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Large-scale evolution involves several layers of complexity spanning multiple scales, from 
genes and organisms to whole ecosystems. In this paper we review several models involving 
the macroevolution of artificial organisms, communities or ecosystems, highlighting their 
importance and potential role in expanding the modern synthesis. Afterwards, we summarize 
the key results obtained from our model of artificially evolved ecosystems where individuals 
are defined as embodied entities within a physical, simulated world where they can evolve 
different traits and exploit multiple resources. Starting from an initial state where single cells 
with identical genotypes are present, the system evolves towards complex communities where 
the feedbacks between population expansion, evolved cell adhesion and the structure of the 
environment leads to a major innovation resulting from the emergence of ecosystem 
engineering. The tempo and mode of this process illustrates the relevance in considering a 
physical embedding as part of the model description, and the feedbacks between different 
scales within the evolutionary hierarchy. The future steps in modeling macroevolution by 
means of in silico models and how they might contribute to the modern synthesis are outlined.
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 The large scale evolution of life appears marked by profound qualitative transitions affecting 
the structure, dynamics or even the logic of biological systems, from body plans to ecosystem-level 
features (Benton 1987; Eldredge 1989; Schuster 1995; Carroll 2000, 2001; Gould 2002; Kutschera 
and Niklas 2004; Nee 2006; Fedonkin et al 2007; Johnson and Stinchcombe, 2007). Such changes 
can occur at the small scale, when parts of the genetic toolkit experience a rewiring event that 
promotes the emergence of a novel property. Moreover, macroevolution, as pointed out by Erwin 
(2000) cannot be seen as an accumulation of small events associated with microevolutionary 
processes. Several levels of interaction between the evolution of metazoans and their feedback on 
the environment illustrate the point quite well (Erwin 2011). In particular, the potential for 
ecosystem engineering triggered by small phenotypic changes in given organisms can lead to large-
scale changes in ecosystem organization, sometimes allowing new niches (and thus species) to 
emerge (Jones et al., 1994). As acknowledged by Kutschera and Niklas (2004), placing 
macroevolution within the modern synthesis requires embracing multiple biological disciplines and 
concepts. Among the relevant  ingredients in the list, Kutschera and Niklas mention the in silico 
evolution of digital organisms as a complementary  approximation between pure theory and field 
data..

 Together with analysis of the fossil record and reconstruction of phylogenetic trees and 
networks, evolving virtual communities of organisms using simple, appropriate computational 
models, is a powerful approach towards understanding the emergence of innovations and testing 
hypotheses. Such models are usually qualitative in their goals and definition (Langton 1995; Adami 
1998; Kutschera and Niklas 2004) although they can provide relevant interpretations for statistical 
patterns of extinction and diversification (Solé et al., 2002; Newman and Palmer 2003). 
Macroevolutionary patterns are, under these simplified pictures of reality, grounded in the existence 
of processes that cannot be captured by any simple extrapolation from the species-level picture. The 
term macroevolution is used here in relation toevolutionary events characterized by qualitative 
changes in structural, system-level properties. These changes are usually  due to the presence of 
metastable states associated to complex genotype-phenotype mappings. In physics, metastability 
refers to the presence of long transient times that a given system spends in a given state (which 
appears steady) before it shifts (usually on a short time scale) to a new state, which can also be itself 
metastable (Crutchfield, 2003). The reader can easily  identify  our metastable states and the 
transitions among them as surrogates of the stasis and punctuation concepts used in evolutionary 
theory. The nature of metastability and why a transition takes place is of course at the core of the 
causal origin of punctuations. That necessarily  means that  the models need to allow for deep 
qualitative changes and in particular the rise of innovations, but they  need also to consider a given 
range of scales and address well-defined questions. Such choices require simplifications, which 
often are in sharp contrast with the  More importantly, as will be described below, simple models of 
macroevolution that largely ignore most details (such as biological traits characterizing a given 



Figure 1. In silico models of evolutionary dynamics beyond the gene-based level involve several 
key ingredients, such as space (a) in Avida simulations (see text), a physical description of mobile 
parts (b) used to evolve 3D organisms in a given physical environment under given selection 
pressures (image by Zach Winkler using Stellar Alchemy package). Within the context of plant 
development, and structural principles of branching rules (c) along with physical constraints 
associated to efficiency  in gathering light or having mechanical resistance are able to obtain optimal 
shapes similar to their natural counterparts. Models based on genetic algorithms and a general 
framework allowing communities of agents to interact,  such as Holland’s Echo model, allow to 
consider in a more or less explicit way the presence of hierarchies of organization, as outlined in 
(d), redrawn from Hraber and Milne, 1997.



species) would seem to be compromised in their explanatory power. At first sight, we would dismiss 
them for being too naïve. Yet, we have been learning over the last decades that some universal 
patterns of organization seem to pervade the way complexity  rises and falls over time and that 
includes biological complexity (Kauffman 1993; Solé and Bascompte 2007; Solé 2011). These 
patterns span multiple scales, from the ups and downs of population-level dynamics (extinction, 
diversification, recovery) to the emergence of morphological programs. Some levels allow 
quantitative comparison between model and field data (this is the case of diversity patterns) 
whereas others can be compared at the logical level. The later would be the case for the emergence 
of minimal genetic modules allowing morphological innovations to occur and evolve, the 
emergence of a nested structure involving different interdependent structures or the development of 
given features such as evolvability or robustness. Here, the exact details of how interactions 
between genes or cells take place might be less important than the observation of the novelty. The 
logic structure of interactions among subunits and the potential for generating complex structures is 
what really  matters. More interestingly, models allowing evolution to occur can also allow 
interactions between organisms and their environment, and the coevolution of such interactions. 
One example of such scenario will be discussed below.

Here we will briefly consider some examples of in silico models of large-scale evolution, where 
key innovations are shown to happen. These models (which we will compare) contain relevant 
ingredients but are also limited in their scope. Some of them consider simplified agents described 
by a genome but also by  a spatial distribution of agents (figure 1a), while others (figure 1b-c) 
introduce an explicit definition of individual organisms in different detail. For some of these 
systems (like Echo, figure 1d, see below) the model allows to take into account several levels of 
complexity in the evolutionary and ecological hierarchy. In our context, hierarchy refers to different 
levels of organization associated to increasingly larger temporal and spatial scales. Such levels often  
involve a nested structure, with simple components (chemical reactions, cells or small programs) on 
the lower level and complex organizations (such as ecosystems or chemical reaction networks)  on 
the higher one. If morphology were taken into account, the nested character of the virtual creatures 
should reflect a natural sequence of transitions from single-cell individuals to cooperating 
aggregates and eventually artificial organisms displaying characteristic life cycles. Because of the 
computational limits of managing embodied creatures, this particularly  relevant nested hierarchy 
(McShea 2001) is often missing from most simulation models of evolution. Nevertheless, each of 
these approaches address different, although ultimately related, questions. The most important 
message from them is that, despite their intrinsic simplicity, they  are able to display remarkable, 
sometimes unexpected transitions to novel forms of organization. 

The potential for innovation, and the fact that it often produces structures and patterns strongly 
similar to those found in the large-scale evolution of life, supports a much more fundamental view 
of the world. This view, based on the physics of complex systems and our perception about the 
presence of constraints along with universal properties proposes that there are organizing principles 
that can be applied not just to evolution of living structures, but to any kind of adaptive system able 
to change. Afterwards, we will present our model approach to macroevolution, at this point centered 
on early events associated with primitive life forms predating the emergence of true developmental 
programs and complex life cycles (Solé and Valverde 2012). The model is able to properly illustrate 
the relevance of considering altogether genetic, ecological and physical components of evolutionary 
dynamics.



EVOLUTION OF DIGITAL ECOLOGIES

 The term universality is well known within physics and pervades our current view of 
complexity (Solé and Goodwin, 2001; Solé 2011). It refers to the (sometimes surprisingly) robust 
macroscopic behavior exhibited by simplified models of real systems. This is dramatically 
illustrated by models of social or economic behavior, where extremely simplified approximations in 
which humans are replaced by random agents behaving almost as flipping coins and imitating the 
behavior of each other are often able to reproduce quantitative, nontrivial patterns (Ball 2004). In a 
very different context, RNA folding dynamics has been studied using string models where only a 
toy model physics is kept and most molecular complexity  is ignored  (Schuster et al., 1994; Huynen 
et al., 1996; van Nimwegen et al, 1999; Fontana and Schuster, 1998) and yet capture the most 
important aspects of the landscape structure, evolvability and robustness. This example is 
particularly relevant in our context, since the model illustrates how innovations suddenly emerge 
and how are they related with landscape structure. If universal dynamical patterns pervade 
macroevolution, the emergence of novelties would be ultimately  understandable. The study of in 
silico complex systems and their space of possible designs has clearly revealed, at least in some 
cases, that such universals are present. The examples discussed below illustrate the potential of 
recreating evolutionary trajectories by means of models that necessarily introduce great 
simplifications. In this section we summarize previous work and the major achievements obtained 
by using computational models involving agents with different levels of internal complexity, where 
the evolutionary dynamics take place without an explicit consideration of the organismal structure, 
its anatomical and physiological properties or developmental programs.

The first attempts to simulate the evolution of complex ecosystems, composed of individuals 
with the potential to evolve, started with the rise of computers after the second World War (Dyson, 
1998; 2012). The first simulation experiments of macroevolution within computers were performed 
by Nils Barricelli who used ENIAC, the first computer to be used in scientific research (Baricelli 
1961, 1962). His work had little impact, probably because of his original viewpoints and the still 
unknown potential of computational methods, particularly among biologists. Barricelli's work was 
encouraged by the early contribution of mathematician John von Neumann, who develped the first 
abstract model of a self-replicating machine (von Neumann,, 1966; Sipper 1998; Freitas and merkle 
2004; see also Solé 2009). Von Neumann contribution actually provides a perfect illustration of the 
potential explanatory power of even abstract theoretical models of living systems. In trying to 
define what type of machine would be able to replicate itself, and years ahead of molecular biology 
and our knowledge of DNA structure and function, von Neumann's result was a system that 
contained an internal description of itself (as it occurs with DNA) which needs to be replicated 
along with the rest of the machinery, which we easily identify with polymerases and other 
components of real cells, This machine was operating in an environment full of energy and the 
required building blocks and thus the so called “kinematic model” did not involve ecological factors 
nor limiting resources. Barricelli made a step in this direction by considering populations of 
interacting digital organisms described in terms of small programs.Those ideas remained frozen 
until Thomas Ray, an ecologist working on biodiversity  in rainforest ecosystems, explored similar 
questions using much faster and more efficient computers. Driven by the question of how such 
great numbers of species emerge and persist in complex ecosystems, Ray ended up  building a 
simulation model based on a set of computer programs competing for the RAM memory of the 
computer and having the potential to self-replicate and -more importantly- do it  with small mistakes 
(Ray 1991).  The computer programs did not inhabit  a real space. Instead, they were stored in 
available memory positions and every program could interact with any other one.



Figure 2. Basic  scheme of  the components  of the  CHIMERA  model (Solé and Valverde, 2012). 
The system is confined within a  rigid cube.  Nutrient particles fall from the top layer (a) 
experiencing physical forces. Cells also experience the same forces, as described by Newton’s laws 
(b). Additionally, cells (c) and particles get  degraded. Cells can interact with the boundaries of the 
system (e) as well as between them (f). Cells increase in mass everytime they  collide with a nutrient 
particle (g) if they  have the right internal metabolism. A detailed explanation of the rules is given in 
(Solé and valverde 2012).

Under the memory constraints imposed by finite computer resources, the so-called Tierra model 
was able to show how some evolutionary innovations can spontaneously develop. In particular, 
some major transitions took place as soon as programs started to compete. An early event was a 
genome reduction innovation, related to the fact that shorter programs can replicate faster than 
larger ones. This occurs when parts of the coded program can be removed with no consequences. In 
that respect, redundant pieces of code could be deleted with no harm. Later on, shorter programs 
emerged, unable to replicate themselves. In other words, parasites came to (digital) life. 
Hyperparasites, i. e. programs able to replicate using pieces of code carried out by parasites, came 
later, and some programs developed the capacity  for exchanging parts of their codes, mainly as a 
response to escape from parasites (see Hamilton et al. 1990; see also Hillis 1990) thus define an 
innovation that we can label as a primitive version of sex (Ray 1991, 1994, 1998). Eventually, 
groups of slow-replicating programs were able to replicate faster by cooperating among them.

Tierra’s approach was followed by several versions, among them the artificial life platform Avida 
(Adami and Brown, 1994; Adami 1998; Adami 2006) that included a spatially extended definition 
of the system. The local nature of interactions makes it  possible to observe spatial segregation  of 
individuals (see figure 1a). This system also allows for exploration of questions related to 
macroevolutionary  theory  (Chow et al 2004; Yedid and Bell, 2002).  The local range of interactions 
is actually very  important, since it provides a great source for diversification tied to limited 
competition (Solé and Bascompte 2007). The described spatial dynamics, a genome-level 



description of individuals including epistatic interactions (Lenski et al. 2003) and the possibility of 
defining a core metabolism based on the internal logic (Adami 2006) makes Avida particularly 
suitable for in silico experiments of evolution. Interestingly, evolutionary paths are very often 
punctuated. Such a dynamical regime has been interpreted in terms of a tendency to increased 
instability (Adami 1999), although a much more general scenario might actually be at work 
involving neutral landscapes.

Punctuated patterns of change have also been reported from models of ecosystem evolution 
based on a more abstract conception of genomes, such as Echo model (Holland 1992, Hraber and 
Milne 1997, Smith and Bedau 2000). It was originally designed as a model for evolving general 
complex adaptive systems. The term ”“adaptive” refers to a system composed by many parts 
(individuals, cells, organisms etc) displaying adaptation, meaning the potential of processing 
external information and modifying their behavior accordingly. This capacity for adaptation is often 
referred to as agency and those individuals of components capable of adaption are named agents. In 
Echo, individuals have haploid genomes and, like Avida, are located on a two-dimensional lattice 
(fig. 1d, bottom). Each individual contains a rather abstract definition of its properties as well as a 
given storage capacity, defining its interaction with available resources. Because Echo was defined 
in such general terms, it  was possible to use it for modeling general problems, such as the 
emergence of strategies in theoretical game frameworks. Perhaps for this reason, its comparison 
with biology is more difficult (Hraber and Milne, 1997; Smith and Bedau 2000). In particular, the 
specific ways in which agents interact or the difficulties of properly defining a species limits its 
potential to address interesting questions concerning macroevolutionary changes. In this context, we 
should mention that most models of artificial evolution incorporate a vague definition of species 
and the cloud of “genomes” associated to the existing pool of strings should be seen more as a 
quasispecies (Eigen and Shuster, 1977). Those models incorporating programs coding for genome 
functionality and introducing matching allow to more properly  identify clusters of closely  related 
genomes that can be considered properly defined species. 

Although a critical view to the original Tierra work (Gould 2002) suggested that some results 
should be expected (and are thus not truly novel), further work in this field has confirmed the 
existence of sudden transitions as a rather generic feature. The main lesson from these models is 
that punctuated change and the emergence of novelty seem to be intrinsic properties of complex 
systems. These models certainly  lack a number of other interesting properties, which are especially 
important when comparing them to macroevolutionary patterns seen in the fossil record. As we will 
discuss below, an important part of what might be missing in this type of model is the presence of 
embodiment (a physical description of individuals within a given external context), and a 
description of the environment that allows agents to interact with it and eventually  modify its 
properties.

EVOLVING MORPHOLOGIES

Concerning the embodiment problem, considerable efforts have been made in developing 
evolutionary  models of organisms having a well-defined spatial structure (beyond the genotype) 
and, when possible, a physical description close to some phenotypic representation (Eggenberger 
1998; Doursat 2008, Newman and Bhat 2008, Prusinkiewicz and Lindenmayer 1990). An early 
attempt to this direction was provided by Karl Sims (1994a) who examined how physically defined 
creatures evolved, including in their description a genotype in terms of a directed graph, which was 
used to define a neural-like control of mobile parts and a set  of connected blocks. Such pieces can 
move and define the basic physical modules, only constrained by the physics and the presence of 



other neighboring elements. Using artificial selection operating at the level of efficient  movement 
(how far can you displace in a given time scale) it  was shown that, once a given optimization 
problem was defined, evolved creatures with more or less repeatable features were obtained. In 
Figure 1b we show one of these creatures, evolved by means of a standard evolutionary algorithm. 
This creature has been generated in a 3D liquid medium where most optimal organisms have to 
develop an efficient movement.  An interesting observation emerging from these experiments is that 
some evolved forms remind us of some well-known forms of locomotion displayed by real 
metazoans. These include fish and snake-like movements. However, we also notice a large number 
of evolved structures to little resemblance with real life forms. This might be an inevitable result of 
the limitations associated with the model or might actually  involve something deeper: the artificial 
constraints imposed by the shapes chosen to generate the building blocks. Since the geometry  of the 
blocks is rather artificial and include considerable rigidity, some important limitations to the 
potential degrees of freedom should be expected.

Evolved creatures like the ones described above are certainly appealing and have been useful in 
initiating a more ambitious (but still little explored) agenda of evolutionary dynamics. However, the 
current state-of-the-art model is rather limited for a number of reasons. One limitation already 
mentioned is that imposed by the building blocks used in these simulations. Another one is the 
limitations in computer time associated with modeling populations of creatures, which is highly 
prohibitive. Moreover, individuals move and evolve in space, and no other selection process, except 
for their performance in moving on their medium, is at work. Since no constraints are operating at 
the level of finite resources, but especially in terms of the feedbacks with the environment, little is 
obtained in terms of interesting adaptations. Improvements included using pairwise competition 
between a reduced number of creatures (Sims 1994b). Some simple modifications, including the 
role played by  substrate adhesion or even its composition (many interesting innovations can be 
described in terms of how organisms dealt with sediments and bioturbation) would provide a better, 
and perhaps richer, view. Additionally, much larger populations and a more relaxed definition of the 
physical blocks should help in comparing the resulting communities with those examples from the 
fossil record, suggesting a major role for competition. Finally, there is an obvious limitation related 
with the way the organismal form is generated (see Erwin 2011 and references therein). The whole 
structure does not result from a developmental process. Instead, the absence of a true developmental 
program forces a predefined (though complex) mapping between the basic genotype description and 
the phenotype.

Introducing the developmental rules that shape the organism is a key ingredient in validating 
macroevolution models in silico. It seems clear that without connecting development and evolution, 
a large part of the whole picture will simply  fall apart. But the introduction of developmental 
processes, even at a simplified level, is one of the most difficult tasks faced by  computational 
models. Not surprisingly, such an ingredient has been largely ignored by most model approaches to 
macroevolution. Two successful counterexamples are the Niklas approach to the landscape of 
ancient vascular plants (Niklas 1994; Niklas 1997 and references cited) and related approximations 
(Prusinkiewicz and Lindenmayer, 1990) where branching patterns and the underlying 
morphogenetic constraints are implicitly  included. By using an explicit  form of fitness function, 
Niklas was able to define a morphospace of potential plant  forms where each axis was associated 
with a well-defined selective trait. Light  capture, mechanical resistance and seed production where 
(roughly speaking) the basic axes. Starting from a given initial condition representing a primitive, 
very simple form, an evolutionary algorithm based on adaptive walks (Kauffman and Levin, 1987) 
allowed for exploration of such space by introducing small modifications of existing structures. 
These mutations are accepted only when there is an increase in fitness, and in this way we obtain 



different trajectories depending on the number and nature of the imposed selective constraints. The 
resulting shapes are remarkably  similar to those expected with efficient structures in different 
habitats and also while looking at the evolutionary time scale. 

A different, and very promising avenue considers the role of “generic” physical mechanisms of 
morphogenesis that  are not the result of complex regulatory  processes. Instead, physical forces 
including gravity, adhesion or diffusion are considered (Newman and Comper, 1990). The interplay 
between these mechanisms allow for spontaneous pattern formation through segregation of cell 
types. Some of these generic, pattern-forming mechanisms predate the early history of multicellular 
life forms, along with others controlled by genetic circuits (Forgacs and Newman 2005). Using 
some of these generic mechanisms, an evolutionary model of form can be constructed. This was 
made in (Hogeweg 2000a, 200b), where the mechanisms of morphogenesis, defined over 
populations of multicellular artificial organisms, are evolved. Hogeweg’s approach considers the 
growth of a simulated embryo, including a gene network description, adhesion among cells, cell 
division and death, cell migration and differentiation. Adhesion is introduced using very simplified 
but effective physical models (Graner and Glazier, 1992; Glazier and Graner 1993; Sawill and 
Hogeweg 1997; Podgorski et al, 2007) and is one of the main players influencing the evolutionary 
dynamics of these virtual metazoans and their potential for diversification, consistent with the role 
played by development in the context of morphological radiations (Eble 2003). As pointed out by 
Hogeweg (2000b) differential cell adhesion (consistent with its in metazoan evolution) is regulated 
by the gene network affecting cell movement, division, growth and death and communication 
between cells through cell-cell interactions. The model leads to a rich variety of forms. Although no 
developmental program was present, the choice of the potential phenotype and a properly  defined 
fitness function shows that approximation to the evolution of biological form can be successful 
provided that the right variables are chosen.

One of the most important results coming from Hogeweg’s work is the existence of a neutral 
landscape of possible phenotypes that pervades the punctuated nature of transitions (Hogeweg 
2000b; see also Fontana and Schuster, 1998). Long periods of stasis are characterized by slow 
increases in fitness as small variations in phenotype are achieved. Selection for diverse gene 
expression patterns is used (see also Solé et al., 2003). Such choice can be justified by  the well-
known trend. The number of cell types is a good measure of complexity, which is known to increase 
through metazoan evolution (Carroll, 2001, 2005; Valentine et al., 1994). Increases in cell type 
number provide a high potential for further evolution of anatomical and functional complexity, 
essentially  through division of labor and the formation of specialized tissues (Maynard-Smith and 
Szathmary, 1995). Since the imposed selection pressure is rather generic, no special constraints are 
posed on the way genes (here defined as a Boolean network, see Kauffman 1993) interact and 
influence cell arrangements; no particular, predefined architectures and developmental plans are 
favored. The model is able to evolve complex forms, and in the process of evolving them, different 
remarkable changes take place. Complex shapes and some familiar ways of obtaining them (such as 
tissue engulfing) appeared and complex interactions between apoptosis or migration emerged. As 
pointed out  in  (Hogeweg 2000a), morphogenesis itself emerges as a byproduct of optimization for 
cell diversity. It  is worth noting that other works involving cell type richness as a fitness function 
favour the explosion of pattern forming motifs as soon as a threshold of genetic complexity is 
reached (Solé et al., 2003).

The richness of relevant results obtained from the previous models is something we cannot 
ignore. Simple models are able to reproduce some key traits of evolutionary dynamics. Some 
models suggest that artificial and real evolutionary  patterns share important commonalities. A 
missing ingredient, is the potential for feedbacks between developmental processes and the 



ecological scale. Such feedbacks, if present, can trigger major transitions. The next section presents: 
a simple example of a model ecosystem where cellular interactions, the evolution of adhesion 
properties and a physical description of cells and their interactions unleash a large-scale 
evolutionary change.

Figure 3. Emergence of a major innovation at the ecosystem-level in the CHIMERA model. The 
population dynamics (a) of cells and nutrients is coupled with the development of cell aggregates 
and the interaction between cells and their environment (b). A summary of some of the events is 
displayed in (c-f) where both the trajectories in efficient space (left column) and the actual 
distribution of cells in the system (right) are shown. After a transient, the whole community 
structure gets inverted and the nutrient  flows completely  modified. As a consequence, a new 
community structure emerges. 

EMBODIED EVOLUTION OF NOVELTIES

The previous models teach us something important. Even under rather limited assumptions, some of 
the key innovations that mark the large-scale pattern of evolution seem to emerge. If we introduce 
the appropriate ingredients associated with the emergence of forms, whether or not tied to a genetic 
network, some major innovations to arise. In this context, embodiment seems important in two 
relevant ways. Embodiment provides (if properly defined) a selection level that can be made 
explicit  and well connected with an external environment where selection pressures take place. On 
the other hand, embodiment results from the process of development responsible for the 
construction of the body (Forgacs and Newman 2005). An evolved organism has a size and shape 



that largely results from both internal rules of construction along with constraints imposed by the 
external world.

A more general set of questions should be considered in order to fill the chasm between these 
two well-defined scenarios. These questions pervade some of the key problems associated with 
expanding the modern synthesis. In particular, how the interaction of physical context, cell-cell 
adhesion properties, and ecological and genetic factors favor the emergence of cell aggregates? 
How does the environment modify or influence the evolution of cell diversity and cell-cell 
interactions? Is there a role for spatial embodiment in favoring the emergence of innovations? Here 
such a pre-body  plan scenario and its potential for generating complexity is explored by allowing a 
physically embodied model of a cellular community to freely evolve. As will be shown below, a 
simple model of physically interacting cells with adhesion properties starting from a set  of 
independent, genetically identical cells exploiting a single energy resource (from a repertoire) 
evolves in time towards a spatially  segregated community involving a trophic chain. The ecological 
network includes both a population of generalists feeding on all food sources available along with a 
population of specialized detritivores. The transition from the original monomorphic population to 
the spatially  organized aggregate with ecological structure takes place through the emergence of an 
innovation grounded in evolving adhesion between cells and walls as well as cell-cell adhesion. In 
spite of its simplicity, it fairly  well illustrates the value of this type of model to explore the potential 
for niche creation and innovation of even simple embodied evolution models. The creation of new 
niches is actually  an important aspect of innovation, since they naturally  define new context where 
novelty can arise.

All the models described above lack several components that seem to be required in order to 
obtain satisfactory results. Phenotypic features decoupled from environmental clues might fail to 
properly  address the nature of innovations. Some forms are likely to appear because there is no true 
selection pressure and potential sources of convergence might actually  correspond to limited 
potential repertoires. Here we consider a new model approach that intends to include within the 
same framework several key ingredients spanning different scales. In our modeling approach, the 
so-called CHIMERA model, evolution takes place within a spatially confined environment where 
physical forces play a role as external constraints. Organisms are also spatially embedded structures 
and their embodiment is relevant as it provides the proper link with the external world and the biotic 
scenario where other organisms inhabit.

Our starting point here is a population of single-cell organisms, where each cell in the initial 
population is identical. The spatial domain is a cube with floor and walls, with a vertical 
gravitational field and external fluctuations of a given intensity. In figure 1 we display a basic 
scheme of the system considered here along with the different components of the physical 
interactions that are taken into account. This framework is somewhat related to recent experimental 
designs using yeast strains of cells in order to explore in vivo scenarios for the emergence of 
multicellularity under the action of gravity and selection for size of aggregates (Ratcliff et al., 
2011). It was shown that, under the selective pressure associated to selecting the largest aggregates 
that formed in the experimental design, aggregates of a given average size and internal 
differentiation were selected. 

Specific physical rules are introduced in order to simulate cell-cell collisions. Particles are 
produced constantly at the top of the box, falling under the simulated gravity  and degrading at  a 
constant rate. Initially, we introduce a cell population able to exploit only one of these food sources 
with maximal efficiency. The technical details (particularly the implementation of the Newtonian 



physics used to move cells and particles as well as managing their interactions) are described in 
(Solé and Valverde 2012), but a summary of the key rules can be made as follows:

1. Movement: both particles and cells experience a gravitational field as well as a fluctuating 
velocity  field associated with a turbulence-like changing environment. Particles are removed 
from the system with some probability. The total number of different types of particles is 
constant (we have used two, four and six types with similar results). 

2. Each cell carries a given set of internal parameters and variables: they have a given size and mass 
and they have a list of possible particle types that they can take and the efficiency  of the grazing 
for each particle type. 

3. Cells can attach to the surface of the walls with some probability. When they do, adhesion forces 
are equivalent to a physical, elastic string connecting cell and wall surface. Another adhesion 
probability  (and another type of spring) is used to make cell-cell adhesion. At the beginning none 
of these adhesion features are present. 

4. If a cell (which has a given size) interacts (collides) with a given particle, it  ingests this particle 
when the efficiency for metabolizing that type of particle is non-zero. The value of the efficiency 
gives the probability of ingestion. If taken, the mass of the particle gets transformed into mass of 
the cell. 

5. There is a maximum cell size allowed. Once reached, the cell splits into two daughter cells with 
the same size. There is a minimum cell size allowed: if cell mass drops below this value, it dies 
and disintegrates into a number of detritus particles proportional to its original size. Detritus 
particles are also allowed to be part of the nutrient intake of cells (initially, the efficiency of 
detritus consumption is zero). 

6. Each time a cell divides, mutations can occur in the daughter cell. A new type of particle can 
become accessible with small efficiency (and the previous efficiencies are reduced) and thus the 
new cell is more generalist. Alternatively, the existing efficiencies might experience changes 
(always keeping the trade-offs associated with specialization versus generalism). Similarly, 
adhesion to the medium or to other cells can cause mutations. In this way, the potential to form 
cell aggregates increases and cells can also climb the walls, offering a larger area for capturing 
particles. 

The model is simple and only captures a basic physical interaction framework along with simple 
rules of mutation, growth and death. Selection of different phenotypes is thus affected by the way 
cells are able to improve their grazing efficiency. But in spite of this simplicity, the model is able to 
evolve towards a rather unexpected organization. In figure 3 we illustrate some of the key events 
that occur in a typical simulation run. In (a) we show the overall pattern of population change (in 
terms of numbers of cells and particles). As can be seen, the population grows until it stabilizes 
around 700 cells. The change in the number of particles in the environment (lower curve in (a)) is 
much more complex. At the beginning, particle population decays (as expected) and stabilizes for a 
while, then starts to drop and keeps decaying. If we also follow the evolution of adhesion 
probability  to the walls, we can see (figure 2b) that a rapid increase starts at some point and grows 
in an accelerated way until its maximum is achieved. The plot of the average position of cells along 
the vertical axis (figure 3b, inset) illustrates this qualitative change: initially all cells are at  the 
bottom but, with increased cell-wall adhesion they start  to occupy higher positions until a whole 
inversion of the cell population occurs.

Figures 3c-f illustrate what has taken place. Each plot shows an idealized picture of an efficiency 
space (left column) with two efficiencies e1 and e2 associated with incoming particles and a third 



one ed associated to processing detritus particles. The right column shows the actual location of 
cells with a color-coded probability of cell-floor attachment. The flow of particles has been 
removed for clarity. As the evolutionary experiment proceeds, a better way of capturing particles is 
reached by  increasing the overall surface they can offer to the flow. This is achieved by an increase 
in the probability of cell-wall attachment, but also by an increase in the cell-cell adhesion. The later 
allows cell aggregates to prevent cells from falling to the bottom.  As this occurs, the generalist 
aggregates become able to graze on all kinds of particles with moderate efficiency. However, as 
soon as some particles hit the roof, they actually interact with the direct source of particles and start 
attaching to the upper boundary of our spatial domain, eventually growing there and strongly 
reducing the downstream particle flow. This defines a major change in the community  organization, 
and it actually  creates a new niche: dead cells are transformed into detritus and the bottom layer 
gets enriched with them. As time proceeds, so does the emergence of a new group of cells that 
become specialists: a detritivore layer appears and a stable food web with three layers has been 
created. Given the fluctuating nature of detritus particles, a strong cell-floor adhesion is no longer 
useful and this parameter evolves to small values.

Figure 4. Multicellular aggregates with characteristic size and exhibiting compact shapes are 
obtained when we allow more complex physical interactions among cells to occur. Here we show 
an example of such aggregate, which appears on the top of our 3D medium. Such aggregates remain 
cohesive and attached for very long times, and often involve cooperation among cells.

The previous result is interesting in several ways. On the one hand, it illustrates the potential for 
generating a higher-level organization where cell aggregates do not strictly cooperate in terms of 
sharing resources, but they do cooperate in maintaining the coherence through the innovation 
process. The ”“discovery” of the source of nutrients can be interpreted in terms of an innovation 
that allows the emergent system to act in terms of ecosystem engineering: the new organization 



provides an opportunity for further change and speciation. As adhesion levels increase, cell 
aggregates are favored. It is this increased adhesion, which slowly favors the grazing, that 
eventually triggers the ecological transformation. Once the new top-floor community is organized 
as a large cell aggregate, flows are transformed and along with the detritivore niche, a cell-level 
attribute (adhesion parameters) is modified. We can see here that the feedbacks between different 
levels are strong and required in order to understand how the transition from a generalist-dominated 
community  to a structured community displaying new niches can occur. At a simple level, we can 
also see that the hierarchy  cannot be easily broken into upper and lower layers without missing 
important information.

DISCUSSION

In silico models of evolutionary change should be natural components to consider in our 
exploration of macroevolutionary patterns. Previous models might have been limited in offering a 
solid ground for understanding real processes. Nevertheless, they offer, along with experimental 
dynamics using microbial populations (Lenski and Travisano 1994; Elena et al., 1996; Elena and 
Lenski 2003), what no other approach can: an opportunity to recreate the past and explore how 
complexity can emerge over time. The previous example is an illustration of how evolutionary 
complexity can emerge from a rather simple set of rules, provided that we give an opportunity  for 
developmental and ecological processes to interact. Our artificial creatures are autogenic engineers 
(Jones 1994): they change their environment mainly  via their own physical structures. The success 
of our model might be due to the complete set of key components that we allow to interact freely. 
By using space, diverse ecosystems can be built through spatial segregation of subpopulations. By 
allowing simple components of pattern formation or aggregate generation, it is possible to introduce 
simple forms of cooperative dynamics. By embedding the virtual creatures within an ecosystem 
where physics plays a role, we allow for selection pressures. Previous models have been very useful 
in providing insight into relevant questions concerning the origins of evolutionary innovation, but 
their answers are necessarily limited, and new modeling approaches will be required if we want 
them to help in defining a new synthesis. The variety of ingredients incorporated by mainstream 
modeling approaches is considerable (Table 1).

The large-scale development of evolution is a single-experiment event. Such an event, as it 
happens with our own universe, starts with an explosion (Marshall 2006). Reconstructing the pace 
of past events has been a successful enterprise (Fedonkin 2007; Erwin et al 2011). Moreover, evo-
devo provides a unique way  of understanding the potential sources of morphological innovation at 
the organism level and how they might have participated some of the major transitions. However, 
there are several layers of complexity  that might require other theoretical and computational 
approaches, able to connect different scales.



Table 1. A comparative list of features exhibited by the in silico models of evolution discussed in 
the text. Here we have used a list  of relevant features and listed their presence or absence. The table 
reveals a wide diversity of combinations, often related to the particular scope of the problems being 
addressed. The last feature (network structure) refers to the presence or absence of a food web 
organization and thus an explicit ecology.

Some basic conclusions have to be extracted from the previous analysis, with important 
consequences for future models of macroevolution:

1. Despite their differences, several important trends seem to be shared by most in silico models. 
The presence of punctuated equilibrium seems to be the most obvious one. This result appears 
consistent with the suggested universality of neutral landscapes where complex systems evolve 
(Schuster et al., 1994; Huynen et al., 1996; van Nimwegen et al, 1999; Fontana and Schuster, 
1998; Wilke 2001; see also Macia and Solé 2009; Raman and Wagner 2012). Such universality is 
grounded in the assumption that these systems share a fitness landscape percolated by  large 
domains of neutrality. The landscape itself is stable, since it is assumed that genome complexity 
or how organisms feedback with their environment can be neglected. This assumption can be 
taken as a good approximation under some circumstances, but certainly not when dealing with 
complex organisms on very long time scales. A more general framework is needed.

2. Embodiment has been ignored by most modeling efforts due to its costly implementation. This 
method, however, provides the right interface between the environment and organismal structure. 
As such, embodiment defines an essential piece of the genotype-phenotype mapping. Small 
improvements introduce further physical realism, such as directed interactions (and not just 
distance dependent, radial ones) enable a bigger potential to develop more complex structures. In 
figure 4 we show an example of the CHIMERA model after such improvement was made. 
Cohesive aggregates of some given average size are formed, defining a new level of 
organization. 

3. Most models ignore an essential but complex part of the organism: the generative plan for 
creation from a process of development. Decoupling development from evolution is problematic. 
The strong links existing between evolution and development ask for a serious attempt to connect 
them also in silico. In the present version of CHIMERA discussed here there is a linear mapping 
between the underlying genotype carrying as associated phenotype the set of numbers 
characterizing the individual’s efficiency. Future versions will introduce an explicit regulatory 
network and thus the potential for epistatic interactions which can evolve in time. Such networks 



might also help defining the requirements for minimal genetic toolkits able to facilitate the 
emergence of multicellular systems.

4. Typically, models of large-scale evolution decouple individuals (agents, organisms) from their 
environment except for their presence/absence from a given spatial location. Organisms gather 
resources whose only impact is to provide the appropriate energy to sustain individuals. In this 
way, ecosystem-engineering events will not be present and an important component of 
macroevolutionary  dynamics will be missing. Such coupling, which is bidirectional and cannot 
be broken in most cases, leads to a causal loop where two levels become dependent on each 
other. In our example, the requirement for efficient grazing favours an increase in adhesion rates 
which is further enhanced as aggregates of closely packed cells form on the boundaries of the 
system. Such aggregates are actually a primitive form of cooperation based on physical rules of 
attachment. The continuous set of changes (which we can think of in terms of a simple genome 
where each gene carries specific information) ends up suddenly when the evolved adhesion and 
growing aggregates trigger a major transition which actually  modifies the vertical organization of 
the whole ecology. None of the two series of events (increased adhesion and reorganization of 
nutrient flows) could be understood separately from each other. 

5. Properly designed experiments using virtual communities of organisms evolving in a given 
ecological and physical context allow us to test potential theories associated with the relevance of 
ecological interactions on the emergence of novelties. In silico models considering ecological 
levels of organization should be used in order to analyze the effects of extinctions and their 
subsequent recovery patterns, which have been explored in recent years using different 
approximations, particularly at the level of paleocommunity food webs (Solé et al, 2002, 2010; 
Roopnarine 2006). Although the problem has been also modeled using the Avida platform (Yedid 
et al 2012) by simulating external shocks on virtual communities of evolved, embodied creatures 
can provide a better source of insight, connecting multiple scales of the evolutionary hierarchy. 
In particular, it  can help understanding the interplay between evolving developmental programs 
after mass extinction and their role in shaping new ecosystems.

The existence of universal trends in large scale evolution might seem a rather bold idea. In the 
end, the paths followed by  evolutionary trajectories are tangled and seem unique. Even so, 
convergent dynamics might be widespread (Conway Morris, 2003). Such convergence is in itself a 
major component of evolution. Convergence is also a mark of universality  and the common laws 
pervading the physics of adhesion or diffusion are likely to constrain potential pattern forming 
mechanisms. Disparate systems often display very common traits (particularly  in their large scale 
patterns) associated with universal properties of the underlying dynamics. Such an idea has been 
used in macroevolution within the context of adaptive walks on rugged landscapes (Kauffman 
1989; 1983). Although this early work provided a great insight into the qualitative nature of 
innovation, it assumed that landscapes are static and that evolutionary changes are defined by 
climbing up on such fixed landscapes, as originally  proposed by  Sewall Wright. This picture might 
be satisfactory under some conditions, but  is unable to capture macroevolutionary transitions 
associated to ecosystem engineering and other key features.

Finally, we should mention that there is no perfect model for all scales. Models are useful as far 
as they  can answer a well-posed question (usually  at some given scale) or help to formulate 
questions in a well-defined way (Crutchfield and Schuster 2003). But in some cases, as it  occurs 
with our example of embodied evolution, different scales become tangled. Because different levels 
contribute to macroevolutionary dynamics, from changes in the gene network wiring within cells to 
the impact of a given species acting as ecosystem engineer, simulating these processes requires a so 
called multiscale modeling approach,  so that the actual interactions among levels, if any, can be 



characterized and understood. Such an approach is being successfully  used in many disciplines, 
including biology (Schnell et al 2007) and macroevolution appears to be a great candidate to follow 
the same path. 
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