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Abstract 
 
Positive selection in genes and genomes can point to the evolutionary basis for 
differences among species, and among races within a species. The detection of positive 
selection can also help identify functionally important protein regions and thus guide 
protein engineering. Many existing tests for positive selection are either excessively 
conservative, vulnerable to artifacts caused by demographic population history, or 
computationally very intensive. I here propose a simple and rapid test that is 
complementary to existing tests and that overcomes some of these problems. It relies on 
the null-hypothesis that neutrally evolving DNA regions should show a Poisson 
distribution of nucleotide substitutions. The test detects significant deviations from this 
expectation in the form of variation clusters, highly localized groups of amino acid 
changes in a coding region. In applying this test to several thousand human-chimpanzee 
gene orthologues, I show that such variation clusters are not generally caused by relaxed 
selection. They occur in well-defined domains of a protein’s tertiary structure and show a 
large excess of amino acid replacement over silent substitutions. I also identify multiple 
new human-chimpanzee orthologues subject to positive selection, among them genes that 
are involved in reproductive functions, immune defense, and the nervous system. 
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Introduction 
 
A point mutation is under positive or directional selection if it confers a fitness benefits. 
Natural selection favors its bearer and will thus increase its frequency. To identify genes 
subject to positive selection is as difficult as it is important. First, such identification can 
find genes responsible for species differences, such as the differences between humans 
and chimpanzees (AKEY et al. 2004; CLARK et al. 2003; JOHNSON et al. 2001; KREITMAN 
2000; NIELSEN et al. 2005a; VALLENDER and LAHN 2004; WANG et al. 2006). Second, 
positively selected genes may even connect ecological change to molecular change 
(WATT 1977; WATT 1983; WATT et al. 1983). Third, identification of genes subject to 
positive selection can help answer whether genetic differences between populations have 
adaptive significance (ANDOLFATTO 2005; SMITH and EYRE-WALKER 2002). For human 
populations, candidates include genes mediating adaptations to UV exposure or 
pathogens, such as malaria. Fourth, on the level of individual genes, positive selection is 
often restricted to small regions of a gene. Its identification may point to functionally 
important regions of a gene, and is thus of potential interest to protein engineers who alter 
proteins to produce new functions.  
 Two broad classes of approaches exist to identify positive selection (BAMSHAD 
and WOODING 2003; KREITMAN 2000). They both rely on predictions made by the neutral 
theory of molecular evolution (KIMURA 1983). The first approach compares the incidence 
of two different classes of genetic change within genes (KREITMAN 2000; LI 1997), 
synonymous (silent) changes, which are likely to be neutral, and non-synonymous or 
amino acid replacement changes, which are more likely subject to selection. Specifically, 
the ratio N/S of the number of non-synonymous (N) to synonymous (S) changes per 
gene, or the ratio Ka/Ks of the fraction of non-synonymous (Ka) to synonymous changes 
(Ks) per non-synonymous and synonymous site, can give an indication of positive 
selection. A ratio Ka/Ks significantly greater than one, for example, indicates an excess of 
amino acid replacement substitutions over (neutral or weakly selected) silent 
substitutions. It indicates positive selection. Many variations of this class of test exist. 
They differ in the amount of sequence data and computational resources required 
(MASSINGHAM and GOLDMAN 2005; POND and FROST 2005; SUZUKI 2004; SUZUKI and 
GOJOBORI 1999; ZHANG et al. 2005).  The second class of tests relies on predictions made 
by the neutral theory for allele or haplotype frequencies (BAMSHAD and WOODING 2003; 
KREITMAN 2000) within and among populations. For example, in a genomic region where 
positive selection has swept a mutation to high frequency, one would expect a low 
amount of sequence diversity, an excess of rare alleles, and a greater amount of linkage 
disequilibrium than predicted by the neutral theory (BAMSHAD and WOODING 2003). 
Selection acting on one population but not others can lead to a greater than expected 
degree of population differentiation. Test statistics, such Tajima’s D, Fu’s W, Wright’s 
FST, and many others exploit information in these patterns (FU 1997; KREITMAN 2000; 
TAJIMA 1989). The distinction between such tests is not sharp, and some tests 
(MCDONALD and KREITMAN 1991) arguably fall into both categories. 
 Application of the available battery of tests to different genes and genomes has 
produced a large number of well-corroborated cases of positive selection (AKEY et al. 
2004; BAMSHAD and WOODING 2003; BUSTAMANTE et al. 2005; CLARK et al. 2003; 
HUGHES and NEI 1988; HUGHES and YEAGER 1998; MCDONALD and KREITMAN 1991; 
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MUNDY and COOK 2003; NIELSEN et al. 2005a; NIELSEN et al. 2005b; NURMINSKY et al. 
1998; PRESGRAVES et al. 2003; SABETI et al. 2002; SHYUE et al. 1995; SMITH and EYRE-
WALKER 2002; TING et al. 1998; TSAUR et al. 1998; VALLENDER and LAHN 2004; WANG 
et al. 2006; WATT and DEAN 2000; WYCKOFF et al. 2000; ZHANG et al. 1998; ZHU et al. 
2005). One prominent class of positively selected genes are implicated in male 
reproduction. Such genes are affected by sexual selection or sperm competition. They 
include the Drosophila genes Odysseus (TING et al. 1998), Acp26Aa (TSAUR et al. 1998), 
and the human protamine genes (WYCKOFF et al. 2000). A second class of genes is 
involved in a host’s immune response to pathogens, or in a pathogen’s evasion of this 
response. They include the human major histocompatibility complex (MHC) locus 
(HUGHES and NEI 1988), the gene encoding eosinophil-cationic protein (ZHANG et al. 
1998), and many others. In primates, additional classes of positively selected genes are 
involved in vision and olfaction, neural development, and metabolism (VALLENDER and 
LAHN 2004).  
 The two classes of available tests for positive selection have two limitations. First, 
many tests that rely on differences between non-synonymous and synonymous changes 
do not systematically take into account that positive selection often only acts on small 
regions of a gene product. Examples include the human major histocompatibility 
complex (MHC) locus and the env gene of the human immunodeficiency virus 1 (HIV-1). 
Both are examples where selection has favored diversity. Its action is restricted to the 
antigen-recognition site in MHC and to the hypervariable regions in the env gene 
(HOLMES et al. 1992; HUGHES and YEAGER 1998; NIELSEN and YANG 1998). In 
particular the Ka/Ks test is extremely conservative in assessing positive selection, because 
it averages over the entire length of a gene. To be sure, this limitation can be readily 
overcome, but at the price of additional data (entire phylogenies instead of sequence 
pairs) and often considerable computational cost. Second, demographic history may 
generate spurious signatures of positive selection in tests that compare allele frequencies 
(BAMSHAD and WOODING 2003). For example, population bottlenecks, which can be 
associated with speciation events, lead to relaxed selection. The resulting increased rate 
of amino acid sequence divergence may create a false appearance of positive selection 
when comparing amino acid replacements within and among species. Conversely, a 
rapidly expanding population like the human population, may spuriously generate some 
of the sequence signatures (excess of rare alleles etc.) characteristic of positive selection. 
Reconstructions of population history are often difficult and controversial, so this 
limitation is likely to stay with us.  
 I here propose a simple test that is complementary to existing approaches and that 
overcomes some of the mentioned limitations. It is not subject to the vagaries of 
population histories, yet sensitive to selection acting on a small region of a molecule, 
requires only pairs of sequences, and is thus sufficiently rapidly executed to be applied to 
all genes in a genome. It detects variation clusters of aggregated nucleotide substitutions 
that are too closely spaced to be observed by chance alone, and that thus violate the 
predicted distribution of substitution spacing for neutral variation.  
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Results 
 
Assaying significant variation clusters. Consider two DNA or protein molecules that 
shared a common ancestor at some time in the recent past. If they evolve neutrally, that 
is, if all preserved changes in them are neutral changes, then each nucleotide or amino 
acid position in them has the same probability of having changed. (Deleterious changes 
may have occurred but would not have been preserved). With suitable precautions, strong 
deviations from this neutral prediction, in the form of non-uniform substitution spacing 
(variation clustering), can indicate positive selection.  
 I first applied two tests for variation clustering (see Methods) in coding regions to 
5251 known human genes that had well-curated annotation (PRUITT et al. 2005) and their 
unambiguous orthologues in chimpanzees (MIKKELSEN et al. 2005). The first test rests on 
the null-hypothesis of a uniform distribution of mutational changes across the coding 
region. Small values of the test statistic Pu mean that the null-hypothesis is rejected, and 
that the mutations as a whole are aggregated, clumped, or clustered in the coding region. 
The second, complementary, test rests on a null-hypothesis of Poisson distributed 
mutational changes in the coding region. Small values of the second test statistic, Pp, 
indicate that there is at least one group of k consecutive amino acid changes (out of m 
total changes in a coding region) that show clustering (Figure 1a). In contrast to the first 
test, the second test is thus also able to detect highly clustered amino acid changes in a 
small region of a protein.   

Figures 1b and 1c show distributions of Pu and Pp for the genes analyzed here, 
indicating various significance thresholds. A total of 440 genes (15.2%) have Pu<0.05. 
One would expect that 95% of the statistical tests significant at P<0.05 correctly rejected 
the null-hypothesis of no variation clustering. Eighteen genes (0.62%) have 
Pu<β=0.05/2896=1.7×10-5, which is the excessively conservative Bonferroni-corrected 
threshold for the total number of 2896 gene pairs with two or more amino acid 
replacement substitutions examined here. 15 of these 18 genes have a Pu too small (<10-5) 
to be detected by the randomization approach I used. (These genes do not appear on 
Figure 1b). A total of 962 genes (33.2%) have Pp<0.05 and 44 (1.51%) have Pp<β. The 
smaller number of significant values for Pu indicates its lower sensitivity for small groups 
of highly clustered substitutions. The true number of genes with significantly aggregated 
amino acid changes likely lies between the two extremes observed here (0.5-33%). Even 
though Pp and Pu show a highly significant positive statistical association (Spearman’s 
s=0.51; n=2896; P<10-17; Figure 1d), only 10 of the 44 gene pairs with Pp< β also have 
Pu<β. In these cases, some group of substitutions shows clumping but all the substitutions 
as a whole do not. Overall, for 75.6% (2190) of gene pairs is Pp<Pu. Taken together, these 
observations indicate that Pp is more sensitive to detect variation clustering.  

Although genes that have experienced strong positive selection need not 
experience a N/S>1 or Ka/Ks>1 over the length of the whole gene, one would expect that 
these ratios are greater in positively selected genes than in other genes. Pp does indeed 
show a highly significant association with either ratio (-log10(Pp)-N/S: Spearman’s 
s=0.27, n=2742, P<10-17; -log10(Pp)-Ka/Ks; s=0.09, n=2803; P<5.3×10-6). The association 
is modest in absolute value, underlining that Ka/Ks is a weak indicator of positive 
selection. In contrast, for Pu this association is weaker or even weakly negative. (-
log10(Pp)-N/S: Spearman’s s=0.06, n=2727, P=0.0026; -log10(Pu)-Ka/Ks; n=2790; s=-0.06, 
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P=0.001). Qualitatively identical patterns exist for the associations with N and Ka itself 
(not shown). These observations, and the greater sensitivity of Pp to detect variation 
clusters, motivate my focus on Pp for the rest of this contribution.  

 
Variation clusters comprise multiple amino acid changes in a small fraction of a 

gene’s length. Figure 2a shows the number of amino acid changes k in the most highly 
significant variation cluster for all gene pairs with Pp<0.05. The mean k is 3.82 (±0.09 
s.e.m.) for all these genes and increases to 9.71 (±1.13) for genes with Pp<β. There is 
overall a strong statistical association between Pp and the number of amino acids in the 
most highly significant cluster (Spearman’s s=0.52, n=2896; P<10-17). Genes with the 
most highly clustered amino acid changes thus have more such changes in a cluster. The 
total length of the most highly significant variation cluster spans only a small fraction of 
the coding sequence (Figure 2b). This fraction decreases with increasing significance of 
Pp (Spearman’s s=-0.75; n=2896; P<10-17), meaning that the most highly significant 
clusters are most concentrated in the smallest regions of the protein. Their mean length 
comprises a fraction 0.05 (±1.8×10-3) of the coding sequence length for genes with 
Pp<0.05, and a fraction 0.035 (±4×10-3) for genes with Pp< β. Given that the mean length 
of the coding regions in the analyzed data set is 427 amino acids, this means that the most 
highly significant variation clusters do not span large protein regions that could comprise 
entire protein domains, but very small patches of fewer than 25 amino acids.        
 A complementary perspective on variation clusters can be obtained by separating 
each protein coding region into two parts, one part comprising the most significant 
variation cluster, and another part comprising the remainder of the coding region.  Figure 
3a displays the fraction of codons that underwent amino acid replacement substitutions 
within and outside the variation cluster as a function of Pp. (Note the logarithmic scale on 
the vertical axis which shows the fraction of affected codons.) For genes with Pp<0.05, in 
the region outside the substitution cluster a mean fraction 7.6×10-3 (±3.5×10-4) of codons 
underwent an amino acid changing substitution. Because each codon consists of three 
nucleotides, and because the vast majority of these amino acid replacement substitutions 
are caused by single nucleotide changes, this corresponds to an overall nucleotide 
sequence divergence of 7.6×10-3/3=2.5×10-3 that caused the observed amino acid 
differences. This is very close to the mean Ka=2.88×10-3 for all the gene pairs analyzed 
here, and to the mean Ka=2.45×10-3 estimated for human-chimpanzee orthologues.  
(MIKKELSEN et al. 2005). In addition, the genes with Pp<0.05 do not evolve much faster 
overall at synonymous sites than the remainder of the genes analyzed here. (Genes with 
Pp<0.05: Ks=1.47×10-2±4×10-4; other genes: Ks=1.38×10-2±1.76×10-4). Thus, the genes 
with Pp<0.05 do not evolve especially rapidly over their entire sequence. 
 This normal overall divergence stands in stark contrast to the substitution pattern 
within a variation cluster. For genes with Pp<0.05, a mean fraction 0.4 (±1.1×10-2) of 
codons has undergone an amino acid replacement change within a substitution cluster. 
This is more than a factor 52 higher than the rate of substitutions in the remainder of the 
coding region (0.4/7.6×10-3>52). It corresponds to an overall nucleotide divergence of 
0.4/3=0.13 that caused the observed amino acid differences. This is more than a factor 10 
higher than the overall sequence divergence between humans and chimpanzees (1.23×10-

2) (MIKKELSEN et al. 2005). Most of this overall divergence in coding regions is due to 
synonymous divergence, which accumulates at a five-fold faster rate than amino acid 
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replacement divergence, because of purifying selection (Ka/Ks=0.23 for human chimp-
orthologues (MIKKELSEN et al. 2005)), rendering the 10-fold excess in the amino acid 
divergence even more conspicuous. Not surprisingly, the situation is even more extreme 
in substitution clusters with Pp<β. There, almost half of all amino acids (0.58±0.034) 
have undergone substitution, raising the amino acid substitution rate a factor 76 above 
that for the genes overall. 
  
 Variation clusters are not caused by high mutability of CpG-rich regions. 
The test statistic Pp takes into account that different genomic regions may have different 
mutation rates, by estimating the sole parameter of the Poisson distribution based on the 
overall variation found in the genomic region to be analyzed (see Methods). In doing so, 
however, it cannot exclude the possibility that highly significant variation clusters 
preferable exist in small patches of DNA with elevated mutation rate that occur within a 
genomic region. The most prominent determinant of dramatically elevated mutation rates 
is the content of the dinucleotide CpG, because both transitions and transversions at CpG 
dinucleotides are an order of magnitude higher than at other sites (NACHMANN and 
CROWELL 2000). To find out whether the mutability of CpG dinucleotides causes highly 
significant variation clusters, I estimated the fraction of CpG dinucleotides within 
variation clusters, i.e., the fraction of dinucleotide positions where the human gene, the 
chimpanzee gene, or both had a CpG dinucleotide. This fraction is small, with a mean of 
0.05 (±2×10-3). Importantly, the fraction of mutated CpG dinucleotides, where the human 
gene or the chimpanzee gene but not both had a CpG dinucleotide, is even smaller within 
variation clusters (mean 0.03±7×10-4). This dinucleotide content is also small for the 
substitution clusters with the highest significance (Pp<β; fraction of CpG: 0.04±6×10-3; 
fraction of mutated CpG: 0.02±2×10-3). These numbers show that CpG mutability cannot 
explain the existence of highly significant variation clusters.  
 
 Little overlap between variation clusters and low complexity regions.  
The key question regarding variation clustering is whether it is due to positive or relaxed 
selection. The similar rates at which genes with highly significant variation clusters and 
genes without such clusters evolve show that the clusters do not simply reflect relaxed  
selection over the genes harboring them as a whole. However, this does not exclude the 
possibility that selection is dramatically relaxed in the clusters themselves. At its most 
extreme, such relaxed selection would correspond to neutral evolution, and imply that the 
extent of variation in a cluster is similar to that expected in neutrally evolving genomic 
regions. I carried out several analyses that speak to this question. The simplest such 
analysis is to examine proteins for low complexity regions if they show a highly 
significant variation cluster (WOOTTON and FEDERHEN 1996), because low complexity 
regions are known to be associated with regionally relaxed selection. I find generally very 
little overlap between variation clusters and low complexity regions. For example, for 
only 13.6% (6/44) of genes with the most highly significant variation cluster (Pp<β), does 
the cluster overlap with a high complexity region. All but one of these 6 cases occur in 
genes where insertions or deletions have occurred in a gene. In no case is the variation 
cluster entirely contained within a low complexity region. In a random sample of the 
same number of genes where the most significant cluster had Pp>0.05, the cluster 
overlapped with a low complexity region in a greater number of genes (34% or 15 of 44), 
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than it did in genes with Pp<β, a difference that is marginally significant (χ2=5.07; 
P=0.02). This means that highly significant variation clusters do not overlap more but 
slightly less with low complexity regions than one might expect. This observation 
excludes low sequence complexity as a prominent cause of highly significant variation 
clusters. 
  
 
 Variation at fourfold degenerate codons suggests that relaxed selection does not 
cause highly significant variation clusters.  The above analysis of low complexity regions 
is inconclusive with respect to the role of relaxed selection in variation clustering, 
because high complexity regions may also be subject to relaxed selection. To analyze 
how much variation might be expected under relaxed selection or neutral evolution, I 
focused on the amount of synonymous variation seen in fourfold degenerate codons, 
because it is the variation within coding regions that is least affected by selection. I first 
identified all (1.05×106) aligned pairs of four-fold degenerate codons that encode the 
same amino acid in the human-chimpanzee gene pairs analyzed here. A fraction 0.0129 
of their third positions showed a synonymous change. This fraction serves as a 
benchmark of the divergence to be expected under relaxed selection or neutral evolution. 
I then asked whether the amount of variation observed in a significant variation cluster 
could be expected by chance alone, given this degree of synonymous divergence. To this 
end, I employed an exact (one-tailed) binomial test, which determines the probability Pb 
that the number of nucleotide differences is equal or greater to the observed number of 
nucleotide differences in a cluster, using a probability that two nucleotides are different 
of 0.0129 (taken from the divergence of fourfold degenerate codons). Small values of this 
binomial probability Pb indicate that the degree of divergence observed in an actual 
cluster is not to be expected by chance alone for regions that evolve at a rate 
characteristic of 4-fold degenerate codons. Importantly, for all variation clusters that are 
significant at Pp<0.05, Pb  is typically also smaller than 0.05. Specifically, for clusters 
with 0.01<Pp<0.05, median (mean, standard error of the mean) Pb=0.002 (0.045, 0.005), 
for  10-3<Pp<10-2, Pb=0.0012 (0.02,0.007), for 10-4<Pp<10-3, Pb=3.2×10-5 (0.003,1.6×10-

3), and for 10-5<Pp<10-4, Pb=1.2×10-5 (0.0067, 5.6×10-3). For more than 90% of the 
clusters with the highest significance of Pp<β, Pb is even smaller than Pp. As far as 
divergence at fourfold degenerate sites is an indicator of relaxed selection, this implies 
that the vast majority of variation clusters leading to amino acid changes cannot be 
attributed to relaxed selection.  
 

Excess of replacement over silent substitutions in variation clusters. In a third 
analysis aimed at excluding relaxed selection, I examined the number of synonymous 
changes inside a variation cluster. The greatly increased number of amino acid changes 
observed in a variation cluster could be explained by relaxed selection, if the number of 
synonymous changes showed a concomitant increase. The data in Figure 3b demonstrates 
that this is not the case. The figure shows means and standard errors for the number of 
synonymous and amino acid replacement changes in a variation cluster, for gene pairs 
binned according to Pp. There is clearly a dramatic increase in the number of amino acid 
replacement changes, but only a slight change in synonymous changes with increasing 
significance –log10(Pp).  
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Figure 3c shows the actual ratio N/S of amino acid replacement to silent changes 
for an entire gene pair and within a variation cluster. In asking whether this ratio is in 
excess of that expected by neutral evolution, I needed to assume some ratio N/S 
characteristic of neutrally evolving DNA. Among neutrally evolving genes, this ratio can 
vary substantially, depending on the base composition and codon composition of a 
coding region. For the genes analyzed here, I thus estimated the distribution of this ratio 
by introducing 1000 random mutations with a transition:transversion bias of 2:1 into each 
human gene analyzed here and determined N/S for these mutations. This analysis yielded 
a distribution of N/S with a mean of 2.53 (±0.003 standard error). Only 3.05% of genes 
had an expected neutral N/S ratio greater than 3. In addition, there is no statistical 
association between this neutrally expected ratio N/S and the significance Pp of the most 
significant variation cluster in a gene (Spearman’s s=-0.02; P=0.34). This means that 
genes with highly significant variation clusters do not have a higher expected value of 
N/S under neutral evolution. For these reasons, I used in the analysis of the data in Figure 
3c an average N/S ratio of 3:1 (horizontal line in the figure), which renders my results 
conservative. Specifically, I asked whether genes in the categories shown in Figure 3c 
show a significant excess of non-synonymous to synonymous change over this neutrally 
expected ratio. Starting with Pp<0.01 all groups of genes examined showed such a 
significant excess (10-3<Pp<10-2: n=62, P=1.1×10-3; 10-4<Pp<10-3: n=28, P=3×10-6; 10-

5<Pp<10-3: n=13, P=4.6×10-2; Pp<10-5: n=23, P=1.6×10-3; t-test for single means). This 
means that variation clusters contain more amino acid changing substitutions than can be 
expected under neutral evolution. I note that only variation clusters with S>0 can be 
considered for analyses of the ratio N/S, but there are many such clusters where S=0, 
such that the excess of N over S is even higher than shown here.   

When studying the ratio N/S, it is also instructive to analyze clusters of 
synonymous change. In a large dataset comprising thousands of genes, some degree of 
clustering is expected for all kinds of genetic change, including synonymous change. As 
opposed to what is observed for clusters of amino acid changing substitutions, however, 
the ratio N/S should, however, not be elevated in such clusters. This is indeed the case. 
For instance, the ratio N/S is small and actually slightly lower in synonymous variation 
clusters with Pp<0.05 than in clusters with Pp>0.05 (N/S=0.18±0.007 vs. 
N/S=0.08±0.008).  

Taken together, all these observations exclude relaxed selection and confirm that 
genes with highly significant variation clusters evolve under the influence of positive 
selection.   

The data I analyzed thus far allowed insertions or deletions (indels) between the 
human and chimpanzee orthologues, which manifest themselves as sequence alignment 
gaps. I ignored codons that included such gaps. Indels that cause the open reading frame 
to shift will most likely have deleterious effects. On rare occasions, however, they might 
survive and perhaps even have beneficial effects. The sequence signature of such an indel 
may be a contiguous stretches of apparently changed amino acids, which would give high 
Pp values. Such frameshifting indels are not very frequent, because they would imply a 
near absence of synonymous changes in a large cluster, which is not generally the case 
(results not shown). Nonetheless, I repeated all of the above analyses with only those 
gene pairs that could be aligned without gaps. The results are qualitatively identical to 
those above (Figures S1-S3). 
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Variation clusters in a coding region are also highly localized in protein tertiary 

structure. Do significant amino acid variation clusters in a gene also translate into three-
dimensional variation clusters in a protein’s tertiary structure? To address this question, I 
used pairwise distances of amino acid α-carbon atoms from known X-Ray or NMR 
crystal structures in this analysis. I determined the significance of a variation cluster in 
three-dimensional space through a test-statistic P3D that is analogous to Pu (see Methods). 
If P3D is small (e.g., P3D<0.05) then amino acid changes are significantly clustered in 
three-dimensional space. One-dimensional clustering of variation, as indicated by Pp is 
highly associated with three-dimensional clustering (Figure 4a; s=0.67, P<10-18).  

As an example, Figure 4b shows mutational changes in the protein coding region 
of the human β2-chimaerin protein (CHN2), which is a signaling molecule. Upon binding 
of the second messenger diacylglycerol, this protein activates the small GTPase Rac 
(LEUNG et al. 1994). The protein has three domains, an SH2 domain, which can interact 
with phosphotyrosines on activated protein kinases. Its physiological partner is unknown. 
The second and third domain are a protein kinase C homology-1 (C1) domain, necessary 
for diacylglycerol binding, and a RacGAP domain necessary for Rac activation 
(CANAGARAJAH et al. 2004). The molecule has been implicated in the formation of some 
cancers such as high-grade gliomas (YUAN et al. 1995). Amino acid replacement residues 
are highly clustered both in the coding region (Pp=6.6×10-4) and in the crystal structure 
(P3D=1.1×10-3). The five amino acid substitutions in the highly significant variation 
cluster (dashed line in Figure 4b) are the only amino acid substitutions in the molecule. 
Only one silent change occurs inside the variation cluster, and all remaining 10 changes 
outside the cluster are silent. As can be seen from the crystal structure (Figures 4c and 
4d), all of the amino acid changes are concentrated in the SH2 domain, one of them 
(S65F) being immediately adjacent to the phosphotyrosine binding pocket.  Figure S4 
shows a second example, human ribonuclease L (RNASEL), which is involved in the 
immune response to viral infections. Here, some of the highly clustered change occurs in 
a protein domain known to be in contact with a small-molecule activator.  

 
Genes with the strongest evidence for positive selection. Table S1 shows the 35 

genes with ungapped alignments and the most highly significant Pp, which represents a 
(potentially small) subset of genes subject to positive selection. The average variation 
cluster in this set spans only 4.4% of the coding region’s length.  Sixteen of the 35 genes 
do not have a single synonymous change in the variation cluster. 14 of the remaining 19 
genes show a ratio N/S>3, as would be expected for positive selection. This large number 
of genes (85%) with evidence for selection independent of Pp contrasts with the small 
number of genes (12%) that show N/S>3 over the whole length of the gene. Among 
intriguing genes in this list are previously established cases of positive selection, such as 
the human breast cancer gene BRCA1 (FLEMING et al. 2003; HURST and PAL 2001; 
HUTTLEY et al. 2000) (Pp=5.1×10-5) where N:S=9:0 in the variation cluster. Its variation 
cluster lies in the region where BRCA1 interacts with RAD51, a human recombinase 
(FLEMING et al. 2003). Another previously studied example is the vomeronasal receptor 
gene VN1R1 (Pp=7.8x10-5; N:S=5:0) (MUNDY and COOK 2003), which plays a role in 
mammalian mating and pheromone communication (DEL PUNTA et al. 2002; WYSOCKI 
and MEREDITH 1987).   
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Novel candidates for positive selection include the human homologue of the yeast 
protein RAD23 (HHR23B; Pp=1.34x10-6). This protein is involved in DNA repair and 
protein degradation. Its N-terminal Ubiquitin-like domain (UbL) also interacts with the 
human protein S5A (RYU et al. 2003), which carries proteins marked for degradation to 
the proteasome. The coding region for this protein contains a highly significant variation 
cluster spanning 14 codons and involving 7 amino acid changing substitutions (Figure 4e 
and 4f). The cluster contains zero silent substitutions, thus N:S=7:0. In contrast, N:S is 
merely 9:5=1.8 over the whole gene. The gene-wide Ks=0.0123 (Ka/Ks≈0.2), very similar 
to the genome-wide average for human-chimpanzee gene pairs. The gene as a whole thus 
does not evolve especially rapidly: Only 2% of amino acids changed over the length of 
the whole gene. In contrast, 50% of all amino acids have changed in the substitution 
cluster. Structural information from nuclear magnetic resonance (NMR) is available for 
the UbL domain complexed with S5A (RYU et al. 2003). It reveals a closely spaced 
cluster of amino acids in a structurally well-defined protein region. The protein is 
involved in spermatogenesis where ubiquitin-dependent proteolysis is highly active 
(HUANG et al. 2004; SUTOVSKY et al. 2001). The protein is also associated with 
reproductive functions. A splice variant of it is highly expressed in human testes and in 
ejaculated spermatozoa (HUANG et al. 2004). In mice, its absence leads to male sterility 
(NG et al. 2002). 
 Other genes with strong evidence of positive selection include MAPK14 
(Pp=4.37x10-11), encoding a mitogen-activated protein kinase involved in the immune 
system, ADAM29 (Pp=4.5x10-12), implicated in spermatogenesis, CLN8, which functions 
in the nervous system (Pp=7.5x10-6), and FYN, which is a protein kinase implicated in 
myelination and learning (Pp=3.42x10-8). These genes are exemplary of three broad 
classes of genes found to be under positive selection in many studies. (AKEY et al. 2004; 
BAMSHAD and WOODING 2003; BUSTAMANTE et al. 2005; CLARK et al. 2003; HUGHES 
and NEI 1988; HUGHES and YEAGER 1998; MCDONALD and KREITMAN 1991; MUNDY 
and COOK 2003; NIELSEN et al. 2005a; NIELSEN et al. 2005b; NURMINSKY et al. 1998; 
PRESGRAVES et al. 2003; SABETI et al. 2002; SHYUE et al. 1995; SMITH and EYRE-
WALKER 2002; TING et al. 1998; TSAUR et al. 1998; VALLENDER and LAHN 2004; WANG 
et al. 2006; WYCKOFF et al. 2000; ZHANG et al. 1998). These classes include genes 
associated with immune functions (represented here by RNASEL, discussed above, 
MAPK14, and LRMP from Table S1). Positive selection is also rampant among genes 
with reproductive functions, where sexual selection and sperm competition can exert 
strong selection pressures (ADAM29, RAD23B discussed above, VN1R1). Apoptosis is 
important for spermatogenesis and apoptotic genes are often positively selected (NIELSEN 
et al. 2005a). Table S1 also includes apoptotic genes (MAPK8, MAP3K5). A third class is 
associated with neuronal functions (CNTN2, LPHN2, FYN, CABP1). Further classes of 
genes represented in Table S1 include metabolic genes (selection due to dietary change) 
and likely transcription factors (GPT2, ZFYVE26). Thus, the approach I proposed 
identifies multiple genes subject to positive selection whose function is consistent with 
known classes of genes affected by positive selection. 
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Discussion 
 
 In sum, the test to detect positive selection I propose relies on a simple null-
hypothesis: In neutrally evolving protein coding sequences, amino acid changes would 
follow a Poisson distribution. Highly aggregated amino acid changes in protein coding 
regions violate this null hypothesis. In principle, a variation cluster could also be 
explained by non-uniform purifying selection on a protein: Over most of a gene’s coding 
regions, neutral amino acid changes might accumulate according to a Poisson 
distribution, whereas in small, less important regions, relaxed selection might allow faster 
evolution. However, four lines of evidence speak against this possibility. First, highly 
significant variation clusters show an acceleration of evolutionary rates much greater than 
expected under neutral evolution or relaxed selection. Second, they are associated with a 
great increase in the number of non-synonymous but not synonymous changes. Third, in 
such clusters the rate of amino acid change significantly exceeds that of synonymous 
change. Fourth, variation clusters occur in structurally well-defined and functionally 
important protein domains of high sequence complexity. Their one dimensional 
clustering in the coding region also corresponds to three-dimensional clustering in the 
protein tertiary structure.  
 The method overcomes several limitations of existing approaches. First, the 
method overcomes the excessive statistical conservativism of the Ka/Ks test. It is also 
statistically more rigorous than approaches that determine the ratio Ka/Ks in short 
windows sliding across an alignment, and provides an easily interpreted P-value for 
variation clustering. Second, it does not require polymorphism data. This can be an 
advantage, because such data is readily available only for a small number of model 
organisms such as humans and Drosophila. The method thus also avoids the difficulties 
of distinguishing positive selection from demographic effects (AKEY et al. 2004; 
BAMSHAD and WOODING 2003; STAJICH and HAHN 2005). Third, the method 
accommodates varying mutation rates among the genomic regions it analyzes by 
estimating its sole free parameter λ from the extent of local variation. Fourth, the method 
is conceptually very simple, computationally rapid, and it allows automatic identification 
of variation clusters for thousands of genes in mere seconds. This feature distinguishes it 
from other approaches that originated in molecular systematics where variation in 
substitution rates can lead to erroneous inference of phylogenetic trees (GOLDMAN and 
YANG 1994; NIELSEN and YANG 1998; YANG 1996; YANG and NIELSEN 2000; YANG and 
NIELSEN 2002). The methods to correct this problem can also be applied to detect 
positive selection (CLARK et al. 2003; NIELSEN et al. 2005b; NIELSEN and YANG 1998; 
YANG and NIELSEN 2002). These methods are extremely useful, but also computationally 
intensive, and make a series of assumptions about how many classes of nucleotides in a 
coding region evolve at different rates.   
 I emphasize that the approach I propose is complementary and not always 
superior to existing approaches. For example, methods that take advantage of all the 
information in population genetic data will be better at detecting selection within a 
species, and especially very recent positive selection. Candidate genes found with this 
approach may thus be very different from candidate genes found with other approaches, 
as exemplified by a recent article reviewing 91 human genes previously reported to be 
subject to positive selection (SABETI et al. 2006), many of which based on population 
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genetic data. Only two of these genes (BRCA1 and VN1R1) are among the best 
candidates proposed here, an observation that highlights how different approaches can 
detect very different genes subject to positive selection.     

Each existing method to detect positive selection has limitations. One limitation 
of the proposed method is that for some genes under positive selection, amino acid 
replacements may be dispersed in the coding region. To estimate this fraction of false 
negative genes would be an important task of future work. A second possible limitation is 
that it is not clear how extreme demographic events such as severe bottlenecks may affect 
substitution patterns. However, it is difficult to see how some of the observations made 
above, such as the great excess of amino acid changes over silent changes, could be mere 
artefacts of demography. A third limitation of the proposed method is that it applies only 
to moderately diverged sequences. If two sequence pairs are so highly diverged that the 
Poisson assumption does no longer hold, and that a large number of multiple substitutions 
at each site have occurred, application of the method is inappropriate. In practice, it 
should not be applied to sequences that show more than 10 percent amino acid 
divergence (SOKAL and ROHLF 1981). However, in such situations, the method can be 
applied to internal branches of a densely sampled phylogenetic tree, where pairwise 
divergences are lower.  I note that in sequences of low divergence, there may be too few 
substitutions in a variation cluster to rigorously test for an excess of replacement over 
silent changes. In such situations, the method I propose is particularly valuable, because it 
relies on a complementary null-hypothesis and uses substitution spacing itself as an 
indication of selection.  
 
Methods 
 
Variation clusters under the Poisson null-hypothesis. Consider m amino acid replacement 
substitutions in a protein coding region that comprises n codons. Denote as 

)1,,,,0( 1 −= nxx mKx the array that comprises (i) all the positions xi of the m mutations, 
which can range from zero to n-1, (ii) the position of the beginning (“0”), and (iii) the 
position of the end (“n-1”) of this interval. Denote as ),,( 11 += mdd Kd the array of 
distances between these positions, where d1=x1, di=di-di-1 (1≤i≤m), dm+1=(n-1)-xn. If the 
substitution positions are Poisson-distributed, an assumption that is appropriate if there is 
only a moderate number of mutations, one can estimate the parameter λ of this 
distribution simply as λ=m/n. Consider now k consecutive mutational 
positions ),,( 1−+kii xx K . I call such a group a k-cluster or variation cluster. The length of 
this variation cluster is di,k =xi+k-1-xi . One can show (WAGNER 1997) that di,k has a 
Pearson type III distribution, whose probability density is equal 
to zk ezk λλλ −−−Γ 2)))(1(/( , where )!1()( −=Γ kk  is the gamma function. This means that 
the probability P(di,k) that the number of codons spanned by a k–cluster is smaller than di,k 
is equal to 
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The statistical measure Pp that I use for aggregation under this Poisson null hypothesis is 
the minimum of this probability over all possible k-clusters for all values of k (k≤2≤m), 
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that is )(minmin ,kiclusterskallkp dPP
−

= . Put differently, this measure identifies the cluster of k 

whose length is most unlikely to be observed by chance alone. If Pp<0.05 then there 
exists at least one k and one k-cluster with length significantly shorter than expected by 
chance alone. Efficient routines to evaluate (1) are available (PRESS et al. 1992).    
I note that the estimate of λ implicitly accounts for variation in mutation rates or amounts 
of variation in different genomic regions. Among two genomic regions of the same 
lengths, the region with a higher mutation rate will have a larger expected value of m, and 
thus also a greater estimated value of λ. This, in turn implies that a variation cluster of a 
given length and number of substitutions will have a lower Pp in the region with more 
overall variation, simply because it is more likely to observe this cluster by chance alone 
when there are more substitutions in to begin with. 
 
Variation clusters under the uniform null-hypothesis. The null-hypothesis here is that the 
m substitutions in a coding region of length n codons follow a uniform distribution. As a 

test statistic, I use the sample variance 
21

1
)()/1( ∑ +

=
−

m

i i ddm . I first determine this 

variance for a coding region and call it 2
gσ . I then generate a large number (>104) of 

arrays x whose entries follow a uniform distribution on the interval (0,n-1), determine the 
corresponding distance array d, and the variance 2

rσ . I then determine the fraction Pu of 
these random samples in which 22

rg σσ < . If this fraction is small (e.g., Pu<0.05), then the 

variance 2
gσ  is significantly greater than expected by chance alone.  Pu indicates 

significantly increased variance of mutational position spacing. It thus is an indicator of 
aggregation.  
  I note that Pu is a global measure of aggregation that indicates whether the 
mutated codons of a gene, when taken together, show evidence of aggregation. If only a 
small subgroup of codons are highly aggregated, Pu may fail to detect this pattern. In 
contrast Pp is a local measure of aggregation that identifies the group of mutated codons 
that show the best indication of aggregation. By definition, it will not fail to find a 
subgroup of highly clustered mutations.       
 
Clustering in the protein tertiary structure. To determine whether a group of k amino 
acid replacements in a protein with known tertiary structure is significantly more 
clustered than expected by chance alone, I first identified all protein structures files in the 
protein data bank (PDB; http://www.rcsb.org/pdb/) that are associated with the protein. 
For each of these files, I then carried out the following procedure. I extracted the atomic 
coordinates of all α-carbon atoms for each peptide chain that the file contained. I then 
aligned the protein coding sequence of interest with the protein coding sequence of each 
of these chains. I chose those chains that showed the highest sequence similarity 
(typically 100% or close to it) to the protein coding sequence of interest, and asked 
whether structural data was available for all k amino acid residues in the variation cluster. 
If so, I determined the average pairwise distance  
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of all α-carbon atom coordinates of amino acids in the k-cluster, where ijd  denotes the 
Euklidian distance of the α-carbon atom coordinates of atoms i and j. I then randomly and 
uniformly sampled k amino acids from the peptide chain, and determined the mean 
pairwise distance dr of their α-carbon atoms analogously. I repeated this random 
sampling at least 104 times and determined the fraction P3D of the random samples in 
which dk>dr. If this fraction is small (e.g., P3D<0.05), then dk is smaller than expected by 
chance alone.  P3D is thus analogous to Pu but in three dimensions. Where more than one 
protein structure was associated with a protein coding region, I repeated this procedure 
for all available structures and used the smallest P3D value for further analysis.  
 
Data sources. I obtained information on 13,454 unambiguous human-chimpanzee gene 
orthologues, as well as their location, Ka and Ks, from (MIKKELSEN et al. 2005,  
Supplementary Table S23). I obtained the coding region sequence of all chimpanzee and 
human genes in this data set from the Ensembl database (HUBBARD et al. 2005) 
(http://www.ensembl.org/Multi/martview; National Center for Biotechnology 
Information [NCBI] build 35), and from NCBI (http://www.ncbi.nlm.nih.gov/) in 
October 2005. For each human gene with an unambiguous human-chimpanzee 
orthologue, I used the human coding nucleotide sequence to query a database of all 
chimpanzee coding sequences using BLAST (ALTSCHUL et al. 1997). The highest-
scoring sequence pair was retained for further analysis only if the alignment of this pair 
involved the entire length of the query sequence, and if the amino acid identity among the 
two sequences was greater then 90% (as a filter to avoid analyzing recombination 
products). From these alignments I determined the number and positions of all codons in 
which synonymous and non-synonymous changes had occurred. Codon pairs where one 
codon had suffered an insertion or deletion (indicated by an alignment gap) were 
excluded from this count, even in the part of the study that considered gapped alignments. 
For complexity filtering I used a stand-alone version of the program seg (WOOTTON and 
FEDERHEN 1996, obtained from http://www.ncbi.nlm.nih.gov/Ftp/) which I applied with 
default parameters to the amino acid sequence of the human proteins of interest.  
 To analyze protein tertiary structures, I first obtained a list of all human genes 
associated with a protein databank (PDB) structure file from Ensembl. Subsequently, I 
obtained all relevant human pdb files from the Research Collaboratory for Structural 
Bioinformatics (RCSB; ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/). For each 
human protein coding region and each associated pdb file that contained structural 
information from either X-ray crystallography or nuclear magnetic resonance (NMR) 
experiments, I then carried out the following steps. First, I extracted the amino acid 
sequence of each peptide chain for which the structure file contained information from 
the ‘ATOM’ entry describing the spatial coordinates of an amino acid’s α-carbon atom. 
For NMR data, which are given as multiple measurements or ‘models’ of protein 
structure for a thermodynamic ensemble of conformations, I chose the first model in the 
pdb file for this extraction. Second, I aligned the human protein coding region with each 
of the extracted peptide chains that exceeded a length of 20 amino acids, using a 
Needleman-Wunsch  global alignment as implemented in ClustalW (THOMPSON et al. 
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1994). Third, I retained for further analysis those alignments where more than 30% of the 
coding region sequence could be aligned to a peptide chain, and where the resulting 
overall amino acid identity exceeded 90%. Among these alignments, I chose the chain 
with the highest match to the coding region, or, if there was more than one such chain 
(e.g., in the case of a homomultimeric protein), I chose the chain with the lowest 
alphanumerical index. For all structures shown here, and for most sequences analyzed, 
peptide chains filtered for analysis in this way showed 100% sequence identity to the 
human protein coding sequence over their alignable length, notable exceptions being 
experimentally mutagenized proteins. Fourth, I determined for each protein whether 
structural information was available for all protein regions in which amino acid changes 
had occurred between humans and chimpanzees, and included only such proteins for 
further analysis. The fourth step eliminates a large number of proteins from further 
analysis, because structural information is often only available for a small region or 
domain of a protein. Finally, for the remaining proteins, I determined whether changed 
amino acid residues showed significant clustering in the tertiary structure, using the 
statistical test described above.  
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Figure Captions 
 
Figure 1: Many genes have highly significant variation clusters. a) Schematic 
illustration of a variation cluster. The horizontal line represents the protein coding region 
of a gene. Red bars above the line indicate amino acid changes in the coding region. 
Black bars below the line indicate silent nucleotide changes. The dotted line indicates a 
highly significant variation cluster, an accumulation of too many amino acid changes in a 
short region to be seen by chance alone. b) Histogram of significance Pu (note the 
logarithmic scale) of the deviation of amino acid substitution spacing from a uniform 
distribution; c) histogram of significance Pp of deviation of amino acid substitution 
spacing from a Poisson distribution for 2896 human-chimpanzee gene pairs that could be 
aligned over the full length of the human gene. For ease of viewing, the horizontal axis in 
both b) and c) extend only to P<10-15. However, there are three values of Pp smaller than 
10-15, which are not shown on the histogram in b). Also, because estimation of Pu 
involved a computationally expensive randomization approach, Pu was only estimated for 
values greater than 10-5. Values smaller than 10-5 are set to zero and do not appear on the 
histogram in c). There are 15 genes with Pu<10-5. d) Scatterplot of –log10(Pu) and –
log10(Pp). The solid line indicates –log10(Pu)= –log10(Pu), and the dashed line is a linear 
regression line. Pp and Pu are highly correlated (Spearman’s s=0.51; n=2896; P<10-17), 
but –log10(Pp)> –log10(Pu) for most genes. 
 
Figure 2: Highly significant variation clusters contain multiple substitutions in a 
small region. The horizontal axes show the significance Pp of deviation from a Poisson 
distribution for 2896 human-chimpanzee gene pairs. Note the logarithmic scale. a) The 
vertical axis shows the number of amino acid changes observed in the most highly 
significant variation cluster. b) The vertical axis shows the fraction of the protein coding 
region’s length spanned by this cluster. As Pp, increases, more and more amino acid 
changes become concentrated in a smaller and smaller region. 
  
Figure 3: Variation clusters contain many more replacement changes than silent 
changes. a) The horizontal axis shows Pp on a logarithmic scale, and the vertical axis 
shows the fraction of amino acids changed inside the most highly significant variation 
cluster (red) and in the remainder of the protein coding region (blue). Note the 
logarithmic scale on the vertical axis, which shows that the fraction of amino acids 
changed inside a cluster is orders of magnitude higher than in the remainder of the gene. 
b) Gene pairs are binned according to Pp, as shown on the horizontal axis. Open and 
closed circles indicate the mean number of replacement changes and silent changes, 
respectively, inside the most highly significant variation clusters in the n=2896 gene pairs 
examined. Whiskers indicate one standard error of the mean. While the number of amino 
acid changes increases dramatically with increasing cluster significance, the number of 
synonymous changes does not. c) Open circles indicate the mean ratio N/S of the number 
of replacement changes to silent changes for the most highly significant variation clusters 
in the n=2896 gene pairs examined. Closed circles indicate the same mean ratio, but for 
the gene pair as a whole. Whiskers indicate one standard error of the mean. The 
horizontal line indicates the ratio N/S=3:1, which is somewhat greater than the ratio 
expected by neutral evolution (see main text), and renders the analysis conservative. 
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Means labeled with an asterisk (‘*’) are significantly greater than the 3:1 ratio (10-

3<Pp<10-2: n=62, P=1.06×10-3; 10-4<Pp<10-3: n=28, P=3×10-6; 10-5<Pp<10-4: n=12, 
P=4.6×10-2; Pp<10-5: n=23, P=1.65×10-3; t-test for single means.)  
 
Figure 4: Clustering of amino acid changes in protein tertiary structure. a) The 
horizontal axis shows –log10(P3D), calculated only for the amino acids in this variation 
cluster, the vertical axis shows –log10(Pp). P3D indicates to what extent the amino acid 
changes that occurred in a protein are significantly clustered in the protein’s tertiary 
structure (Spearman’s s=0.67, P<10-18). b) Amino acid and silent variation in the gene 
encoding human β2-chimaerin. The horizontal line represents the protein coding region 
(468 amino acids). Red bars above the line indicate amino acid changes in the coding 
region. Black bars below the line indicate silent nucleotide changes. The dotted line 
indicates the most highly significant variation cluster. Amino acid changes in this cluster 
(from left to right) are indicated by lettering (from top to bottom). c) Tertiary structure of 
the protein in blue with amino acid changes indicated in red. From pdb file 1xa6.pdb 
(CANAGARAJAH et al. 2004). The three protein domains are lettered in white. Note that all 
the amino acid changes occurred in the SH2 domain. The SH2 domain boxed in white is 
magnified in d). Note that even though amino acid changes may be highly clustered, the 
side chains of the affected amino acids are not necessarily in immediate contact. e) 
Amino acid variation in the coding region of HHR23B (399 amino acids), which is 
involved in spermatogenesis. f) NMR tertiary structure (blue, pdb file 1UEL, RYU et al. 
2003) of the N-terminal ubiquitin-like domain (91 amino acids) of the protein encoded by 
HHR23B complexed with the protein S5A (grey), involved in protein degradation. 
Amino acid changes in the most significant variation cluster are labeled in red.  
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Appendix: Supplementary Figures and Tables 
 
Figure S1: Many genes have highly significant variation clusters (ungapped 
alignments). a) Histogram of significance Pu of deviation of amino acid substitution 
spacing from a uniform distribution; b) histogram of significance Pp of deviation of 
amino acid substitution spacing from a Poisson distribution for 2479 human-chimpanzee 
gene pairs that could be aligned over the full length of the human gene without gaps, and 
that showed at least two amino acid changes per gene pair. Because estimation of Pu 
involved a computationally expensive randomization approach, Pu was only estimated for 
values greater than 10-5. Smaller values are estimated to be equal to zero. There are 9 
such values and they do not appear on the histogram, in b). c) scatterplot of –log10(Pu) 
and –log10(Pp). The solid line indicates that –log10(Pu)= –log10(Pp) and the dashed line is 
a linear regression line. Pp and Pu are highly correlated (Spearman’s s=0.49; n=2479; 
P<10-17), but –log10(Pp)> –log10(Pu) for most genes. 
 
Figure S2: Highly significant variation clusters contain multiple substitutions in a 
small region. The horizontal axes show the significance –log10(Pp) of deviation from a 
Poisson distribution for 2479 human-chimpanzee gene pairs. a) The vertical axis shows 
the number of amino acid changes observed in the most highly significant variation 
cluster. b) The vertical axis shows the fraction of the protein coding region’s length 
spanned by this cluster. As Pp decreases more and more amino acid changes become 
concentrated in a smaller and smaller region.  
 
Figure S3: Variation clusters contain many more replacement changes than silent 
changes. a) The horizontal axis shows –log10(Pp), and the vertical axis shows the fraction 
of amino acids changed inside the most highly significant variation cluster (red) and in 
the remainder of the gene (blue). Note the logarithmic scale on the vertical axis, which 
shows that the fraction of amino acids changed inside a cluster is orders of magnitude 
higher than in the remainder of the gene. b) Gene pairs are binned according to Pp, as 
shown on the horizontal axis. Open circles indicate the mean number of replacement 
changes and closed circles the mean number of silent changes for the most highly 
significant variation clusters in the gene pairs examined. Whiskers indicate one standard 
error of the mean. While the number of amino acid changes increases dramatically with 
increasing cluster significance, the number of synonymous changes does not. c) Open 
circles indicate the mean ratio N/S of the number of replacement changes to silent 
changes for the most highly significant variation clusters in the gene pairs examined. 
Closed circles indicate the same mean ratio, but for the gene pair as a whole. Whiskers 
indicate one standard error of the mean. The horizontal line indicates the ratio N/S=3:1 
expected by neutral evolution, which reflects an approximately three-fold excess of non-
synonymous sites over silent sites on DNA. Means labeled with an asterisk (‘*’) are 
significantly greater than the 3:1 ratio (10-3<Pp<10-2: n=51, P=1.97×10-3; 10-4<Pp<10-3: 
n=23, P=4×10-6; Pp<10-4: n=19, P=9.4×10-3; t-test for single means.) I note that only 
variation clusters with S>0 could be considered here, but there are many such clusters 
where S=0, such that the excess of N over S is even higher than shown here. In the 



9/17/2007 

25 

analysis of this figure, I pooled gene pairs with Pp<10-4, in order to avoid ten or fewer 
gene pairs per bin.   
 
Figure S4: 1D and 3D clustering in human ribonuclease L (RNASEL). a) Amino acid 
variation in the coding region of human ribonuclease L (742 amino acids), which is 
involved in the immune reponse to viral infections. This molecule is activated indirectly 
through interferons and directly through the small molecule 2’5’-oligoadenylate (2-5A) 
(FLOYD-SMITH et al. 1981; WRESCHNER et al. 1981). RNASEL contains a highly 
significant variation cluster (Pp=8.8×10-3; P3D=10-3) comprising 6 amino acid 
substitutions in which no synonymous substitutions occurred. b) Structural information is 
only available for the 280 N-terminal amino acids of this molecule, which comprises 8 
ankyrin repeats (PDB entry 1wdy, TANAKA et al. 2004). Amino acid changes between 
humans and chimpanzees are indicated in red. All amino acid changes occurred in repeat 
one and two (labeled from the left). Repeat two and four interact with the small-molecule 
activator 2-5A. The region boxed in white is magnified in c). 
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Supplementary Table S1 to "Rapid detection of positive selection …"

Whole gene Variation Cluster

Refseq ID
HGNC 
Name Pp

Coding 
Region 
Length N S N/S N S N/S

Cluster 
Length as 
Fraction of 
Protein 
Length Function

NM_014269 ADAM29 4.50E-12 821 24 24 1.00 18 7 2.57 0.071 metalloendopeptidase activity, proteolysis, spermatogenesis
NM_021260 ZFYVE1 3.99E-11 778 10 10 1.00 9 1 9.00 0.019 phosphatidylinositol-3,4,5-triphosphate binding, zinc finger
NM_001315 MAPK14 4.37E-11 361 14 12 1.17 14 7 2.00 0.069 Homo sapiens mitogen-activated protein kinase 14, antimicrobial humoral response, DNA damage response
NM_003215 TEC 5.52E-09 632 9 6 1.50 7 0 0.014 serine/threonine/tyrosine kinase
NM_178505 TMEM26 1.00E-08 224 14 8 1.75 12 0 0.071 unknown
NM_012302 LPHN2 1.33E-08 1404 11 11 1.00 7 2 3.50 0.014 G-protein coupled receptor, neuropeptide signaling, 
NM_002037 FYN 3.42E-08 538 9 6 1.50 8 2 4.00 0.033 tyrosine kinase, myelination, learning
NM_145059 FUK 1.88E-07 991 17 18 0.94 6 0 0.007 salvage pathway for the sugar fucose, fucose is involved in group antigen recognition and inflammation
NM_139047 MAPK8 2.89E-07 428 9 13 0.69 7 4 1.75 0.028 mitogen-activated protein kinase 8, UV-radiation induced apoptosis
NM_133443 GPT2 5.44E-07 524 14 6 2.33 9 1 9.00 0.048 transamination between alanine and 2-oxoglutarate, amino acid metabolism, gluconeogenesis
NM_153811 SLC38A6 1.18E-06 457 8 2 4.00 6 1 6.00 0.022 amino acid-polyamine transporter activity
NM_002874 RAD23B 1.34E-06 410 9 5 1.80 7 0 0.037 nucleotide-excision repair, spermatogenesis
NM_005739 RASGRP1 2.57E-06 798 5 6 0.83 4 0 0.005 Ras guanyl-nucleotide releasing protein
NM_005923 MAP3K5 2.70E-06 1375 5 10 0.50 4 1 4.00 0.005 MAPKKK activity, apoptosis, neural development
NM_018961 UBASH3A 3.02E-06 662 14 14 1.00 8 2 4.00 0.042 negative regulation of T-cell receptor signaling pathway, ubiquitin associated
NM_005174 ATP5C1 3.69E-06 298 6 4 1.50 6 0 0.037 mitochondrial proton-transporting ATP synthase
NM_018941 CLN8 7.47E-06 287 8 4 2.00 7 0 0.056 neural development
NM_000455 STK11 9.04E-06 434 9 8 1.13 5 0 0.014 serine/threonine kinase
NM_003903 CDC16 1.04E-05 620 5 11 0.45 5 0 0.026 part of the anaphase promoting complex, cyclin degradation
NM_031217 KIF18A 1.33E-05 899 13 5 2.60 6 0 0.022 kinesin family member, biological function unknown
NM_018979 WNK1 1.54E-05 2383 20 29 0.69 5 1 5.00 0.007 serine/threonine kinase
NM_006437 PARP4 1.59E-05 1725 31 17 1.82 5 0 0.005 ADP-ribosyltransferase activity, DNA damage repair, inflammatory response
NM_005076 CNTN2 1.77E-05 1041 8 12 0.67 6 1 6.00 0.038 cell adhesion, neuronal membrane protein, neural development
NM_031205 CABP1 1.91E-05 228 9 4 2.25 8 0 0.088 calcium bindin protein, expressed only in retina and brain
NM_173540 FUT11 1.95E-05 493 12 10 1.20 9 2 4.50 0.091 fucosyltransferase
NM_001478 B4GALNT12.25E-05 534 6 6 1.00 5 0 0.026 biosynthesis of glycosphingolipids
NM_015049 TRAK2 2.38E-05 915 17 11 1.55 8 2 4.00 0.048 neurotransmitter receptor recycling
NM_015346 ZFYVE26 2.41E-05 1463 13 16 0.81 9 3 3.00 0.087 zinc finger protein, nucleic acid binding, biological function unknown
NM_000508 FGA 2.55E-05 867 25 9 2.78 15 1 15.00 0.144 fibrinogen complex, blood coagulation
NM_006152 LRMP 2.62E-05 556 23 8 2.88 10 2 5.00 0.065 lymphoid restricted, hemocyte development
NM_032890 DISP1 4.67E-05 1525 14 15 0.93 11 4 2.75 0.143 homologue of Dros. dispatched, putative peptide transporter, dorsal/ventral and left/right embryonic patterning
NM_007295 BRCA1 5.10E-05 1864 33 7 4.71 9 0 0.038 DNA repair, cell cycle
NM_012421 RLF 5.97E-05 1915 7 19 0.37 3 0 0.002 unknown
NM_020633 VN1R1 7.84E-05 354 11 2 5.50 5 0 0.020 vomeronasal receptor V1R, mammalian pheromone communication, mating
NM_021026 RFPL1 0.000117 289 21 7 3.00 10 2 5.00 0.087 ubiquitin ligase complex, protein ubiquitination


