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Summary

Recent studies on the fossil record time series has shown that there is consistent

evidence for self-similarity i.e. long-range correlations with power-law behavior. The

existence of such fractal structures means that, when looking at a given time frame,

some basic properties remain the same if a change of scale is performed. To sum

up: there is no characteristic time scale, as we could expect if some type of periodic

or other low-dimensional dynamics were present. A possible explanation for such

long-range order is a dynamical process operating at all scales, as it is the case for

systems in the neighborhood of critical points. In this paper these results are further

explored by extending previous data analysis and examining the relevance of recent

theoretical approaches to the statistical features of the fossil record.

1 Introduction

Macroevolution is a complex process where di�erent relevant factors interact in

unfolding ways (Raup, 1991; Briggs and Crowther 1990; Jablonski, 1994). In recent

years, it has been suggested that some statistical features of the fossil record (FR)

could be interpreted as the result of the dynamics of complex ecosystems close to

instability points (Kau�man and Johnsen, 1990; Bak and Sneppen, 1993; Sol�e et al.

1996; Amaral and Meyer, 1998). Speci�cally, it has been suggested that evolution

in complex communities leads to a self-organized critical (SOC) state (Bak, 1997;

Jensen, 1998) where small and large extinctions are caused by avalanches in the

ecology. A small event, like the random extinction of a single species, can generate

a set of extinctions propagating through the network structure.

The implications of this scenario for macroevolution are enormous. These models

suggest that multispecies interactions are the relevant ingredient in shaping the

structure of evolving ecosystems. As a consequence of the critical state, the fate of

individual species would be the result of collective phenomena, not reducible to a

list of individual �tnesses. In this context, it has been suggested that long-term,

ecological-level network dynamics provides the natural decoupling between micro-

and macroevolutionary dynamics (Sol�e et al., 1996; 1998).

The SOC hypothesis emerged of several observations from the fossil record. Some

relevant features of the FR display fractal behavior, characterized by the presence

of power law distributions. The main features are: (a) the number of extinction

events N(E) of size E follow a power law N(E) � E�� with � � 2 (Newman,

1997); (b) the power spectrum P (f) of family uctuations through the Phanerozoic

displays self-similar, "1/f" dynamics, i. e. P (f) � f�� with � � 1 (Sol�e et al.,

1997; Amaral and Nunez, 1998); (c) the lifetime distribution N(T ) of genera is a

power law N(T ) � T� where  � 2 (Sneppen et al., 1995; Sol�e and Bascompte,
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1996) and (d) the number of genera Ng(S) formed by S species is also a power law

Ng(S) � S�� with � � 2 (Burlando, 1990; 1993).

The obvious alternative to these models is an external scenario where meteorite

impacts, volcanoes or changes in the magnetic �eld of Earth are the main actors

(Raup, 1993; Raup and Sepkoski, 1994). This view has an obvious interest and rele-

vance. There is clear evidence for external perturbations of the biosphere throughout

the Phanerozoic and any theory of macroevolution should incorporate such random

events (as done in Newman and Roberts, 1995; see also Newman, 1997). However,

one should ask if these external events are the causal explanation of the previously

mentioned features or the triggers of a cooperative biotic response. Which kind of

process is at work?

To answer this question, careful data analyses have to be performed and ade-

quate theories able to provide quantitative predictions must be constructed. In this

paper we �rst further explore previous data analyses showing that self-similarity is a

characteristic, nontrivial property of the fossil record. Finally, a model of macroevo-

lution exhibiting SOC dynamics is analysed, showing that all the statistical features

of the FR are reproduced in a quantitative fashion.

2 Spectral analysis and the Hurst e�ect

The presence of fractal properties in the FR time series has been widely analysed

by many authors (general reference). The most popular tool is spectral analysis,

based on Fourier Transform techniques. If self-aÆne structures are present a power

spectrum P (f) � f�� is obtained (Sol�e et al., 1997). But fractal properties can also

be analysed by means of another well-known method: the Hurst's Rescaled Range

Analysis (RRA) (Feder, 1988; Mandelbrot, 1983; Korvin, 1992; Sugihara and May,

1990).

Let us consider a given time series fXtg with t = 1; 2; :::; T . This can be the

records of discharges from a river, the number of sunspots or the extinction size for

a given group of organisms. The average of Xt over N time steps will be < X >T=

(
P

tXt)=T . The departure from the average over a t-year time-horizon is given by

X(t; T ) =
tX

i=1

[Xi� < X >T ] =
n tX

i=1

Xi

o
� t < X >T (1)

Obviously at the end of the period, we get X(N;N) = 0. In this paper X(t; T ) is

calculated by dividing the time series intoM(T ) adjacent, non/overlapping segments

of size T .

Two key quantities are computed from the previous time series. The �rst is the

standard deviation, de�ned as S(T ) = T�1
PT

t=1[Xt� < X >T ]
2 and the so called
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Figure 1: Hurst exponent analysis of (non-interpolated) time series (family level)

and for the corresponding shu�ed data sets (these and other data are available

from http://ibs.ucl.ac.uk/benton/foss2.html). (a) two examples of scaling in the

F (T )-plot for total origination (circles) and total extinction rate (squares). Here

black and white symbols indicate maximum and minimum estimates, respectively.

The inset shows the time series for total extinction rate for all organisms; (b) the

same as in �gure 1a, but for the shu�ed data sets (inset: the previous inset is

shown, after shu�ing the time series). Now the Hurst exponent decreases towards

a characteristic value H = 1=2, as expected for random time series; (c) histogram

for all computed Hurst exponents for the family-level FR time series (thick line)

including both origination and extinction data (here 30 data sets are used). The

thin line shows the corresponding histogram for shu�ed data, which are clustered

around H = 1=2
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range of the time series, given by the di�erence between the maximum and the

minimum over the period T :

R(T ) = max
1�t�T

X(t; T )� min
1�t�T

X(t; T ) (2)

Using these quantities, the rescaled range F (T ) is de�ned as:

F (T ) =
R(T )

S(T )
(3)

In this way we have a measure which scales the range by taking the standard devi-

ation as the unit of measurement.

Ordinary Brownian motion corresponds to the case F (T ) / T 1=2 where the values

of the time series are uncorrelated with each other. In terms of forecasting, the best

prediction is the last measured value. However, when Hurst analysed the scaling in

di�erent natural systems he found that, instead of the previous relationship, a more

general scaling was present, i. e.

F (T ) / TH (5)

where H was shown to be di�ering greatly from 1=2. Here H is very often larger

than 1=2 for systems as diverse as market price uctuations, light intensity curves

from quasars or precipitation data (Mandelbrot 1963, 1982; Korvin, 1992).

When the Hurst exponent is greater than 1=2 the system shows persistence on

all time scales: on the average, an increasing trend in the past implies an increasing

trend in the future. If H < 0:5 then we will see an opposite e�ect: an increase in

the past implies a decrease in the future; the local trend will be reversed and the

predicted value tends to the mean value over the interval (antipersistence).

In the next section the Hurst exponent for several paleontological data sets is

calculated. The Hurst exponent is closely related with the � exponent of the PS. In

fact, it can be shown that 2H = 1+ � (see for example Stanley et al., 1996) and for

simplicity we restrict our analysis to the Hurst approach.

3 Diversi�cation, extinction and self-similarity

In a previous study, Sol�e et al. examined a well-known data set of family records

from the Fossil Record 2 compilation (Benton, 1993). Both � and H were measured

and a consistent evidence for 1/f dynamics found. Other authors have con�rmed

these results (Amaral and Meyer, 1998; Briggs et al, 1998; Newman and Eble, 1998)

although some di�erences were reported. A rather important issue emerges from

the interpolation methods and another from the presence of trends in the FR data.
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Although interpolation of data points has been a common practice in time se-

ries analysis in paleobiology, one should always take care of the spurious results

created by arti�cial correlations. This was also mentioned in Sol�e's et al. analysis

and recently explored by some authors (Kirchner and Weil, 1998). The genera-

tion of spurious correlations is well known in nonlinear dynamics. Early studies on

low-dimensional chaos in paleoclimatic records suggested the presence of a chaotic

dynamical pattern with a small number of degrees of freedom (Nicolis and Nicolis,

1984). But it was shown that such a result was not completely supported by data

because of the introduced interpolations. In this context, Kirchner and Weil have

observed that random time series numbers together with interpolated points can

also lead to scaling behavior. From a rather di�erent perspective, Newman and

Eble have suggested that the trends in the time series are responsible for the scaling

behavior in extinction sizes and in the power spectrum (Newman and Eble, 1997,

1998).

These observations are relevant in our context but, instead of using interpolated

data, we can proceed to analyse the available data sets with no interpolations. In

the absence of interpolations, we have time series of short length (N � 77) but

interestingly similar results are obtained, although some variability is also observed.

In �gure (1.a) we show some examples of scaling behavior for some data sets. Specif-

ically we show total extinction and total origination rates for all organisms (Benton,

1995). Both maximum and minimum estimates are shown (In the insets of �gure

1(a-b), the time uctuations in total extinction rate is also shown). We can clearly

appreciate a linear behavior in this log-log plot, spanning hundreds of Myr. The

complete data set (30 time series) involving both origination and extinction, using

di�erent metrics, gives a Hurst exponent < H >= 0:80� 0:06 and the same result,

with very small deviations is obtained for total, marine and continental organisms

computed separately. The validity and robustness of this result is con�rmed by

shu�ing the data sets in such a way that correlations are destroyed. This is shown

in �gure (1.b), where the previous inset is shown again for shu�ed data. We can

see that the slope of the previous data is now shifted to a lower value, close to

< H >= 1=2. This is in fact what we should expect when no long-range correla-

tions are present. These results fully con�rm the previous studies and do not give

support to the artefactual origin of power law behaviour associated with interpola-

tions (as claimed by Kirchner and Weil, 1998) although the presence of interpolated

points gave larger Hurst exponents. Our results are summarized in �g. (1c) where

the histograms with the frequency of both Hurst exponents from FR data and from

a sample of shu�ed data are shown. We can appreciate the weak overlap between

both sets.

In relation with the presence of trends, such as the decrease of extinction rate

(Newman and Eble, 1997, 1998) it must be mentioned that such trends are not

present in most time series. Although a power-law decay in extinction rates r(t) �
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Figure 2: Extinction and diversi�cation patterns for the simpli�ed network model

(Manrubia and Paczuski, 1998) for N = 500 species. (a) extinction dynamics: small

and large (mass-extinction) events are observable, with a characteristic punctuated

behaviour; (b) the time evolution of diversity, as de�ned through the number of gen-

era, shows a complex pattern of uctuations involving periods of stasis (with nearly

constant numbers of genera) and sudden drops of diversity due to mass extinction

events; (c) a close view of the previous plot, only involving the �rst 500 steps shows

a well-de�ned, but transient, trend towards higher diversity levels. A �rst phase

looks like a logistic growth process, interrupted by an extinction event at t = 198.

Afterwards, a new, faster increase is observed. This plot is not di�erent from the

ones reported from real data sets This plot is characteristic of our model, but other

runs of the simulation lead to di�erent shapes involving more and less extinction

events and as a consequence di�erent shapes for the diversi�cation curve.
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t�� can be roughly �tted to the data (with a value close to one for accumulated data

sets for extinction rate) the same interpolation in other time series gives �-exponents

over a wide range of (positive and negative) values.

Power laws are a �ngerprint of SOC dynamics but, as discussed by several au-

thors (Sol�e and Bascompte, 1996; Newman, 1997) other mechanisms can lead to

scaling in nature. At this point, either a very good knowledge of the system under

consideration or an appropiate model (or both) are required. In the next section

we use a previously introduced model to reinforce our hypothesis that the scaling in

the FR is linked to complex, self-organized behaviour.

4 A network model of macroevolution

A simple model of macroevolution can be used to account for all the previous obser-

vations and most of the statistical features of the FR. The model has been already

presented by Sol�e and co-workers (Sol�e, 1996; Sol�e, Bascompte and Manrubia, 1996;

Sol�e and Manrubia, 1997) and it is inspired on previous theoretical approaches to

evolution in terms of self-organized critical systems (Kau�man and Johnsen, 1990;

Bak and Sneppen, 1995; however, strictly speaking the Kau�man-Johnsen model is

not SOC, and parameters have to be �ne tuned to get power-law behaviour).

Let us consider a set of N \species" S1; S2; :::; SN . Species are just numbers

and no population structure is assumed. Species are connected through a matrix

W = (Wij) where fWijg(j = 1; 2; :::; N) are the connections Wij 2 [�1;+1] among

species. Positive inputs mean interactions which facilitate survival and negative ones

means predation, parasitism and other negative inuences. In this approach species

are basically de�ned by their sets of connectins i. e. by their trophic relationships.

If the sum of connections is positive, i. e.
PN

j=1Wij > 0, then species Si will

survive. If not, it is extinct and must be replaced by some of the surviving species.

In the original formulation, the �rst rule was the randomization, at each step in the

simulation, of one connection per species, i.e. Wij ! W 0
ij 2 [�1;+1]. This rule

involves changes due to external or internal events. Eventually, small changes can

lead to the extinction of a cornerstone species which triggers an avalanche leading

to a large extinction event (Sol�e et al., 1996).

Using this basic approach, several features of the fossil record were shown to be

reproduced. Here we will extend our study and show that in fact all the reported

statistical features are reproduced by a simpli�ed model. A simpli�ed model, based

on the previous scheme, was proposed by Manrubia and Paczuski and it will be

followed here (Manrubia and Paczusky, 1998). Each species is now represented by a

single integer number �i 2 f�N;�N +1; :::;�1; 0; 1; :::; N � 1; Ng which represents

the sum of inputs from other species. The dynamics consists in three steps: (a)

with probability P = 1=2, �i ! �i � 1, otherwise no change occurs; (b) all species
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with �i < �c (below a given threshold) are extinct. Here we use �c = 0 but other

choices give the same results. The number of extinct species, 0 < E < N , de�nes

the extinction size. All E extinct species are replaced by survivors. Speci�cally, for

each extinct site (i. e. when �j < �c) we choose one of the N �E survivors �k and

�j = �k; (c) after an extinction event, a wide reorganization of the web structure

occurs (Sol�e and Manrubia, 1998). In this simpli�ed model this is introduced as a

coherent shock. Each of the survivors are updated as �k = �k + q(E), where q(E)

is a random integer between �E and +E.

This model (like the original network model) has been shown to generate a

pattern of power-law distributed events. It also generates a self-organized taxonomy

with a scaling distribution of species within genus. The lifetime distribution of

such genus is also a power law and all these distributions are in agreement with the

observations (see table I). The extinction of individual species follows an exponential

decay in agreement with Van Valen's observation of the Red Queen e�ect (Van Valen,

1973).

Two additional aspects can be tested with this model. One is the presence

of persistence as measured by the Hurst exponent. Another feature, this time a

qualitative one, concerns with the patterns of diversi�cation and the presence of

trends in the fossil record.

Property Observed SOC Model

Dynamics Punctuated Punctuated

Mass extinctions Few events Expected

Diversity Increasing Transiently increasing

Species decay Exponential Exponential

Extinction pattern, N(E) Power law (� � 2) Power-law (� � 2)

Hurst exponent, H persistence, H > 1=2 persistence H > 1=2

Genera lifetimes N(T ) Power law ( � 2) Power law ( � 2)

Genera-species Ng(S) Self-similar, (� � 2) Self-similar,(� � 2)

Table I : some basic trends of macroevolutionary patterns. Observed and predicted

by the SOC model (see text). All the quantitative reported exponents from the FR

are reproduced by the SOC model as well as the qualitative features like the

diversi�cation curves.

We can count the number of genus in the model and follow their uctuations

in time. This is shown in �gures (2. a-c) and (3. a-c) where both the extinction

time series (a) and the diversity uctuations (b) (number of genera over time) are

shown. The initial condition is � < 10 for all species. In �g. (2) a relatively large

system is used An interesting feature is that if we look at the �rst 500 steps, an
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apparently increasing trend in diversity is found. This curve strongly resembles to

the ones obtained for origination data (Benton, 1993; Courtillot and Gaudemer,

1996). But here, instead of deterministic models assuming a logistic growth of

diversity, we have a highly nonlinear dynamics leading to large extinction events

and strong changes in diversity at the (very) large time scale. This result should

prevent us from conclusions about speci�c trends in the fossil record.

If a smaller number of species is considered (N = 100, �g. (3)) we can see that

the uctuations are of higher frequency. This pattern strongly ressembles the one

observed in some groups, like Ammonoidea (House, 1988). Now we can compute

the Hurst exponent for these time series to check if the observed persistent behavior

in the record also takes place in the model. And the answer is yes: in �gure (3.c)

we show an example of the scaling behavior exhibited by the uctuations, and the

Hurst exponent is typically found to be in the range 0:9 < H < 1:0. Interestingly,

if small data sets are used (T = 100, in the range of the ones used from the FR)

smaller values are obtained, within the range 0:7 < H < 0:9.

5 Summary and discussion

In this paper we have analysed the presence of long-range correlations in the Phanero-

zoic record of life. The basic measure is the Hurst exponent H, estimated through

rescaled range analysis. Our study fully con�rms that fractal, long-range correla-

tions spanning hundreds of millions of years are present in both the extinction and

origination time series. No interpolations are used, and in this sense our positive

results suggest that scaling in the fossil record is not an artifact of the methods used

for analysis. A characteristic persistent behavior is thus present in the large-scale

dynamics of the biosphere, suggesting that biotic mechanisms of some kind could

be at work.

A simple model of ecosystem dynamics showing self-organized critical behavior

has been shown to �t very well both the available power laws from extinction data

and species/genus distributions, with the correct exponents for all of them. The

model also reproduces the diversi�cation curves displayed by the FR data, with a

transient increase in diversity punctuated by some drops associated with large ex-

tinction events. The Hurst exponent for the extinction uctuations gives persistent

behavior as in the fossil data and are in the same range when small, comparable

data sets are used.

As far as we know, no other model has been shown to predict all these observa-

tions in such an accurate quantitative way. Although a variety of non-SOC models

can explain the presence of scaling in the extinction statistics with the appropiate

exponent (Sibani, 1996; Newman, 1997; Engelhardt, 1998) none of them provide

appropiate taxonomy nor lifetime distributions (in Newman's stress model, for ex-

10



0 500 1000 1500 2000
0

20
40
60
80

100
E

xt
in

ct
io

n

0 500 1000 1500 2000
time

0
10
20
30
40
50

D
iv

er
si

ty

1 10 100
T

0

1

10

F
(T

)

Simulation
model
H=0.93
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Again punctuated behaviour is observed (a) but the diversity pattern is much more

uctuating (b); (c) the Hurst analysis for the extinction time series (as shown in (a),

calculated for the �rst T = 100 data points) gives a well-de�ned scaling F (T ) � TH

with H = 0:93, in agreement with real data.
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ample, we get  = 1:0 and � = 1:5, although it should be noted that some groups

-like owering plants- certainly show a di�erent scaling exponent, in agreement with

Newman's model).

The agreement reported between model and data strongly suggests that biotic

responses play a prominent role in macroevolution. Other observations from the

FR support this view (Maynard Smith, 1989). Further data analysis and theory

will be required in order to explore these results. The relevance of the problem

under consideration - how does life evolves on Earth - and the consequences for

evolutionary theory are worth the e�ort.
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