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Abstract

We propose a notion of predictive models that extends the corresponding notion generally
used in computational mechanics. We show that this extension allows for hidden Markov
models that are more concise than the corresponding ε-machines. Thereby it provides
more consistency with related theories such as Jaeger’s theory of observable operator
models. Furthermore, ε-machines turn out to be minimal within the usual context of
predictive models.

Keywords: hidden Markov models, computational mechanics, ε-machines, observable op-
erator models, prediction

1 Introduction

1.1 Predictive models theories

This paper is mainly about computational mechanics, a theory introduced and further devel-
oped by Crutchfield and coworkers [Crutchfield and Young, 1989, Shalizi and Crutchfield, 2001,
Ay and Crutchfield, 2005, Still and Crutchfield, 2007]. It deals with the following problems:
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Having an observed stochastic process, what is the best stochastic automaton, sometimes also
termed hidden Markov model, in the sense of minimal size and maximal predictive power? If
such automata exist, is there a way of explicitly constructing them? In the context of these
two problems, the so-called ε-machine and its construction have been proposed as the optimal
solution.

Similar approaches have been considered by Heller [Heller, 1965] and later also by Jaeger
[Jaeger, 2000] within a more general algebraic setting. It turns out that Jaeger’s theory of so-
called observable operator models (OOM) provides a constructive method for models that are
in general more concise than the corresponding ε-machine. On the other hand, although their
mathematical structure represents given stochastic processes in the most natural way, OOMs
do not always allow for a probabilistic interpretation as hidden Markov models. Therefore,
sometimes their operational nature remains unclear. If an OOM satisfies a particular geomet-
ric condition, which is quite intricate and specified in [Heller, 1965], then it does allow for an
interpretation as hidden Markov model. This dependence on a geometric condition compli-
cates the explicit construction of stochastic automata that have a clear operational meaning.
In this regard, the ε-machine construction within computational mechanics is easier to handle.
But the assumptions for the minimality of ε-machines clearly require further specification.
There are examples in which the OOM construction provides very concise hidden Markov
models, whereas the ε-machine has infinitely many hidden states, so-called causal states. An
example for such a hidden Markov model is given in Section 3.2. Therefore, minimality of
ε-machines can only be claimed within classes of models that satisfy appropriately chosen
operational constraints.

This paper makes a step towards revealing these constraints by exploring the generative na-
ture of prediction. We propose a natural notion of predictive models that is less restrictive
than the one currently applied in computational mechanics. Extending the class of models to
this larger class already allows us to have predictive hidden Markov models that are smaller
than the corresponding ε-machine. Recently, one step towards such an extension has been
made in [Still and Crutchfield, 2007]. The focus of that paper lies more on the trade-off be-
tween predictive power and model size based on the bottleneck method [Tishby et al., 1999]
and therefore allows for some prediction error. We show in the present contribution that,
however, this extension also is necessary for having concise models with maximal predictive
power. On the other hand, it improves the theory only in combination with our notion of
predictive models.

Before going into the slightly technical details of the paper, in the following section we discuss
the main idea in a somewhat simplified setting. Thereby we provide a more intuitive sketch
of the structure and the main results of the paper.

1.2 The main idea of the paper

We consider a pair Xp and Xf of discrete random variables, which we interpret as past
and future observations. Not all information of Xp is necessary for predicting Xf , so that
one tries to compress the relevant information in a memory variable M via a memory map
mem. This is shown in Figure 1. Now, computational mechanics assumes so-called predictive
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Figure 1: Memory map mem that compresses the information contained in Xp about Xf

memories (termed prescient in [Shalizi and Crutchfield, 2001]), which are intended to capture
the information of the past that is necessary for predicting the future. This is formalized by
the requirement

I(M : Xf) = I(Xp : Xf), (1)

where I denotes the mutual information between two variables. It ensures that given the
memory state, one knows everything about the future that can possibly be known based on
the past. The mutual information I(Xp : Xf) between past and future is related to a complex-
ity measure which is known as effective measure complexity , excess entropy , and predictive

information [Grassberger, 1986, Shalizi and Crutchfield, 2001, Bialek et al., 2001]. We dis-
cuss the requirement (1) in Section 3.1 within the setting of stochastic processes. It turns
out that (1) is a strong requirement which is not necessary for optimal prediction and can be
relaxed in a very natural way. Therefore, we call memories that satisfy (1) strongly predictive.

We feel that an appropriate notion of a predictive memory has to take into account the
operational nature of prediction performed by a process that generates a future X̃f with the
same statistical properties as the real future Xf , given the past Xp. In Section 2.1 we specify
the generating process gen in more detail. According to our view, the diagram of Figure 1
should be extended as shown in Figure 2. We call a memory predictive if it contains sufficient

Xp
//

mem

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Xf

X̃f

M

gen

>>}}}}}}}}

Figure 2: Memory map mem together with a generator gen, which generates X̃f as a version of Xf

that is indistinguishable from Xf based on Xp

information for generating a future trajectory that is indistinguishable from the real future
trajectory based on the observed past. More precisely, we assume for all past trajectories
(“histories”) xp with positive probability and all future trajectories xf the following equality:

P(X̃f = xf | Xp = xp) = P(Xf = xf | Xp = xp). (2)
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The corresponding definitions in the setting of stochastic processes are given in Section 2.2.

Restricted to the situation where the map mem is a deterministic function of Xp, both notions
of predictive memory turn out to be equivalent (Proposition 3.4). We see the difference only
in the case where the memory mem is allowed to be a stochastic map, which corresponds
to the extension made in [Still and Crutchfield, 2007]. Within this extension the ε-machine
turns out to be minimal (Proposition 3.5). On the other hand, in order to be effective in
the sense of allowing for more concise models than the ε-machine, this extension has to be
combined with our notion of predictive memory. We make this statement more precise in
Proposition 3.5. In general, every strongly predictive memory mem, which is assumed to
satisfy (1), is in particular predictive but not vice versa (see the example at the end of this
introduction, and Proposition 3.4 within the general setting). Our relaxed notion of predictive
memories extends the set of models that can be used for prediction and thereby provides the
possibility of more concise models for stochastic processes. Example 3.6 provides a minimal
hidden Markov model that is contained in the extended class but not in the class of strongly
predictive models, which is usually considered in computational mechanics. This model with
two hidden states can be obtained by the OOM construction method, whereas the ε-machine
requires infinitely many hidden (causal) states.

We close this introduction by giving the following instructive example of a memory that is
predictive but not strongly predictive, and which is extended to the setting of stochastic
processes in Example 3.3: We assume that all variables have values 0 or 1, that is xp, xf ,m ∈
{0, 1},

P(Xp = xp) = 1
2 and P(Xf = xf | Xp = xp) =

{
3
4 , if xf = xp

1
4 , if xf 6= xp

.

We define the memory map to be the kernel from Xp to Xf , i.e.

mem(xp; m) := P(Xf = m | Xp = xp).

Obviously, this memory is predictive in the sense of our definition (2). As corresponding
generator gen we simply choose the identity map which copies the state of the memory into
the future variable. On the other hand, this memory mem does not satisfy (1) and is therefore
not (strongly) predictive in the usual sense of computational mechanics. This can be seen as
follows: We have the joint probabilities

P(M = m, Xf = xf) =

{
5
16 , if xf = m
3
16 , if xf 6= m

and P(Xp = xp, Xf = xf) =

{
3
8 , if xp = xf

1
8 , if xp 6= xf

and the corresponding mutual informations

I(M : Xf) = 5
8 ln(5

4) + 3
8 ln(3

4) < 3
4 ln(3

2) + 1
4 ln(1

2) = I(Xp : Xf)

which violate (1).
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2 Predictive models of stochastic processes

2.1 Generating a process

Before suggesting our notion of prediction, we first consider the task of generating a process.
Generating a predicted future based on memory states is a crucial part of our understanding
of prediction. We assume a finite set D (state space of the generated process), a countable set
M of memory states (also called internal states) and a Markov kernel, which we call generator :

gen : M → P(D × M),

where P(D×M) is the set of probability measures on D×M. We use the notation gen(m; x, m̂)
to denote the probability of the pair (x, m̂) with respect to gen(m). Together with an initial
probability distribution µ on the memory states M, this kernel generates a stochastic process
X̃k, k ∈ N, on D and a process Mk, k ∈ N0 := N∪ {0}, on M in the following way: Being in a
memory state at time k, it (stochastically) produces a new memory state at time k + 1 and,
at the same time, emits a symbol from D. This is shown in Figure 3.

M0
//

  B
BB

BB
BB

B
M1

//

  B
BB

BB
BB

B
M2 MT−1

//

""F
FF

FF
FF

FF
MT

X̃1 X̃2 X̃T−1 X̃T

Figure 3: The process of generating memory states Mk and emitting observable states X̃k

The joint distribution is computed according to

P(M[0,T ] = m[0,T ], X̃[1,T ] = x[1,T ], ) = µ(m0)
T∏

k=1

gen(mk−1; xk,mk),

where we use the notation [0, T ] for the discrete interval { 0, . . . , T } and M[0,T ] = m[0,T ] for
M0 = m0, . . . ,MT = mT . Similarly throughout the paper we also use the notation XT to
denote a stochastic process Xk, k ∈ T, where T is the time set of the process.

Definition 2.1 (generating a process). Let XN be a stochastic process on D. We say that
gen generates XN if there exists an initial distribution for gen such that X̃N has the same
distribution (the same statistics) as XN.

2.2 Our prediction setting

We use generators as models for the process of prediction. The initial distribution is computed
by a memory map from past observations and contains the information of the history. To
avoid measure-theoretic technicalities due to an uncountable set of infinite history trajecto-
ries, we allow only finite but varying length observations. Unfortunately, the variation leads
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to some notational technicalities, especially in Section 3.1.

Throughout this article, we consider a stationary stochastic process XZ, the observable pro-

cess, with finite state set D. Note that, since XZ is stationary, it is uniquely determined by its
restriction to positive times. For the task of prediction we assume that the outcome of XZ is
known for some finite but arbitrary past time interval [−t+1, 0]. Based on these observations,
a generator is used as a mechanism for generating an outcome of X̃t

[1,T ] as prediction of the
real future outcome X[1,T ]. The situation is illustrated in Figure 4 and made more precise by
the following definitions.

X[−t+1,T ]
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M t
0
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// M t

1

>>~~~~~~~~
// M t

2 M t
T−1

==zzzzzzzz

Figure 4: The process of generating X̃t
[1,T ] as prediction of X[1,T ] based on the past trajectory which

is fed into the memory M t
0

Definition 2.2 (memory). A memory (map) mem assigns to every history x[−t+1,0] ∈ D[−t+1,0]

of arbitrary but finite length t a probability distribution on a countable set M of memory

states:
mem : D∗ :=

⋃

t∈N0

D[−t+1,0] → P(M).

Note that D∗ also contains the “empty history,” which corresponds to not having observed
anything.

We use the memory map mem and a generator gen : M → P(D×M) to define random variables
M t

k and X̃t
k as shown in Figure 4. For every history length t, X[−t+1,0] and mem induce a

random variable M t = M t
0 with distribution

P(M t = m | X[−t+1,0] = x[−t+1,0]) = mem(x[−t+1,0]; m).

Now we can start the generator gen in the memory state M t
0 and obtain the predicted pro-

cess X̃t
N

on D as well as a process of internal states M t
N0

on M with the joint (conditional)
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distribution

P(M t
[0,T ] = m[0,T ], X̃t

[1,T ] = x[1,T ] | X[−t+1,0] = x[−t+1,0])

= mem(x[−t+1,0]; m0)
T∏

k=1

gen(mk−1; xk,mk).

Definition 2.3 (predictive model). We call the memory map mem predictive (w.r.t. XZ) if
there exists a generator gen : M → P(D × M), such that for all t and all x[−t+1,0] satisfying
P(X[−t+1,0] = x[−t+1,0]) > 0 the following equality holds:

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X̃t
[1,T ] | X[−t+1,0] = x[−t+1,0]) for all T .

We then call the pair (mem, gen) (predictive) model of the process XZ.

This definition of a predictive memory corresponds to the requirement (2) which we already
discussed in the introduction. To summarize, if we have a predictive model and a finite in-
terval of observations with arbitrary length t, we use the memory map to (stochastically)
produce an initial value M t for the generator. Then we apply the generator to produce a
predicted future X̃t

[1,T ] that follows the same statistics as the “real” future X[1,T ], conditioned
on the observations X[−t+1,0]. It is important that the generator must not depend on the
length t of the history.

In the next section, we relate our notion of a predictive model to the definition used in com-
putational mechanics. Before doing so, we give an example showing that one can always find
a predictive model of a stochastic process, namely the ε-machine of computational mechanics.
This important example is also used in Proposition 3.5 and Example 3.6.

Example 2.4 (ε-machine). In computational mechanics, the ε-machine is defined on the
so-called causal states. These are defined as equivalence classes of observed histories. Usually
these histories are assumed to have infinite length, but finite length histories have also been
considered (e.g. [Feldman and Crutchfield, 1998]). In our setting with finite observed histo-
ries, the identified histories may have different lengths. The equivalence relation identifies
histories with the same conditional expectation on the future, i.e. x[−t+1,0] ∼ x′

[−s+1,0] if and

only if1

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | X[−s+1,0] = x′

[−s+1,0]) for all T > 0.

The causal state of x[−t+1,0] is given by its equivalence class

C(x[−t+1,0]) :=
{

x′

[−s+1,0]

∣∣ s ∈ N0, x′

[−s+1,0] ∼ x[−t+1,0]

}
.

1We assign histories with probability zero, i.e. P(X[−t+1,0] = x[−t+1,0]) = 0, to arbitrary equivalence classes.
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As memory set, we take the set MC := Im(C) :=
{

C(x[−t+1,0])
}

of causal states. The memory
function memC assigns to a history x[−t+1,0] the Dirac measure in the corresponding causal
state C(x[−t+1,0]), i.e. memC

(
x[−t+1,0]; C(x[−t+1,0])

)
= 1. To get a predictive model, we also

need a generator. By x[−t+1,0]x, we denote the history y[−t,0] of length t + 1 obtained by
appending the symbol x to x[−t+1,0], i.e. y0 = x and y−k = x−k+1 for k = 1, . . . , t. Note
that if C(x[−t+1,0]) = C(x′

[−s+1,0]), we also have C(x[−t+1,0]x) = C(x′

[−s+1,0]x), provided that

x[−t+1,0] and x′

[−s+1,0] have positive probability. This is true because

P(X[1,T ] | X[−t,0] = x[−t+1,0]x) =
P(X0 = x, X[1,T ] | X[−t,−1] = x[−t+1,0])

P(X0 = x | X[−t,−1] = x[−t+1,0])
,

and XZ is stationary. Therefore, the following generator (the ε-machine transition) is well
defined:

genC

(
m; x,m′

)
:=

{
P(X1 = x | X[−t+1,0] = x[−t+1,0]), if C(x[−t+1,0]x) = m′

0, otherwise
,

where x[−t+1,0] is any history with positive probability and C(x[−t+1,0]) = m. We obtain

P(X̃t
[1,T ] = x[1,T ] | X[−t+1,0] = x[−t+1,0])

=

T∏

k=1

genC

(
C(x[−t+1,0]x1 · · · xk−1); xk,C(x[−t+1,0]x1 · · · xk)

)

=

T∏

k=1

P(X1 = xk | X[−t−k+2,0] = x[−t+1,0]x1 · · · xk−1)

(stationary)
= P(X[1,T ] = x[1,T ] | X[−t+1,0] = x[−t+1,0]).

Thus (memC, genC) is a predictive model.

As a pair (mem, gen), a predictive model (of XZ) in particular provides the generator gen,
which generates the restriction XN of the process XZ to positive times in the sense of Defini-
tion 2.1. The appropriate initial distribution is given by the memory map for t = 0. In the
following proposition we show the converse of this statement: Every generator which gener-
ates the positive time restriction XN can be used in a predictive model with an appropriate
memory map. In particular, if the number of memory states in M is large enough to allow
for generating the positive time restriction of the process, it is also large enough to admit a
predictive model of XZ.

Proposition 2.5 (generator as predictive model). Let gen : M → P(D × M) be a generator

that generates the positive time restriction of the process XZ. Then there is a memory map

mem : D∗ → M, such that (mem, gen) is a predictive model of XZ.

Proof. Let the initial distribution for gen be such that X̃N has the same distribution as XN.
Define for all x[−t+1,0] with positive probability

mem(x[−t+1,0]; m) := P(Mt = m | X̃[1,t] = x[−t+1,0]).

8



The case t = 0 is clear because of the fact that X̃0
N

and X̃N have the same distribution.
Therefore, let t > 0:

P(X̃t
[1,T ] | X[−t+1,0] = x[−t+1,0])

=
∑

m

P(M t
0 = m | X[−t+1,0] = x[−t+1,0])P(X̃t

[1,T ] | M t
0 = m, X[−t+1,0] = x[−t+1,0])

=
∑

m

mem(x[−t+1,0]; m)P(X̃t
[1,T ] | M t

0 = m)

=
∑

m

P(Mt = m | X̃[1,t] = x[−t+1,0])P(X̃[t+1,t+T ] | Mt = m)

= P(X̃[t+1,t+T ] | X̃[1,t] = x[−t+1,0])
(assumption)

= P(X[t+1,t+T ] | X[1,t] = x[−t+1,0])

(stationary)
= P(X[1,T ] | X[−t+1,0] = x[−t+1,0]),

where we used that X̃t
[1,T ] is independent of X[−t+1,0] given M t

0 and X̃[t+1,t+T ] is independent

of X̃[1,t] given Mt.

3 What does “predictive” really mean?

3.1 Predictive versus strongly predictive memories

As we already mentioned in the introduction, our concept of a predictive memory map dif-
fers from the concept usually discussed within computational mechanics. There, one tries
to compress the observed sequence x[−t+1,0] by the memory map and requires that, at the
same time, no information about the future x[1,T ] (for all T ) that is contained in the history
x[−t+1,0] is lost. In the situation where all observed histories have the same length, which
in computational mechanics is usually assumed to be infinite, this means requiring that the
mutual information between history and future is equal to the mutual information between
the memory M and the future, similar to the requirement (1) of the introduction. In our
present setting of finite varying history lengths, however, we do not have a single memory
state at time zero, but for any history length t a different memory state M t. Simply assuming
the information equality for every history length t separately, i.e.

I(M t : X[1,T ]) = I(X[−t+1,0] : X[1,T ]) for all T and all t, (3)

is a weak requirement which does not provide the correct correspondence to (1) in the con-
text of computational mechanics for finite but varying observation lengths. For memory maps
satisfying (3), the information about the future need not be contained in the memory state
alone, but also in the particular observation length t. The same memory state m can have a
completely different implication on the future if it results from different history lengths (see
Example 3.1). Therefore, we have to assume that the memory keeps all information about
the future without the additional knowledge of t. We give two equivalent versions of the right
correspondence to (1).

9



First, we simply assume, in addition to (3), that conditional probabilities of the future given
a memory state do not depend on the observation length t. More precisely, given m ∈ M, we
assume that P(X[1,T ] | M t = m) is independent of t, whenever P(M t = m) > 0. Since (3) is
equivalent to

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | M t = m)

whenever P(X[−t+1,0] = x[−t+1,0], M t = m) > 0, we finally get the following condition as
correspondence to (1):

P(X[−t+1,0] = x[−t+1,0], M t = m) > 0, P(M s = m) > 0

=⇒ P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | M s = m) for all T . (4)

As a second definition, which is equivalent to (4), we provide a t-independent version of (3).
To this end, we imagine that t is determined randomly by a N0-valued random variable τ

which is assumed to be independent of all other variables. We call such a variable τ random

time variable. Combining the family of memory variables M t, t ∈ N0, with a random time
variable τ we get a new variable M τ which is equal to M t precisely when τ = t. We require
that, for all random time variables τ , the corresponding M τ contains maximal information
about the future, even if we don’t know the value of τ . More precisely,

I(M τ : X[1,T ]) = I(X[−τ+1,0] : X[1,T ]) for all T ∈ N and all random time variables τ (5)

Note that (5) contains (3) as the special case of constant random times. It is straightforward
to show (but omitted here) that (5) is equivalent to (4). We illustrate the difference between
(3) and (5) by the following example.

Example 3.1 (the difference via random times). Let XZ be a non-i.i.d. Markov process on
D := { 0, 1 }. Define

M t := X0 and M̂ t :=

{
X0, if t odd

1 − X0, if t even
.

Then both M and M̂ satisfy (3), while M also satisfies (5) and M̂ does not. This is because

the information M̂ τ = m is useless if we don’t know whether τ is odd or even.

Definition 3.2 (strongly predictive). We call a memory strongly predictive, if it satisfies the
equivalent conditions (5) and (4).

The property “strongly predictive” only refers to the map mem and not to the operational
aspects of prediction given by the generating “mechanism” of a generator gen. Therefore, it
does not refer to the predicted process X̃t

[1,T ]. We feel that an appropriate notion of a predic-
tive model must not neglect the operational view. The following simple example shows that
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predictive memory maps in the sense of Definition 2.3 are not necessarily strongly predictive
and even do not, in general, satisfy the weaker condition (3). The idea of this example was
already given in the introduction (Section 1.2) and is now extended to the more complicated
setting of stochastic processes.

Example 3.3 (predictive but not strongly predictive). Let XZ be the Markov process on
D := { 0, 1 } satisfying

P(Xk = xk) = 1
2 and P(Xk+1 = xk+1 | Xk = xk) =

{
3
4 , if xk+1 = xk

1
4 , if xk+1 6= xk

.

We define a generator on M := D which emits its internal state as output symbol and chooses
its new internal state according to the same transition rule as the Markov process XZ, i.e.

gen(m; x̃,m′) :=

{
P(X1 = m′ | X0 = m), if x̃ = m

0, if x̃ 6= m
.

By choosing as initial distribution the uniform distribution on the memory states we see that
gen generates XN. According to Proposition 2.5, the memory map, which maps the empty
history to the uniform distribution and

mem(x[−t+1,0]; m) := P(X1 = m | X0 = x0)

for t > 0, is predictive. On the other hand, we can use the Markov property to reduce the
calculation of informations to the situation of Section 1.2:

I(M t : X[1,T ]) = I(M t : X1)
(Section 1.2)

< I(X0 : X1) = I(X[−t+1,0] : X[1,T ]).

Thus the memory is not strongly predictive.

In the following proposition, we show that every strongly predictive memory is predictive.
Furthermore, the Example 3.3 of a predictive but not strongly predictive model requires a
stochastic memory map: In the deterministic case, predictive and strongly predictive are
equivalent.

Proposition 3.4 (predictive versus strongly predictive).
1. Every strongly predictive memory map is predictive.

2. If a memory map is deterministic and predictive, then it is also strongly predictive.

Proof.

1. Assume w.l.o.g. that for all m ∈ M there is some tm with P(M tm = m) > 0 (otherwise, m

may be removed from M). Let M̂ t be constructed from X[−t+2,1] with mem, just like M t is
constructed from X[−t+1,0]. We define the generator

gen(m; x, m̂) := P(M̂ tm+1 = m̂, X1 = x | M tm = m).

11



In view of Proposition 2.5, it suffices to show

P(X̃t
[1,T ] = x[1,T ]) = P(X[1,T ] = x[1,T ]).

We show the more general equation (for m with P(M t
0 = m) > 0)

P(X̃t
[1,T ] = x[1,T ] | M t

0 = m) = P(X[1,T ] = x[1,T ] | M t
0 = m)

by induction over T . The case T = 0 is trivial. For T > 0:

P(X̃t
[1,T ] = x[1,T ] | M t

0 = m)

=
∑

m̂

P(M t
1 = m̂, X̃t

1 = x1 | M t
0 = m)P(X̃t

[2,T ] = x[2,T ] | M t
1 = m̂)

=
∑

m̂

gen(m; x1, m̂)P(X̃tm+1
[1,T−1] = x[2,T ] | M tm+1

0 = m̂)

(ind. as.)
=

∑

m̂

P(M̂ tm+1 = m̂, X1 = x1 | M tm
0 = m)P(X[1,T−1] = x[2,T ] | M tm+1

0 = m̂). (6)

Now using stationarity of XZ and (4), which holds also for M̂ instead of M due to stationarity,

we obtain for those m̂ with P(M̂ tm+1 = m̂, X1 = x1 | M tm
0 = m) > 0 that

P(X[1,T−1] = x[2,T ] | M tm+1 = m̂) = P(X[2,T ] = x[2,T ] | M̂ tm+1 = m̂) (7)

= P(X[2,T ] = x[2,T ] | M̂ tm+1 = m̂, M tm
0 = m, X1 = x1).

In total we obtain the required equality:

P(X̃t
[1,T ] | M t

0 = m)
(6)+(7)

= P(X[1,T ] | M tm
0 = m)

(4)
= P(X[1,T ] | M t

0 = m).

2. Let M t = ft(X[−t+1,0]). For m = f(x[−t+1,0]) = f(x′

[−s+1,0]), we get from predictiveness

P(X[1,T ] | X[−s+1,0] = x′

[−s+1,0]) = P(X̃s
[1,T ] | X[−s+1,0] = x′

[−s+1,0])

= P(X̃t
[1,T ] | M t = m)

= P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) .

Consequently, if A := f−1
s (m) is the set of length-s histories mapped to m,

P(X[1,T ] | M s = m) =

∑
x′

[−s+1,0]
∈A P(X[−s+1,0] = x′

[−s+1,0])P(X[1,T ] | X[−s+1,0] = x′

[−s+1,0])∑
x′

[−s+1,0]
∈A P(X[−s+1,0] = x′

[−s+1,0])

=
P(X[1,T ] | X[−t+1,0] = x[−t+1,0])

∑
P(X[−s+1,0] = x′

[−s+1,0])∑
P(X[−s+1,0] = x′

[−s+1,0])

= P(X[1,T ] | X[−t+1,0] = x[−t+1,0]).

This is nothing but equation (4).
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3.2 Implications on minimality of predictive models

Figure 5 illustrates the situation in view of Proposition 3.4 with the abbreviations “DM = de-
terministic memory,” “SPM = strongly predictive memory,” and “PM = predictive memory.”
In computational mechanics, strongly predictive deterministic memories have been studied,

DM

PM SPM

Figure 5: The extension of the memory class suggested by predictive models

that is the intersection of DM and SPM. An extension of this intersection to larger classes of
memory maps is natural. According to Proposition 3.4, we have the following hierarchy of
possible extensions:

DM ∩ SPM = DM ∩ PM ( SPM ( PM. (8)

According to the equality in (8), considering predictive memory maps without dropping the
determinism requirement does not enlarge the class. Only recently, an extension to the class
SPM including also non-deterministic memories has been considered by Still and Crutchfield
[Still and Crutchfield, 2007]. It turns out that this extension does not allow for “smaller”
models than already captured by deterministic memory maps, as we show in the following
proposition. Therefore, we suggest to further extend the class from SPM to PM and show in
Example 3.6 that this extension is indeed effective.

Proposition 3.5 (ε-machine minimality in SPM). The causal state projection C of Exam-

ple 2.4 defines a strongly predictive deterministic memory map to MC. Further, it has minimal

number of memory states in the class SPM. More precisely:

mem : D∗ → M strongly predictive ⇒ |M| ≥ |MC|.

Proof. We show (4). Let mC := C(x[−t+1,0]) and s be such that P
(
C(X[−s+1,0]) = mC

)
>

0. The conditional probability P
(
X[1,T ]

∣∣ C(X[−s+1,0]) = mC

)
is a convex combination of

P(X[1,T ] | X[−s+1,0] = x′

[−s+1,0]) with x′

[−s+1,0] ∈ mC. Since all elements of mC induce the
same conditional probability of X[1,T ], we obtain

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P
(
X[1,T ]

∣∣ C(X[−s+1,0]) = mC

)

and memC is strongly predictive. Now assume that mem is another strongly predictive mem-
ory. We show that if the supports of mem(x[−t+1,0]) and mem(x′

[−s+1,0]) are not disjoint, then
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C(x[−t+1,0]) = C(x′

[−s+1,0]). In particular, |MC| ≤ |M|. Thus, assume some m ∈ M with

P(M t = m | X[−t+1,0] = x[−t+1,0]) > 0 and P(M s = m | X[−s+1,0] = x′

[−s+1,0]) > 0.

From (4), we obtain

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | M s = m) = P(X[1,T ] | X[−s+1,0] = x′

[−s+1,0]),

hence C(x[−t+1,0]) = C(x′

[−s+1,0]), which finishes the proof.

Example 3.6 below illustrates that our extension allows for minimal memory in PM not cap-
tured within SPM. It is an example of a process that admits a memory from the class PM
with two memory states. The corresponding minimal number of memory states within SPM,
which, according to Proposition 3.5, is realized by the ε-machine, turns out to be infinite.
Moreover, the causal states are singletons, so that the causal state projection achieves no
compression. On the other hand, the OOM construction method [Jaeger, 2000] yields the
two internal states of the hidden Markov model.

Example 3.6 (smaller than ε-machine in PM). In order to specify this example, we consider
a generator gen together with an initial distribution on the set M of memory states. This
defines stochastic processes X̃N and MN0 . If the joint process (X̃N,MN) is stationary, we
can extend this joint process to a stationary process with time set Z in a unique way. We
denote the resulting processes on D and M with XZ and SZ, respectively, and interpret them
as the observable process and a process of internal states. In this concrete example, we take
D := M := { 0, 1 } as state space for both processes and the uniform distribution on M as
initial distribution. With a parameter p, 0 < p < 1

4 , we define the generator by

gen(m; x, m̂) :=





1 − 2p, if m̂ = x = m

p, if x 6= m

0, otherwise

. (9)

See Figure 6 for an illustration of the transition graph. It is easy to check that the stationarity
condition is indeed satisfied. Because of Proposition 2.5, it is clear that there is a predictive
model of the process XZ with two memory states. We now show that, nevertheless, the causal
states are singletons. For this purpose, we define for any output symbol x ∈ D a function
fx : [0, 1] → [0, 1], which keeps track of the probability that the internal state is 0. Concretely,

fx(y) :=
y gen(0; x, 0) + (1 − y) gen(1; x, 0)

y
∑1

m=0 gen(0; x,m) + (1 − y)
∑1

m=0 gen(1; x,m)
.

We compute the conditional probability that the internal state is 0 as follows:

P(S0 = 0 | X[−t+1,0] = x[−t+1,0])

=

1∑

m=0

P(S−1 = m | X[−t+1,−1] = x[−t+1,−1])P(S0 = 0, X0 = x0 | S−1 = m)

P(X0 = x0 | X[−t+1,−1] = x[−t+1,−1])

= fx0

(
P(S−1 = 0 | X[−t+1,−1] = x[−t+1,−1])

)

(induction)
= fx0 ◦ · · · ◦ fx−t+1

(
P(S−t = 0)

)
= fx0 ◦ · · · ◦ fx−t+1(

1
2 )
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0|1 − 2p 1|1 − 2p1|p 0|p

Figure 6: Transition graph of the generator defined by (9). The circled nodes are internal states. The
edges are transitions, labeled with output symbol x and transition probability p̂ in the form
“x|p̂”.

Obviously, P(X[1,T ] | S0 = 0) 6= P(X[1,T ] | S0 = 1) (as p 6= 1
4), and therefore

P(X[1,T ] | X[−t+1,0] = x[−t+1,0]) = P(X[1,T ] | X[−s+1,0] = x′

[−s+1,0])

⇔ fx0 ◦ · · · ◦ fx−t+1(
1
2 ) = fx′

0
◦ · · · ◦ fx′

−s+1
(1
2 ). (10)

Now plugging the definition of gen into the definition of fx we obtain

f0(y) =
y(1 − 3p) + p

y(1 − 4p) + 2p
and f1(y) =

yp

1 − 2p − y(1 − 4p)
.

We observe that both f0 and f1 are strictly increasing,

f0(]0, 1[) = ]12 , 1[ and f1(]0, 1[) = ]0, 1
2 [.

This implies that fx0 ◦· · · ◦fx−t+1(
1
2 ) and fx′

0
◦· · · ◦fx′

−s+1
(1
2) are different for distinct x[−t+1,0]

and x′

[−s+1,0]. Because of (10), the causal states are singletons.

4 Conclusions

We do believe that the ε-machine construction is distinguished by operational constraints
that can naturally be imposed on models of prediction. Currently, computational mechanics
does not specify these constraints with sufficient precision and justification. Revealing them
requires a better understanding of the assumptions that are usually made. To this end, in
this paper we question the notion of predictive models by exploring the generative nature
of prediction. We propose a natural notion less restrictive than the one currently applied in
computational mechanics and demonstrate how this provides more consistency with related
approaches such as Jaeger’s theory of observable operator models. We regard our contribution
as a step towards specifying the natural assumptions for models of prediction. Further steps
are subject of our current research and will be published elsewhere.
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