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Éva Tardos
Dept. of Computer Science

Cornell University, Ithaca NY
eva@cs.cornell.edu

ABSTRACT
In a wide range of markets, individual buyers and sellers often trade
through intermediaries, who determine prices via strategic consid-
erations. Typically, not all buyers and sellers have access to the
same intermediaries, and they trade at correspondingly different
prices that reflect their relative amounts of power in the market.

We model this phenomenon using a game in which buyers, sell-
ers, and traders engage in trade on a graph that represents the access
each buyer and seller has to the traders. In this model, traders set
prices strategically, and then buyers and sellers react to the prices
they are offered. We show that the resulting game always has a
subgame perfect Nash equilibrium, and that all equilibria lead to
an efficient (i.e. socially optimal) allocation of goods. We extend
these results to a more general type of matching market, such as one
finds in the matching of job applicants and employers. Finally, we
consider how the profits obtained by the traders depend on the un-
derlying graph — roughly, a trader can command a positive profit if
and only if it has an “essential” connection in the network structure,
thus providing a graph-theoretic basis for quantifying the amount
of competition among traders.

Our work differs from recent studies of how price is affected
by network structure through our modeling of price-setting as a
strategic activity carried out by a subset of agents in the system,
rather than studying prices set via competitive equilibrium or by a
truthful mechanism.
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1. INTRODUCTION
In a range of settings where markets mediate the interactions of

buyers and sellers, one observes several recurring properties: Indi-
vidual buyers and sellers often trade through intermediaries, not all
buyers and sellers have access to the same intermediaries, and not
all buyers and sellers trade at the same price. One example of this
setting is the trade of agricultural goods in developing countries.
Given inadequate transportation networks, and poor farmers’ lim-
ited access to capital, many farmers have no alternative to trading
with middlemen in inefficient local markets. A developing country
may have many such partially overlapping markets existing along-
side modern efficient markets [2].

Financial markets provide a different example of a setting with
these general characteristics. In these markets much of the trade
between buyers and sellers is intermediated by a variety of agents
ranging from brokers to market makers to electronic trading sys-
tems. For many assets there is no one market; trade in a single asset
may occur simultaneously on the floor of an exchange, on crossing
networks, on electronic exchanges, and in markets in other coun-
tries. Some buyers and sellers have access to many or all of these
trading venues; others have access to only one or a few of them.
The price at which the asset trades may differ across these trading
venues. In fact, there is no “price” as different traders pay or re-
ceive different prices. In many settings there is also a gap between
the price a buyer pays for an asset, theask price, and the price a
seller receives for the asset, thebid price. One of the most striking
examples of this phenomenon occurs in the market for foreign ex-
change, where there is an interbank market with restricted access
and a retail market with much more open access. Spreads, defined
as the difference between bid and ask prices, differ significantly
across these markets, even though the same asset is being traded in
the two markets.

In this paper, we develop a framework in which such phenomena
emerge from a game-theoretic model of trade, with buyers, sellers,



and traders interacting on a network. The edges of the network con-
nect traders to buyers and sellers, and thus represent the access that
different market participants have to one another. The traders serve
as intermediaries in a two-stage trading game: they strategically
choose bid and ask prices to offer to the sellers and buyers they are
connected to; the sellers and buyers then react to the prices they
face. Thus, the network encodes the relative power in the structural
positions of the market participants, including the implicit levels of
competition among traders. We show that this game always has a
subgame perfect Nash equilibrium, and that all equilibria lead to an
efficient (i.e. socially optimal) allocation of goods. We also ana-
lyze how trader profits depend on the network structure, essentially
characterizing in graph-theoretic terms how a trader’s payoff is de-
termined by the amount of competition it experiences with other
traders.

Our work here is connected to several lines of research in eco-
nomics, finance, and algorithmic game theory, and we discuss these
connections in more detail later in the introduction. At a general
level, our approach can be viewed as synthesizing two important
strands of work: one that treats buyer-seller interaction using net-
work structures, but without attempting to model the processses by
which prices are actually formed [1, 4, 5, 6, 8, 9, 10, 13]; and
another strand in the literature on market microstructure that in-
corporates price-setting intermediaries, but without network-type
constraints on who can trade with whom [12]. By developing a net-
work model that explicitly includes traders as price-setting agents,
in a system together with buyers and sellers, we are able to capture
price formation in a network setting as a strategic process carried
out by intermediaries, rather than as the result of a centrally con-
trolled or exogenous mechanism.

The Basic Model: Indistinguishable Goods. Our goal in formu-
lating the model is to express the process of price-setting in mar-
kets such as those discussed above, where the participants do not
all have uniform access to one another. We are given a setB of
buyers, a setS of sellers, and a setT of traders. There is an undi-
rected graphG that indicates who is able to trade with whom. All
edges have one end inB ∪ S and the other inT ; that is, each edge
has the form(i, t) for i ∈ S andt ∈ T , or (j, t) for j ∈ B and
t ∈ T . This reflects the constraints that all buyer-seller transactions
go through traders as intermediaries.

In the most basic version of the model, we consider identical
goods, one copy of which is initially held by each seller. Buyers and
sellers each have a value for one copy of the good, and we assume
that these values are common knowledge. We will subsequently
generalize this to a setting in which goods are distinguishable, buy-
ers can value different goods differently, and potentially sellers can
value transactions with different buyers differently as well. Having
different buyer valuations captures settings like house purchases;
adding different seller valuations as well captures matching mar-
kets — for example, sellers as job applicants and buyers as em-
ployers, with both caring about who ends up with which “good”
(and with traders acting as services that broker the job search).

Thus, to start with the basic model, there is a single type ofgood;
the good comes in individisible units; and each seller initially holds
one unit of the good. All three types of agents value money at the
same rate; and eachi ∈ B ∪ S additionally values one copy of the
good atθi units of money. No agent wants more than one copy of
the good, so additional copies are valued at0. Each agent has an
initial endowment of money that is larger than any individual valu-
ationθi; the effect of this is to guarantee that any buyer who ends
up without a copy of the good has been priced out of the market
due to its valuation and network position, not a lack of funds.

We picture each good that is sold flowing along a sequence of
two edges: from a seller to a trader, and then from the trader to a
buyer. The particular way in which goods flow is determined by the
following game. First, each trader offers a bid price to each seller
it is connected to, and an ask price to each buyer it is connected
to. Sellers and buyers then choose from among the offers presented
to them by traders. If multiple traders propose the same price to a
seller or buyer, then there is no strict best response for the seller or
buyer. In this case a selection must be made, and, as is standard
(see for example [10]), we (the modelers) choose among the best
offers. Finally, each trader buys a copy of the good from each seller
that accepts its offer, and it sells a copy of the good to each buyer
that accepts its offer. If a particular tradert finds that more buyers
than sellers accept its offers, then it has committed to provide more
copies of the good than it has received, and we will say that this
results in a large penalty to the trader for defaulting; the effect of
this is that in equilibrium, no trader will choose bid and ask prices
that result in a default.

More precisely, a strategy for each tradert is a specification of a
bid priceβti for each selleri to which t is connected, and anask
price αtj for each buyerj to which t is connected. (We can also
handle a model in which a trader may choose not to make an offer
to certain of its adjacent sellers or buyers.) Each seller or buyer
then chooses at most one incident edge, indicating the trader with
whom they will transact, at the indicated price. (The choice of a
single edge reflects the facts that (a) sellers each initially have only
one copy of the good, and (b) buyers each only want one copy of
the good.) The payoffs are as follows:

For each selleri, the payoff from selecting tradert is βti,
while the payoff from selecting no trader isθi. (In the former
case, the seller receivesβti units of money, while in the latter
it keeps its copy of the good, which it values atθi.)

For each buyerj, the payoff from selecting tradert isθj−αtj ,
whle the payoff from selecting no trader is0. (In the former
case, the buyer receives the good but gives upαtj units of
money.)

For each tradert, with accepted offers from sellersi1, . . . , is
and buyersj1, . . . , jb, the payoff is

P
r αtjr −

P
r βtir , mi-

nus a penaltyπ if b > s. The penalty is chosen to be large
enough that a trader will never incur it in equilibrium, and
hence we will generally not be concerned with the penalty.

This defines the basic elements of the game. The equilibrium con-
cept we use is subgame perfect Nash equilibrium.

Some Examples. To help with thinking about the model, we now
describe three illustrative examples, depicted in Figure 1. To keep
the figures from getting too cluttered, we adopt the following con-
ventions: sellers are drawn as circles in the leftmost column and
will be namedi1, i2, . . . from top to bottom; traders are drawn as
squares in the middle column and will be namedt1, t2, . . . from top
to bottom; and buyers are drawn as circles in the rightmost column
and will be namedj1, j2, . . . from top to bottom. All sellers in the
examples will have valuations for the good equal to0; the valuation
of each buyer is drawn inside its circle; and the bid or ask price on
each edge is drawn on top of the edge.

In Figure 1(a), we show how a standard second-price auction
arises naturally from our model. Suppose the buyer valuations from
top to bottom arew > x > y > z. The bid and ask prices shown
are consistent with an equilibrium in whichi1 andj1 accept the of-
fers of tradert1, and no other buyer accepts the offer of its adjacent
trader: thus, tradert1 receives the good with a bid price ofx, and
makesw−x by selling the good to buyerj1 for w. In this way, we
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(c) Implicit perfect competition

Figure 1: (a) An auction, mediated by traders, in which the buyer with the highest valuation for the good ends up with it. (b)
A network in which the middle seller and buyer benefit from perfect competition between the traders, while the other sellers and
buyers have no power due to their position in the network. (c) A form ofimplicit perfect competition: all bid/ask spreads will be zero
in equilibrium, even though no trader directly “competes” with any other trader for the same buyer-seller pair.

can consider this particular instance as an auction for a single good
in which the traders act as “proxies” for their adjacent buyers. The
buyer with the highest valuation for the good ends up with it, and
the surplus is divided between the seller and the associated trader.
Note that one can construct ak-unit auction with̀ > k buyers just
as easily, by building a complete bipartite graph onk sellers and̀
traders, and then attaching each trader to a single distinct buyer.

In Figure 1(b), we show how nodes with different positions in
the network topology can achieve different payoffs, even when all
buyer valuations are the same numerically. Specifically, selleri2
and buyerj2 occupy powerful positions, because the two traders
are competing for their business; on the other hand, the other sellers
and buyers are in weak positions, because they each have only one
option. And indeed, in every equilibrium, there is a real number
x ∈ [0, 1] such that both traders offer bid and ask prices ofx to
i2 and j2 respectively, while they offer bids of0 and asks of1
to the other sellers and buyers. Thus, this example illustrates a
few crucial ingredients that we will identify at a more general level
shortly. Specifically,i2 andj2 experience the benefits ofperfect
competition, in that the two traders drive the bid-ask spreads to0 in
competing for their business. On the other hand, the other sellers
and buyers experience the downsides ofmonopoly— they receive
0 payoff since they have only a single option for trade, and the
corresponding trader makes all the profit. Note further how this
natural behavior emerges from the fact that traders are able to offer
different prices to different agents — capturing the fact that there
is no one fixed “price” in the kinds of markets that motivate the
model, but rather different prices reflecting the relative power of
the different agents involved.

The previous example shows perhaps the most natural way in
which a trader’s profit on a particular transaction can drop to0:
when there is another trader who can replicate its function pre-
cisely. (In that example, two traders each had the ability to move
a copy of the good fromi2 to j2.) But as our subsequent results
will show, traders make zero profit more generally due to global,
graph-theoretic reasons. The example in Figure 1(c) gives an initial
indication of this: one can show that for every equilibrium, there is
ay ∈ [0, 1] such that every bid and every ask price is equal toy. In
other words, all traders make zero profit, whether or not a copy of

the good passes through them — and yet, no two traders have any
seller-buyer paths in common. The price spreads have been driven
to zero by a global constraint imposed by the long cycle through
all the agents; this is an example ofimplicit perfect competition
determined by the network topology.

Extending the Model to Distinguishable Goods. We extend the
basic model to a setting with distinguishable goods, as follows. In-
stead of having each agenti ∈ B ∪ S have a single numerical
valuationθi, we index valuations by pairs of buyers and sellers: if
buyerj obtains the good initially held by selleri, it gets a utility of
θji, and if selleri sells its good to buyerj, it experiences a loss of
utility of θij . This generalizes the case of indistinguishable goods,
since we can always have these pairwise valuations depend only on
one of the indices. A strategy for a trader now consists of offering
a bid to each seller that specifies both a priceanda buyer, and of-
fering an ask to each buyer that specifies both a price and a seller.
(We can also handle a model in which a trader offers bids (respec-
tively, asks) in the form of vectors, essentially specifying a “menu”
with a price attached to each buyer (resp. seller).) Each buyer and
seller selects an offer from an adjacent trader, and the payoffs to all
agents are determined as before.

This general framework captures matching markets [10, 13]: for
example, a job market that is mediated by agents or employment
search services (as in hiring for corporate executives, or sports or
entertainment figures). Here the sellers are job applicants, buyers
are employers, and traders are the agents that mediate the job mar-
ket. Of course, if one specifies pairwise valuations on buyers but
just single valuations for sellers, we model a setting where buyers
can distinguish among the goods, but sellers don’t care whom they
sell to – this (roughly) captures settings like housing markets.

Our Results. Our results will identify general forms of some of
the principles noted in the examples discussed above — including
the question of which buyers end up with the good; the question
of how payoffs are differently realized by sellers, traders, and buy-
ers; and the question of what structural properties of the network
determine whether the traders will make positive profits.

To make these precise, we introduce the following notation. Any



outcome of the game determines a final allocation of goods to some
of the agents; this can be specified by a collectionM of triples
(ie, te, je), whereie ∈ S, te ∈ T , andje ∈ B; moreover, each
seller and each buyer appears in at most one triple. The meaning is
for eache ∈ M , the good initially held byie moves toje through
te. (Sellers appearing in no triple keep their copy of the good.)
We say that thevalueof the allocation is equal to

P
e∈M θjeie −

θieje . Let θ∗ denote the maximum value of any allocationM that
is feasible given the network.

We show that every instance of our game has an equilibrium,
and that in every such equilibrium, the allocation has valueθ∗ —
in other words, it achieves the best value possible. Thus, equilib-
ria in this model are alwaysefficient, in that the market enables the
“right” set of people to get the good, subject to the network con-
straints. We establish the existence and efficiency of equilibria by
constructing a linear program to capture the flow of goods through
the network; the dual of this linear program contains enough infor-
mation to extract equilibrium prices.

By the definition of the game, the value of the equilibrium allo-
cation is divided up as payoffs to the agents, and it is interesting to
ask how this value is distributed — in particular how much profit a
trader is able to make based on its position in the network. We find
that, although all equilibria have the same value, a given trader’s
payoff can vary across different equilibria. However, we are able
to characterize the maximum and minimum amounts that a given
trader is able to make, where these maxima and minima are taken
over all equilibria, and we give an efficient algorithm to compute
this. In particular, our results here imply a clean combinatorial
characterization of when a given tradert can achieve non-zero pay-
off: this occurs if and only there is some edgee incident tot that is
essential, in the sense that deletinge reduces the value of the opti-
mal allocationθ∗. We also obtain results for the sum of all trader
profits.

Related Work. The standard baseline approach for analyzing the
interaction of buyers and sellers is the Walrasian model in which
anonymous buyers and sellers trade a good at a single market clear-
ing price. This reduced form of trade, built on the idealization of a
market price, is a powerful model which has led to many insights.
But it is not a good model to use to examine where prices come
from or exactly how buyers and sellers and trade with each other.
The difficulty is that in the Walrasian model there is no agent who
sets the price, and agents don’t actually trade with each other. In
fact there is no market, in the everyday sense of that word, in the
Walrasian model. That is, there is no physical or virtual place
where buyers and sellers interact to trade and set prices. Thus in
this simple model, all buyers and sellers are uniform and trade at
the same price, and there is also no role for intermediaries.

There are several literatures in economics and finance which ex-
amine how prices are set rather than just determining equilibrium
prices. The literature on imperfect competition is perhaps the old-
est of these. Here a monopolist, or a group of oliogopolists, choose
prices in order to maximize their profits (see [14] for the standard
textbook treatment of these markets). A monopolist uses its knowl-
edge of market demand to choose a price, or a collection of prices
if it discriminates. Oliogopolists play a game in which their pay-
offs depend on market demand and the actions of their competitors.
In this literature there are agents who set prices, but the fiction of
a single market is maintained. In the equilibrium search literature,
firms set prices and consumers search over them (see [3]). Con-
sumers do end up paying different prices, but all consumers have
access to all firms and there are no intermediaries. In the general
equilibrium literature there have been various attempts to introduce

price determination. A standard proof technique for the existence
of competitive equilibrium involves a price adjustment mechanism
in which prices respond to excess demand. The Walrasian auc-
tioneer is often introduced as a device to explain how this process
works, but this is a fundamentally a metaphor for an iterative price-
updating algorithm, not for the internals of an actual market. More
sophisticated processes have been introduced to study the stabil-
ity of equilibrium prices or the information necessary to compute
them. But again there are no price-setting agents here.

In the finance literature the work on market microstructure does
have price-setting agents (specialists), parts of it do determine sepa-
rate bid and ask prices, and different agents receive different prices
for the same asset (see [12] for a treatment of microstructure the-
ory). Work in information economics has identified similar phe-
nomena (see e.g. [7]). But there is little research in these literatures
examining the effect of restrictions on who can trade with whom.

There have been several approaches to studying how network
structure determines prices. These have posited price determination
through definitions based on competitive equilibrium or the core, or
through the use of truthful mechanisms. In briefly reviewing this
work, we will note the contrast with our approach, in that we model
prices as arising from the strategic behavior of agents in the system.

In recent work, Kakade et al. [8] have studied the distribution of
prices at competitive equilibrium in a bipartite graph on buyers and
sellers, generated using a probabilistic model capable of producing
heavy-tailed degree distributions [11]. Even-Dar et al. [6] build
on this to consider the strategic aspects of network formation when
prices arise from competitive equilibrium.

Leonard [10], Babaioff et al. [1], and Chu and Shen [4] consider
an approach based on mechanism design: buyers and sellers reside
at different nodes in a graph, and they incur a given transporta-
tion cost to trade with one another. Leonard studies VCG prices in
this setting; Babaioff et al. and Chu and Shen additionally provide
a a budget-balanced mechanism. Since the concern here is with
truthful mechanisms that operate on private valuations, there is an
inherent trade-off between the efficiency of the allocation and the
budget-balance condition.

In contrast, our model has known valuations and prices arising
from the strategic behavior of traders. Thus, the assumptions be-
hind our model are in a sense not directly comparable to those un-
derlying the mechanism design approach: while we assume known
valuations, we do not require a centralized authority to impose a
mechanism. Rather, price-setting is part of the strategic outcome,
as in the real markets that motivate our work, and our equilibria
are simultaneously budget-balanced and efficient — something not
possible in the mechanism design frameworks that have been used.

Demange, Gale, and Sotomayor [5], and Kranton and Minehart
[9], analyze the prices at which trade occurs in a network, working
within the framework of mechanism design. Kranton and Minehart
use a bipartite graph with direct links between buyers and sellers,
and then use an ascending auction mechanism, rather than strategic
intermediaries, to determine the prices. Their auction has desirable
equilibrium properties but as Kranton and Minehart note it is an
abstraction of how goods are allocated and prices are determined
that is similar in spirit to the Walrasian auctioneer abstraction. In
fact, we can show how the basic model of Kranton and Minehart
can be encoded as an instance of our game, with traders producing
prices at equilibrium matching the prices produced by their auction
mechanism.1

1Kranton and Minehart, however, can also analyze a more gen-
eral setting in which buyers values are private and thus buyers and
sellers play a game of incomplete information. We deal only with
complete information.



Finally, the classic results of Shapley and Shubik [13] on the
assignment game can be viewed as studying the result of trade on a
bipartite graph in terms of the core. They study the dual of a linear
program based on the matching problem, similar to what we use for
a reduced version of our model in the next section, but their focus
is different as they do not consider agents that seek to set prices.

2. MARKETS WITH PAIR-TRADERS
For understanding the ideas behind the analysis of the general

model, it is very useful to first consider a special case with a re-
stricted form of traders that we refer to aspair-traders. In this case,
each trader is connected to just one buyer and one seller. (Thus, it
essentially serves as a “trade route” between the two.) The tech-
niques we develop to handle this case will form a useful basis for
reasoning about the case of traders that may be connected arbitrar-
ily to the sellers and buyers.

We will relate profits in a subgame perfect Nash equilibrium to
optimal solutions of a certain linear program, use this relation to
show that all equilibria result in efficient allocation of the goods,
and show that a pure equilibrium always exists. First, we consider
the simplest model where sellers have indistinguishable items, and
each buyer is interested in getting one item. Then we extend the
results to the more general case of a matching market, as discussed
in the previous section, where valuations depend on the identity
of the seller and buyer. We then characterize the minimum and
maximum profits traders can make. In the next section, we extend
the results to traders that may be connected to any subset of sellers
and buyers.

Given that we are working with pair-traders in this section, we
can represent the problem using a bipartite graphG whose node set
is B ∪ S, and where each tradert, connecting selleri and buyerj,
appears as an edget = (i, j) in G. Note, however, that we allow
multiple traders to connect the same pair of agents. For each buyer
and selleri, we will useadj(i) to denote the set of traders who can
trade withi.

2.1 Indistinguishable Goods
The socially optimal trade for the case of indistinguishable goods

is the solution of the transportation problem: sending goods along
the edges representing the traders. The edges along which trade
occurs correspond to a matching in this bipartite graph, and the
optimal trade is described by the following linear program.

max SV (x) =
X

t∈T :t=(i,j)

xt(θj − θi)

xt ≥ 0 ∀t ∈ TX
t∈adj(i)

xt ≤ 1 ∀i ∈ S

X
t∈adj(j)

xt ≤ 1 ∀j ∈ B

Next we consider an equilibrium. Each tradert = (i, j) must
offer a bidβt and an askαt. (We omit the subscript denoting the
seller and buyer here since we are dealing with pair-traders.) Given
the bid and ask price, the agents react to these prices, as described
earlier. Instead of focusing on prices, we will focus on profits. If
a selleri sells to a tradert ∈ adj(i) with bid βt then his profit is
pi = βt − θi. Similarly, if a buyerj buys from a tradert ∈ adj(j)
with askαt, then his profit ispj = θj − αt. Finally, if a tradert
trades with askαt and bidβt then his profit isyt = αt − βt. All
agents not involved in trade make 0 profit. We will show that the
profits at equilibrium are an optimal solution to the following linear

program.

min sum(p, y) =
X

i∈B∪S

pi +
X
t∈T

yt

yt ≥ 0 ∀t ∈ T :

pi ≥ 0 ∀i ∈ S ∪B :

yt ≥ (θj − pj)− (θi + pi) ∀t = (i, j) ∈ T

LEMMA 2.1. At equilibrium the profits must satisfy the above
inequalities.

Proof. Clearly all profits are nonnegative, as trading is optional for
all agents.

To see why the last set of inequalities holds, consider two cases
separately. For a tradert who conducted trade, we get equality by
definition. For other traderst = (i, j), the valuepi +θi is the price
that selleri sold for (orθi if seller i decided to keep the good).
Offering a bidβt > pi + θi would get the seller to sell to tradert.
Similarly, θj − pj is the price that buyerj bought for (orθj if he
didn’t buy), and for any askαt < θj − pj , the buyer will buy from
tradert. So unlessθj − pj ≤ θi + pi the trader has a profitable
deviation.

Now we are ready to prove our first theorem:

THEOREM 2.2. In any equilibrium the trade is efficient.

Proof. Let x be a flow of goods resulting in an equilibrium, and let
variablesp andy be the profits.

Consider the linear program describing the socially optimal trade.
We will also add a set of additional constraintsxt ≤ 1 for all traders
t ∈ T ; this can be added to the description, as it is implied by the
other constraints. Now we claim that the two linear programs are
duals of each other. The variablespi for agentsB ∪ S correspond
to the equations

P
t∈adj(i) xt ≤ 1. The additional dual variableyt

corresponds to an additional inequalityxt ≤ 1.
The optimality of the social value of the trade will follow from

the claim that the solution of these two linear programs derived
from an equilibrium satisfy the complementary slackness condi-
tions for this pair of linear programs, and hence bothx and(p, y)
are optimal solutions to the corresponding linear programs.

There are three different complementary slackness conditions we
need to consider, corresponding to the three sets of variablesx, y
andp. Any agent can only make profit if he transacts, sopi > 0
implies

P
t∈adj(i) xt = 1, and similarly,yt > 0 implies thatxt =

1 also. Finally, consider a tradert with xt > 0 that trades between
seller i and buyerj, and recall that we have seen above that the
inequalityyt ≥ (θj − pj)− (θi + pi) is satisfied with equality for
those who trade.

Next we argue that equilibria always exist.

THEOREM 2.3. For any efficient trade between buyers and sell-
ers there is a pure equilibrium of bid-ask values that supports this
trade.

Proof. Consider an efficient trade; letxt = 1 if t trades and 0
otherwise; and consider an optimal solution(p, y) to the dual linear
program.

We would like to claim that all dual solutions correspond to equi-
librium prices, but unfortunately this is not exactly true. Before we
can convert a dual solution to equilibrium prices, we may need to
modify the solution slightly as follows. Consider any agenti that
is only connected to a single tradert. Because the agent is only
connected to a single trader, the variablesyt andpi are dual vari-
ables corresponding to the same primal inequalityxt ≤ 1, and



they always appear together asyt + pi in all inequalities, and also
in the objective function. Thus there is an optimal solution in which
pi = 0 for all agentsi connected only to a single trader.

Assume(p, y) is a dual solution where agents connected only
to one trader havepi = 0. For a selleri, let βt = θi + pi be
the bid for all traderst adjacent toi. Similarly, for each buyerj,
let αt = θj − pj be the ask for all traderst adjacent toj. We
claim that this set of bids and asks, together with the tradex, are an
equilibrium. To see why, note that all traderst adjacent to a seller
or buyeri offer the same ask or bid, and so trading with any trader
is equally good for agenti. Also, if i is not trading in the solution
x then by complementary slacknesspi = 0, and hence not trading
is also equally good fori. This shows that sellers and buyers don’t
have an incentive to deviate.

We need to show that traders have no incentive to deviate either.
When a tradert is trading with selleri and buyerj, then profitable
deviations would involve increasingαt or decreasingβt. But by
our construction (and assumption about monopolized agents) all
sellers and buyers have multiple identical ask/bid offers, or trade
is occurring at valuation. In either case such a deviation cannot be
successful.

Finally, consider a tradert = (i, j) who doesn’t trade. A de-
viation for t would involve offering a lower ask to selleri and a
higher bid to sellerj than their current trade. However,yt = 0 by
complementary slackness, and hencepi + θi ≥ θj − pj , soi sells
for a price at least as high as the price at whichj buys, so tradert
cannot create profitable trade.

Note that a seller or buyeri connected to a single tradert cannot
have profit at equilibrium, so possible equilibrium profits are in
one-to-one correspondence with dual solutions for whichpi = 0
wheneveri is monopolized by one trader.

A disappointing feature of the equilibrium created by this proof
is that some agentst may have to create ask-bid pairs whereβt >
αt, offering to buy for more than the price at which they are willing
to sell. Agents that make such crossing bid-ask pairs never actually
perform a trade, so it does not result in negative profit for the agent,
but such pairs are unnatural. Crossing bid-ask pairs are weakly
dominated by the strategy of offering a low bidβ = 0 and an
extremely high ask to guarantee that neither is accepted.

To formulate a way of avoiding such crossing pairs, we say an
equilibrium iscross-freeif αt ≥ βt for all traderst. We now show
there is always a cross-free equilibrium.

THEOREM 2.4. For any efficient trade between buyers and sell-
ers there is a pure cross-free equilibrium.

Proof. Consider an optimal solution to the dual linear program.
To get an equilibrium without crossing bids, we need to do a more
general modification than just assuming thatpi = 0 for all sellers
and buyers connected to only a single trader. Let the setE be the
set of edgest = (i, j) that aretight, in the sense that we have
the equalityyt = (θj − pj) − (θi + pi). This setE contain all
the edges where trade occurs, and some more edges. We want to
make sure thatpi = 0 for all sellers and buyers that have degree at
most 1 inE. Consider a selleri that haspi > 0. We must havei
involved in a trade, and the edget = (i, j) along which the trade
occurs must be tight. Suppose this is the only tight edge adjacent
to agenti; then we can decreasepi and increaseyt till one of the
following happens: eitherpi = 0 or the constraint of some other
agentt′ ∈ adj(i) becomes tight. This change only increases the set
of tight edgesE, keeps the solution feasible, and does not change
the objective function value. So after doing this for all sellers, and
analogously changingyt andpj for all buyers, we get an optimal

solution where all sellers and buyersi either havepi = 0 or have
at least two adjacent tight edges.

Now we can set asks and bids to form a cross-free equilibrium.
For all traderst = (i, j) associated with an edget ∈ E we setαt

andβt as before: we set the bidβt = pi + θi and the askαt =
θj −pj . For a tradert = (i, j) 6∈ E we have thatpi +θi > θj −pj

and we setαt = βt to be any value in the range[θj − pj , pi + θi].
This guarantees that for each seller or buyer the best sell or buy
offer is along the edge where trade occurs in the solution. The ask-
bid values along the tight edges guarantee that traders who trade
cannot increase their spread. Traderst = (i, j) who do not trade
cannot make profit due to the constraintpi + θi ≥ θj − pj

2.2 Distinguishable Goods
We now consider the case of distinguishable goods. As in the

previous section, we can write a transshipment linear program for
the socially optimal trade, with the only change being in the objec-
tive function.

max SV (x) =
X

t∈T :t=(i,j)

xt(θji − θij)

We can show that the dual of this linear program corresponds to
trader profits. Recall that we needed to add the constraintsxt ≤ 1
for all traders. The dual is then:

min sum(p, y) =
X

i∈B∪S

pi +
X
t∈T

yt

yt ≥ 0 ∀t ∈ T :

pi ≥ 0 ∀i ∈ S ∪B :

yt ≥ (θji − pj)− (θij + pi) ∀t = (i, j) ∈ T

It is not hard to extend the proofs of Theorems 2.2 – 2.4 to this case.
Profits in an equilibrium satisfy the dual constraints, and profits and
trade satisfy complementary slackness. This shows that trade is
socially optimal. Taking an optimal dual solution wherepi = 0 for
all agents that are monopolized, we can convert it to an equilibrium,
and with a bit more care, we can also create an equilibrium with no
crossing bid-ask pairs.

THEOREM 2.5. All equilibria for the case of pair-traders with
distinguishable goods result in socially optimal trade. Pure non-
crossing equilibria exist.

2.3 Trader Profits
We have seen that all equilibria are efficient. However, it turns

out that equilibria may differ in how the value of the allocation is
spread between the sellers, buyers and traders. Figure 2 depicts a
simple example of this phenomenon.

Our goal is to understand how a trader’s profit is affected by its
position in the network; we will use the characterization we ob-
tained to work out the range of profits a trader can make. To max-
imize the profit of a tradert (or a subset of tradersT ′) all we need
to do is to find an optimal solution to the dual linear program max-
imizing the value ofyt (or the sum

P
t∈T ′ yt). Such dual solutions

will then correspond to equilibria with non-crossing prices.

THEOREM 2.6. For any trader t or subset of tradersT ′ the
maximum total profit they can make in any equilibrium can be com-
puted in polynomial time. This maximum profit can be obtained by
a non-crossing equilibrium.

One way to think about the profit of a tradert = (i, j) is as a
subtraction from the value of the corresponding edge(i, j). The
value of the edge is the social valueθji − θij if the trader makes
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Figure 2: Left: an equilibrium with crossing bids where traders
make no money. Right: an equilibrium without crossing bids
for any value x ∈ [0, 1]. Total trader profit ranges between 1
and 2.

no profit, and decreases toθji − θij − yt if the tradert insists on
makingyt profit. Tradert getsyt profit in equilibrium, if after this
decrease in the value of the edge, the edge is still included in the
optimal transshipment.

THEOREM 2.7. A trader t can make profit in an equilibrium if
and only ift is essential for the social welfare, that is, if deleting
agentt decreases social welfare. The maximum profit he can make
is exactly his value to society, that is, the increase his presence
causes in the social welfare.

If we allow crossing equilibria, then we can also find the min-
imum possible profit. Recall that in the proof of Theorem 2.3,
traders only made money off of sellers or buyers that they have
a monopoly over. Allowing such equilibria with crossing bids we
can find the minimum profit a trader or set of traders can make, by
minimizing the valueyt (or sum

P
t∈T ′ yt) over all optimal solu-

tions that satisfypi = 0 wheneveri is connected to only a single
trader.

THEOREM 2.8. For any trader t or subset of tradersT ′ the
minimum total profit they can make in any equilibrium can be com-
puted in polynomial time.

3. GENERAL TRADERS
Next we extend the results to a model where traders may be con-

nected to an arbitrary number of sellers and buyers. For a trader
t ∈ T we will useS(t) andB(t) to denote the set of buyers and
sellers connected to tradert. In this section we focus on the general
case when goods are distinguishable (i.e. both buyers and sellers
have valuations that are sensitive to the identity of the agent they
are paired with in the allocation). In the full version of the paper
we also discuss the special case of indistinguishable goods in more
detail.

To get the optimal trade, we consider the bipartite graphG =
(S ∪B, E) connecting sellers and buyers where an edgee = (i, j)
connects a selleri and a buyerj if there is a trader adjacent to
both: E = {(i, j) : adj(i) ∩ adj(j) 6= ∅}. On this graph, we
then solve the instance of the assignment problem that was also
used in Section 2.2, with the value of edge(i, j) equal toθji − θij

(since the value of trading betweeni andj is independent of which
trader conducted the trade). We will also use the dual of this linear

program:

min val(z) =
X

i∈B∪S

zi

zi ≥ 0 ∀i ∈ S ∪B.

zi + zj ≥ θji − θij ∀i ∈ S, j ∈ B :

adj(i) ∩ adj(j) 6= ∅.

3.1 Bids and Asks and Trader Optimization
First we need to understand what bidding model we will use.

Even when goods are indistinguishable, a trader may want to price-
discriminate, and offer different bid and ask values to different sell-
ers and buyers. In the case of distinguishable goods, we have to deal
with a further complication: the trader has to name the good she is
proposing to sell or buy, and can possibly offer multiple different
products.

There are two variants of our model depending whether a trader
makes asinglebid or ask to a seller or buyer, or she offers amenu
of options.

(i) A tradert can offer a buyerj a menu of asksαtji, a vector of
values for all the products that she is connected to, whereαtji

is the ask for the product of selleri. Symmetrically, a trader
t can offer to each selleri a menu of bidsβtij for selling to
different buyersj.

(ii) Alternatively, we can require that each tradert can make at
most one ask to each seller and one bid for each buyer, and
an ask has to include the product sold, and a bid has to offer
a particular buyer to sell to.

Our results hold in either model. For notational simplicity we will
use the menu option here.

Next we need to understand the optimization problem of a trader
t. Suppose we have bid and ask values for all other traderst′ ∈ T ,
t′ 6= t. What are the best bid and ask offers tradert can make as a
best response to the current set of bids and asks? For each selleri
let pi be the maximum profit selleri can make using bids by other
traders, and symmetrically assumepj is the maximum profit buyer
j can make using asks by other traders (letpi = 0 for any seller or
buyeri who cannot make profit). Now consider a seller-buyer pair
(i, j) that tradert can connect. Tradert will have to make a bid of at
leastβtij = θij+pi to selleri and an ask of at mostαtji = θji−pj

to buyerj to get this trade, so the maximum profit she can make
on this trade isvtij = αtji − βtij = θji − pj − (θij + pi). The
optimal trade for tradert is obtained by solving a matching problem
to find the matching between the sellersS(t) and buyersB(t) that
maximizes the total valuevtij for tradert.

We will need the dual of the linear program of finding the trade of
maximum profit for the tradert. We will useqti as the dual variable
associated with the constraint of seller or buyeri. The dual is then
the following problem.

min val(qt) =
X

i∈B(t)∪S(t)

qti

qti ≥ 0 ∀i ∈ S(t) ∪B(t).

qti + qtj ≥ vtij ∀i ∈ S(t), j ∈ B(t).

We viewqti as theprofit made byt from trading with seller or buyer
i. Theorem 3.1 summarizes the above discussion.

THEOREM 3.1. For a trader t, given the lowest bidsβtij and
highest asksαtji that can be accepted for sellersi ∈ S(t) and
buyersj ∈ B(t), the best tradet can make is the maximum value



matching betweenS(t) andB(t) with valuevtij = αtji −βtij for
the edge(i, j). This maximum value is equal to the minimum of the
dual linear program above.

3.2 Efficient Trade and Equilibrium
Now we can prove trade at equilibrium is always efficient.

THEOREM 3.2. Every equilibrium results in an efficient alloca-
tion of the goods.

Proof. Consider an equilibrium, withxe = 1 if and only if trade
occurs along edgee = (i, j). Trade is a solution to the transship-
ment linear program used in Section 2.2.

Let pi denote the profit of seller or buyeri. Each tradert cur-
rently has the best solution to his own optimization problem. A
tradert finds his optimal trade (given bids and asks by all other
traders) by solving a matching problem. Letqti for i ∈ B(t)∪S(t)
denote the optimal dual solution to this matching problem as de-
scribed by Theorem 3.1.

When setting up the optimization problem for a tradert above,
we usedpi to denote the maximum profiti can make without the
offer of tradert. Note that thispi is exactly the samepi we use
here, the profit of agenti. This is clearly true for all traderst′ that
are not trading withi in the equilibrium. To see why it is true for the
tradert that i is trading with we use that the current set of bid-ask
values is an equilibrium. If for any agenti the bid or ask of trader
t were theuniquebest option, thent could extract more profit by
offering a bit larger ask or a bit smaller bid, a contradiction.

We show the tradex is optimal by considering the dual solution
zi = pi +

P
t qti for all agentsi ∈ B ∪ S. We claimz is a dual

solution, and it satisfies complementary slackness with tradex. To
see this we need to show a few facts.

We need thatzi > 0 implies thati trades. Ifzi > 0 then either
pi > 0 or qti > 0 for some tradert. Agenti can only make
profit pi > 0 if he is involved in a trade. Ifqti > 0 for somet,
then tradert must trade withi, as his solution is optimal, and
by complementary slackness for the dual solution,qti > 0
implies thatt trades withi.
For an edge(i, j) associated with a tradert we need to show
the dual solution is feasible, that iszi + zj ≥ θji − θij .
Recallvtij = θji−pj − (θij +pi), and the dual constraint of
the trader’s optimization problem requiresqti + qtj ≥ vtij .
Putting these together, we have
zi + zj ≥ pi + qti + pj + qtj ≥ vtij + pi + pj = θji − θij .

Finally, we need to show that the trade variablesx also sat-
isfy the complementary slackness constraint: whenxe > 0
for an edgee = (i, j) then the corresponding dual constraint
is tight. Let t be the trader involved in the trade. By com-
plementary slackness oft’s optimization problem we have
qti + qtj = vtij . To see thatz satisfies complementary slack-
ness we need to argue that for all other traderst′ 6= t we have
bothqt′i = 0 andqt′j = 0. This is true asqt′i > 0 implies by
complementary slackness oft′’s optimization problem thatt′

must trade withi at optimum, andt 6= t′ is trading.

Next we want to show that a non-crossing equilibrium always
exists. We call an equilibrium non-crossing if the bid-ask offers
a tradert makes for a seller–buyer pair(i, j) never cross, that is
βtij ≤ αtji for all t, i, j.

THEOREM 3.3. There exists a non-crossing equilibrium sup-
porting any socially optimal trade.

Proof. Consider an optimal tradex and a dual solutionz as before.
To find a non-crossing equilibrium we need to divide the profitzi

betweeni and the tradert trading with i. We will useqti as the
tradert’s profit associated with agenti for anyi ∈ S(t) ∪B(t).

We will need to guarantee the following properties:

Tradert trades with agenti wheneverqti > 0. This is one
of the complementary slackness conditions to make sure the
current trade is optimal for tradert.

For all seller-buyer pairs(i, j) that a tradert can trade with,
we have

pi + qti + pj + qtj ≥ θji − θij , (1)

which will make sure thatqt is a feasible dual solution for the
optimization problem faced by tradert.

We need to have equality in (1) when tradert is trading be-
tweeni andj. This is one of the complementary slackness
conditions for tradert, and will ensure that the trade oft is
optimal for the trader.

Finally, we want to arrange that each agenti with pi > 0 has
multiple offers for making profitpi, and the trade occurs at
one of his best offers. To guarantee this in the corresponding
bids and asks we need to make sure that wheneverpi > 0
there are multiplet ∈ adj(i) that have equation in the above
constraint (1).

We start by settingpi = zi for all i ∈ S ∪ B and qti = 0
for all i ∈ S ∪ B and traderst ∈ adj(i). This guarantees all
invariants except the last property about multiplet ∈ adj(t) having
equality in (1). We will modifyp andq to gradually enforce the last
condition, while maintaining the others.

Consider a seller withpi > 0. By optimality of the trade and
dual solutionz, seller i must trade with some tradert, and that
trader will have equality in (1) for the buyerj that he matches with
i. If this is the only tradert that has a tight constraint in (1) involv-
ing selleri then we increaseqti and decreasepi till either pi = 0 or
another tradert′ 6= t will be achieve equality in (1) for some buyer
edge adjacent toi (possibly a different buyerj′). This change main-
tains all invariants, and increases the set of sellers that also satisfy
the last constraint. We can do a similar change for a buyerj that
haspj > 0 and has only one tradert with a tight constraint (1) ad-
jacent toj. After possibly repeating this for all sellers and buyers,
we get profits satisfying all constraints.

Now we get equilibrium bid and ask values as follows. For a
tradert that has equality for the seller–buyer pair(i, j) in (1) we
offer αtji = θji − pj andβtij = θij + pi. For all other traders
t and seller–buyer pairs(i, j) we have the invariant (1), and using
this we know we can pick a valueγ in the rangeθij+pi+qti ≥ γ ≥
θji − (pj + qtj). We offer bid and ask valuesβtij = αtji = γ.
Neither the bid nor the ask will be the unique best offer for the
buyer, and hence the tradex remains an equilibrium.

3.3 Trader Profits
Finally we turn to the goal of understanding, in the case of gen-

eral traders, how a trader’s profit is affected by its position in the
network.

First, we show how to maximize the total profit of a set of traders.
The profit of tradert in an equilibrium is

P
i qti. To find the

maximum possible profit for a tradert or a set of tradersT ′, we
need to do the following: Find profitspi ≥ 0 and qti > 0 so
thatzi = pi +

P
t∈adj(i) qti is an optimal dual solution, and also

satisfies the constraints (1) for any selleri and buyerj connected
through a tradert ∈ T . Now, subject to all these conditions, we
maximize the sum

P
t∈T ′

P
i∈S(t)∪B(t) qti. Note that this maxi-

mization is a secondary objective function to the primary objective
thatz is an optimal dual solution. Then we use the proof of Theo-
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Figure 3: The top trader is essential for social welfare. Yet the
only equilibrium is to have bid and ask values equal to 0, and
the trader makes no profit.

rem 3.3 shows how to turn this into an equilibrium.

THEOREM 3.4. The maximum value for
P

t∈T ′
P

i qti above
is the maximum profit the setT ′ of traders can make.

Proof. By the proof of Theorem 3.2 the profits of tradert can
be written in this form, so the set of tradersT ′ cannot make more
profit than claimed in this theorem.

To see thatT ′ can indeed make this much profit, we use the proof
of Theorem 3.3. We modify that proof to start with profit vectorsp
andqt for t ∈ T ′, and setqt = 0 for all traderst 6∈ T ′. We verify
that this starting solution satisfies the first three of the four required
properties, and then we can follow the proof to make the fourth
property true. We omit the details of this in the present version.

In Section 2.3 we showed that in the case of pair traders, a trader
t can make money if he is essential for efficient trade. This is not
true for the type of more general traders we consider here, as shown
by the example in Figure 3.

However, we still get a characterization for when a tradert can
make a positive profit.

THEOREM 3.5. A trader t can make profit in an equilibrium if
and only if there is a seller or buyeri adjacent tot such that the
connection of tradert to agenti is essential for social welfare —
that is, if deleting agentt from adj(i) decreases the value of the
optimal allocation.

Proof. First we show the direction that if a tradert can make money
there must be an agenti so thatt’s connection toi is essential to so-
cial welfare. Letp, q be the profits in an equilibrium wheret makes
money, as described by Theorem 3.2 with

P
i∈S(t)∪B(t) qti > 0.

So we have some agenti with qti > 0. We claim that the connec-
tion between agenti and tradert must be essential, in particular, we
claim that social welfare must decrease by at leastqti if we delete
t from adj(t). To see why note that decreasing the value of all
edges of the form(i, j) associated with tradert by qti keeps the
same trade optimum, as we get a matching dual solution by simply
resettingqti to zero.

To see the opposite, assume deletingt from adj(t) decreases
social welfare by some valueγ. Assumei is a seller (the case of
buyers is symmetric), and decrease byγ the social value of each
edge(i, j) for any buyerj such thatt is the only agent connecting

i andj. By assumption the trade is still optimal, and we letz be
the dual solution for this matching. Now we use the same process
as in the proof of Theorem 3.3 to create a non-crossing equilibrium
starting withpi = zi for all i ∈ S∪B, andqti = γ, and all otherq
values 0. This creates an equilibrium with non-crossing bids where
t makes at leastγ profit (due to trade with selleri).

Finally, if we allow crossing equilibria, then we can find the min-
imum possible profit by simply finding a dual solution minimiz-
ing the dual variables associated with agents monopolized by some
trader.

THEOREM 3.6. For any tradert or subset of tradersT ′, the
minimum total profit they can make in any equilibrium can be com-
puted in polynomial time.
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