�1X

j=1

X

j0>j

nX

i=1

nX

i0=1

(j 0�j)�Fij�Fi0j0+��(
nX

i=1

nX

j=1

Fij�m)

Let s(i) =
P

n

j=1 Fij and r(j) =
P

n

i=1 Fij. The �rst order necessary conditions can be
written as follows:

nX

i=1

nX

j=1

Fij = m

nX

i0=1

j i0 � i j s(i0) +
X

j0=1n

j j 0 � j j r(j 0) = � for all (i; j)

26



The crux of the proof is that s(i) = 0 for i 62 f1; ng and that r(j) = 0 for j 62 f0; 1g.

Holding j �xed and subtracting the �rst order necessary condition for (n� 1; j) from

the �rst order necessary condition for (n; j) obtains:

�s(1) +
nX

i=1

s(i) = 0

Similarly, subtracting the �rst order necessary condition for (2; j) from the �rst order

necessary condition for (1; j) obtains:

�s(n) +
n�1X

i=1

s(i) = 0

Summing these two equalities yields

n�1X

i=2

s(i) = 0

implying that s(i) = 0 for i 2 f2; ::; n� 1g. Substituting into the previous equation,
gives that s(1) = s(n). A similar argument shows that r(i) = 0 for i 2 f2; :; n� 1g

and that r(1) = r(n). A straightforward calculation shows that if s(1) = s(n) = m

2
=

r(1) = r(n) then all of the �rst order conditions are satis�ed. It also follows from
the de�nitions of s and r that Fij = 0 if fi; jg 6� f1; ng. Therefore, s(1) = s(n) can

be rewritten as F11 + F1n = Fn1 + Fnn and r(1) = r(n) as F11 + Fn1 = F1n + Fnn.
Adding the �rst equation to the second yields F11 = Fnn. Plugging this into either
equation yields F1n = Fn1. A straightforward calculation shows that all distributions

satisfying F11 = Fnn and F1n = Fn1 have identical values under the utilitarian social
welfare function.

It remains to be shown that the �rst order necessary conditions are su�cient. As a
�rst step in showing su�ciency, it is proven that any distribution F with F (i; j) > 0
for some i 62 f1; ng has a lower value under the utilitarian social welfare function than

a distribution where an agent at location (i; j) moves to either (i� 1; j) or (i+ 1; j).

Let �+ equal the change in the sum of the agents' utilities if the agent moves to

(i + 1; j) and let �
�
equal the change in the sum of the agents' utilities if the agent

moves to (i� 1; j). It is straightforward to show that

�+ = 2 � [1�
nX

k=i+1

s(k) +
iX

k=1

s(k)]

and that

�
�
= 2 � [1 +

nX

k=i

s(k)�
i�1X

k=1

s(k)]

adding the two terms gives �+ +�
�
= 4 + 4 � s(i) > 0. By symmetry, at the global

optimum all agents must be located in the four corners. To complete the proof, the
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population must be shown to have equal populations in the opposite corners. The

proof proceeds by contradiction. Suppose that F11 < Fnn. There are two cases to

consider.

Case 1: (Fnn � F11 + 2) If an agent at location (1; 1) moves to location (n; n) then

the change in aggregate utility, � is given by:

� = 4n[Fnn � 1� F11] > 0

Case 2: (Fnn � F11 = 1) By assumption m, the total number of agents, is even;

therefore, F1n 6= Fn1. Without loss of generality assume that F1n > Fn1. If an agent

at location (n; n) moves to location (n; 1), then the change in aggregate utility, �, is

given by:

� = 2n[Fnn � 1� F11 + F1n � Fn1] > 0

which completes the proof. 2
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