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Abstract

Shape space was proposed by Perelson and Oster 20 years ago as a concep-
tual formalism in which to represent antibody/antigen binding. It has since
played a key role in computational immunology. Antigens and antibodies are
thought of as points in an abstract \shape space" where coordinates of points
in this space represent generalized physico-chemical properties associated with
various (unspeci�ed) physical properties related to binding, such as geometric
shape, hydrophobicity, charge, etc. Distances in shape space between points
representing antibodies and (the shape complement of) antigens are assumed to
be related to their aÆnity, with small distances corresponding to high aÆnity.
Up to now, coordinates of points in shape space have been purely implicit.

In this paper we provide algorithms, related to metric and ordinal multi-
dimensional scaling algorithms �rst developed in the mathematical psychology
literature, which construct explicit, quantitative coordinates for points in shape
space given experimental data such as hemagglutination assays, or other general
aÆnity assays. An application of these algorithms to panels of hemagglutina-
tion inhibition assays for in
uenza show that the dimension of immunological
shape space is low, roughly dimension �ve, in accord with Oster's and Perelson's
earlier qualitative estimates.

Explicit numerical values are provided by the algorithms for co-ordinates of
molecules in shape space, whereas previously such coordinates have been a con-
ceptual construct and totally implicit. The deduction of the explicit geometry
of shape space given experimental aÆnity data provides new ways to quantify
the similarity of antibodies to antibodies, antigens to antigens, and the aÆnity
of antigens to antibodies. This has potential utility in, e.g., strain selection
decisions for annual in
uenza vaccines, among other applications. The analy-
sis techniques presented here are not restricted to analysis of antibody-antigen
interactions and are generally applicable to aÆnity data resulting from binding
assays.

1 Introduction

\Shape space" was introduced by Perelson and Oster [Perelson (1979)] in 1979 as a
conceptual and computational framework in which to view antibody-antigen aÆnity
and its resultant consequences. It has since played an important role in theoretical and
computational studies of the immune system [Segel et. al. (1988)] [Pereslon (1988)]
[DeBoer et. al. (1992)] [DeBoer et. al. (1992)]. This paper presents algorithms re-
lated to ordinal and metric multidimensional scaling [Shepherd(1963)], [Shepherd(1964)],
[Kruskal(1964a)], [Kruskal(1964b)] which create an explicit representation of shape
space and which provide numerical coordinates, given suitable experimental data,
which represent molecular positions in the space. Although the numerical precision
of aÆnity measurements is often limited, the algorithms described here are robust,



and can construct quantitative information such as numerical coordinates, from qual-
itative information such as the rank order of aÆnities as provided by a panel of
experimental data, e.g., hemagglutination inhibition (HI) assay results. Hemaggluti-
nation inhibition assays measure the ability of antibodies to bind to antigens. In the
context of in
uenza, the assay reports the ability of ferret antibodies raised against
one viral strain to inhibit a second strain's ability to agglutinate red blood cells. If
attempts are made to de�ne similarity of antigens, respectively antibodies, using bind-
ing assay data without reconstructing the geometry of the underlying shape space,
then signi�cant errors can result as we demonstrate below.

The idea of shape space as originally developed in the context of antibody/antigen
binding is simple yet powerful, and presumably applies to other molecular interac-
tions. Here we concentrate on antibody/antigen interactions. Each antibody and each
antigen is assumed to be implicitly described by a vector of numbers, i.e. a coordinate
vector, which represent the geometric shape characteristics relevant to shape comple-
mentarity in binding, as well as more general physico-chemical characteristics related
to binding. These shape and physico-chemical characteristics need not be known for
any individual molecule, but are assumed to exist, and are assumed to be suÆcient to
provide a complete description of molecular binding if they were known. Each vector
represents an antibody, respectively antigen, as a point in a generalized \shape space"
of some (to be determined) dimension. Antigens which are bound tightly by an an-
tibody are assumed to have similar shape space vectors (or more precisely, similar
complement shape vectors, see below) to the antibody, and hence are described by
points in shape space which are close in Euclidean distance as calculated from their
coordinate vectors to the antibody point. Experimentally observed aÆnity values are
assumed to be a monotonic transformation of the distance between an antibody and
an antigen in the underlying shape space.

In previous work [Perelson (1979)] [Segel et. al. (1988)] [Pereslon (1988)] [DeBoer et. al. (1992)]
[DeBoer et. al. (1992)] these coordinate vectors remained as implicit theoretical con-
structs, but even though implicit, the shape space formalism provided a powerful
conceptual framework in which to explore molecular aÆnity and related issues. In
this work we provide algorithms which calculate explicit coordinate vectors in shape
space from experimental data, and provide a formalism in which to execute quanti-
tative investigations. A point requiring mention is that, in general, complementary
shapes bind well (or more precisely, complementary physico-chemical characteristics
lead to good binding), and hence the shape space vector describing one of the members
of the pair (antibody, bound antigen) actually describes the complementary \shape"
for that member. The word \shape" in this context denotes geometric as well as other
physico-chemical characteristics of molecular surfaces relevant to binding, and does
not necessarily imply a \lock and key" concept of molecular aÆnity.

Perelson and Oster were able to estimate certain gross properties of shape space,
such as bounds on the dimension of the space, from experimental data even though
they had no means to assign actual coordinate vectors in shape space to molecules.
The dimension estimated by Perelson and Oster turned out to be fairly low (ap-



proximately �ve dimensional), a value validated via our quantitative analysis using
independent methods on di�erent experimental data. A key contribution of this paper
is the development and application of algorithms which provide explicit coordinates
for molecules in shape space given experimental data, such as hemagglutination inhi-
bition (HI) assays. The algorithms are robust, and even though assay data is typically
of low precision, the algorithms can produce high quality coordinates which provide
a detailed description of the geometry of shape space given only low precision exper-
imental data. This recovery of high precision metric information from low precision
data is a characteristic of the class of algorithms known as ordinal multidimensional
scaling algorithms [Borg(1997)], to which our work is closely related.

Our formalism provides a quantitative description not only of the binding of anti-
gen to antibody, but also allows one to compute measures of similarity of one antigen
to another antigen, and of one antibody to another antibody. Various applications
of the formalism exist, including analysis of hemagglutination inhibition (HI) assay
data used, e.g., in selection decisions for components of the annual in
uenza vaccine.
We present results of analyses of various HI assay panels.

2 Material and Methods

The Computational Problem: It is assumed that a panel of aÆnity related mea-
surements, such as hemagglutination inhibition assays, are available for a set of M
antigens reacting with N antisera comprised of antibodies.

The full computational problem is to use the experimental data to deduce
coordinate vectors in shape space for both the antigens and the antibodies i.e. to
similtaneously construct N +M coordinate vectors describing N +M points in the
same space. Distances from antigens to antibodies, as calculated from the coordinate
vectors, are to be monotonically related to their measured HI values, while distances
from antigen to antigens, respectively antibodies to antibodies, de�ne inferred simi-
larities among these points.

A subset of the full computational problem is the de�nition of coordinates
for either the set of antigens, or for the set of antibodies, but not both similtaneously.
Similarity is then de�ned as the distance between points in this space. AÆnity can
not be represented. We �rst point out diÆculties in the conventional approach to this
sub-problem, and then present solutions to the full problem.

Measuring Similarity: DiÆculties in Conventional Approach It is possible
to calculate distances, i.e. (dis)similarities, between either the antibodies, considered
as a set, or the antigens considered as a distinct set (but not between an antibody
and an antigen) by de�ning coordinates for either the antibodies or the antigens in
the following simple manner: view the experimental values for M antigens versus N
antibodies as an M � N panel of numbers, and consider the rows to be coordinates
for the antigens or, respectively, consider the columns to be coordinates for the an-
tibodies in a Euclidean space. The rows, respectively columns, can be thought of as
\feature vectors" describing either the antigens or the antibodies. These vectors de-



�nes coordinates in a space whose dimension is the (arbitrary) number of antibodies,
respectively, antigens, in the panel. The distance, or (dis)similarity between antigens,
respectively antibodies, can then be calculated in the usual Euclidean fashion from
these coordinates by forming the sum of the squares of coordinate di�erences. This
procedure is often used (at least implicitly) to examine hemagglutination inhibition
assay data and to infer similarities between antigens, or between antibodies, based
on experimental data.

Clearly, de�ning similtaneous coordinates for both antigens and antibodies (i.e.
placing both antibodies and antigens in the same space) is not possible using the
simple procedure above, since by construction, coordinates are only provided for
either antigens or antibodies, but not both. Furthermore, this simple method to
de�ne similarities can be highly inaccurate when aÆnities are related to distances in
an underlying space of �xed dimension, as per shape space assumptions. A simple
simulation of shape space demonstrates this. Ten points representing antibodies are
scattered into a space of �ve dimensions by choosing coordinates for the ten points at
random between �1 and +1 in �ve dimensions. Hence N of a simulated NM panel is
N = 10. Next, an additional �fty points is scattered in the space in a similar fashion
to represent �fty antigens in the �ve dimensional shape space. Hence, M = 50. The
fact that experimental panels do not usually have e.g. �fty antigens is irrelevant. We
use �fty antigens in this 50 � 10 example merely to make trends visually apparent in
Fig. (1).

To illustrate the problem with simplistic approaches to similarity de�nition we
concentrate on the set of distances within the set of antigens (one could equally well
consider the set of antibodies), as de�ned above. We also consider the distances
within the set of �fty antigens as calculated in the true underlying �ve dimensional
shape space, and compare this to the associated set of distances as calculated from
coordinates de�ned by elements of the rows of the 50 � 10 panel (see above). This
simplistic method represents the �fty antigens of this example as points in a ten
dimensional space. However, the true underlying dimension of the space in this
example is �ve dimensional. The e�ect of this mismatch can be seen in Fig (1). The
true �ve dimensional shape space distance is plotted on the x-axis, while the ten
dimensional distance computed in the fashion described above from the 50�10 panel,
is plotted on the y-axis.

It may be seen that attempting to select similar points based on the ten dimen-
sional \panel distance", by horizontally slicing in y-value, results in a wide range of
associated distances in the true �ve dimensional space represented by x-value. Hence,
for all but the very smallest y-values, the simplistic procedure to de�ne similarities
results in a wide range of similarity values in the true space, including signi�cantly
large x-values, i.e., quite poor similarities in the true space.

A more serious problem with \panel based methods" is that they can not represent
antigens and antisera in the same space. Also the very dimension of the space of
antigens or the space of antisera depends on the arbitrary panel size. Algorithms
are required which can recover the true underlying shape space, which situate both
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Figure 1: Scatter plot for antigens with true shape space distance on the x-axis, versus
panel distance on the y-axis, for a panel of 50 antigens and 10 antibodies in a �ve
dimensional shape space. Small distance corresponds to high similarity. Horizontal
slices in y-value (i.e. �xed \panel distance") are associated with a range of x-values
(i.e. true distances), and even relatively small panel distances can have large x-values
(true distances), demonstrating that panel based similarity measures typically include
points with questionable similarity in the true space. More precise methods, such as
described in this paper, are required for accurate similarity determination.



antigens and antibodies in the same space so that aÆnities as well as similarities are
represented, and which de�nes a unique dimension of shape space. The algorithms
presented here, related to techniques of multidimensional scaling, achieves these goals.

Similarity Measures From AÆnity Panels: A New Approach
\Multidimensional scaling" algorithms (referred to hereafter as MDS) are a class of

algorithms initially developed in the computational psychology literature [Shepherd(1963)],
[Shepherd(1964)] which reconstruct the relative coordinates of points, given only (pos-
sibly transformed) distances between the points. \Relative" means that coordinates
are reconstructed from the distance data up to global translation, re
ection, scale, and
rotation which leave the relative relation of points invariant. Since interest centers
on relative relationships, such global transformations are irrelevant

A related class of algorithms called \distance geometry algorithms" has seen ap-
plication in biology and chemistry in a quite di�erent problem area than that con-
sidered here, i.e., the deduction of three dimensional coordinate information given
nuclear magnetic resonance (NMR) data information about distances between atoms
in molecules [Braun (1987)]. The shape space problem considered here di�ers in
at least four fundamental ways from distance-geometry problems restricted to three
dimensions:

(1) the dimension of shape space is not known and must be inferred from the
experimental data

(2) the experimental data does not directly record distances, instead the experi-
mental data (i.e. aÆnity measurements) are assumed to be related by an unknown
monotonic transformation to distances in shape space

(3) data is available concerning only a subset of the distances, because aÆnity
measurements relate antigen to antibody, and do not directly relate antigen to antigen,
or antibody to antibody. In other words, some of the distances are \missing". An
important feature of our analysis is that such missing data, relating to measures of
antigen-antigen similarity and to antibody-antibody similarity, can be calculated after
application of our algorithms to measurements of antibody-antigen interaction.

(4) the experimental data is typically of low precision for which only rank order
relationships may have signi�cance.

An extension of multidimensional scaling to situations where only an ordered list
of the ranks of the distances, and not the actual distances themselves are given, is
called \ordinal multidimensional scaling" [Kruskal(1964a)], [Kruskal(1964b)] and has
been used extensively in the computational psychology literature to derive quantita-
tive conclusions from qualitative data, such as a human subject's relative rankings of
the visual similarities of pairs of objects [Edelman(1995)]. Somewhat surprisingly, if
only the rank order of a set of distances between points are known it is still often pos-
sible to compute with a high degree of precision the coordinates of the points in shape
space giving rise to the ranked set of distances. This is because given enough data,
the set of rank relations impose suÆcient inequalities on distances between points in
the space such that the resulting set of similtaneous inequalities slices the space into
small allowable regions in which each point can exist. It is not uncommon in MDS ap-



plications to achieve highly accurate, quantitative reconstruction of coordinate values
given only rank order information about distances between points, as may be veri�ed
by simulation (data not shown, see also [Edelman(1995)]) . The lower the dimension
of the space, the less data is required for recovery of metric information from ordinal
data. Fortunately, the dimension of immunological shape space turns out to be low.

Following Perelson and Oster [Perelson (1979)] we assume that the aÆnity mea-
surement for interactions between antibodies and antigens are monotonically related
to the distances between the points describing them in shape space. High experimen-
tal aÆnities translates to small distance in shape space. The form of this monotonic
relation is a priori unknown, but can be recovered via application of the algorithms
presented here. In our context, the ability to work with rank order data encompasses
totally general monotonic transformations between distances in shape space and ex-
perimentally measured values such as hemagglutination inhibition assays, or more
general binding assays. Alternatively, one could introduce a parameterized mono-
tonic transformation into the MDS algorithm which relates distances calculated in
shape space to experimentally measured aÆnities (an approach not pursued here).
We note that the shape space problem is more general than problems usually con-
sidered in simple MDS analyses. For shape space, one is given distances or more
generally experimental measurements monotonically related to distances, between
only a subset of the data: only the antigen-antibody \distances" are given, and the
antibody-antibody and antigen-antigen distances are to be inferred. This is known
as the \unfolding problem" in the ordinal MDS literature [Borg(1997)].

Algorithms:
Various 
avors of multidimensional scaling algorithms exist [Borg(1997)]. A uni-

fying viewpoint is that such algorithms seek to minimize an objective function which
is a function of (a) experimental data, assumed to be monotonically related to the
distances between points, and (b) the distances between points, as computed from
(to be determined) coordinate vectors representing each point in a space of assumed
dimensionality. In our case, given experimental measurements representing the aÆn-
ity of a panel of antigens and antibodies, the computational task is to determine the
dimension of the space, and the co-ordinate vectors in that space representing each
molecule, such that the computed distances between antibodies and antigens in the
space are monotonically related to the experimental data.

Metric MDS For pedagogical purposes we �rst assume that the experimental
measurements are in fact distances, and not more generally, monotonic transforma-
tions of distance. Versions of ordinal MDS will later be used to address experimental
values which are monotonic transformations of distance. If the experimental data
is assumed to be direct measurements of distances in the space (an assumption re-
moved later) then the computational task of MDS may be formulated as minimizing
the following objective function

E =
i;j=M;NX

i;j=1

(Dexpt
ij �Dij)

2



where Dij
expt are the known, experimentally determined, \distances" (or more gen-

erally, aÆnity measurements), and the estimated Euclidean distances Dij, are com-
puted in standard fashion given the coordinate vectors, X, of the points in a space
of dimensionality D (D to be determined):

Dij = jXi �Xjj
2

Here jj2 represents the usual vector norm. The D-dimensional vector, Xi, represents
the position of the ith of M antigens in shape space, and similarly Xj represents the
position of the jth of N antibodies (or more generally, antisera). Each vector, Xi, has
components

Xi = (X1
iX

2
iX

3
i :::X

D
i )

where the numerical values of the components, and the dimension D, are to be de-
termined. E will have the value zero if distances between points in shape space, Dij

match the observed distances, Dexpt
ij .

E is a function of the distances, Dij, which in turn are a function of the compo-
nents of the vectors, Xi. Hence if a dimension, D, is assumed, then one may optimize
E as a function of the components using, e.g., steepest descents or conjugate gradient
methods, to �nd optimal coordinates. Although local minima can in principle be a
problem, we have found that good minima of the objective functions used in this paper
are generally reached using conjugate gradient algorithms, and that choosing di�er-
ent random initial conditions result in minima which yield similar �nal coordinates
(modulo global rotation, re
ection, and translation, which are not of interest).

Because N points can be embedded in N�1 dimensions (e.g. three points de�ne a
plane in two-dimensions) a non-trivial embedding is obtained only ifD is substantially
less than the number of points. One can test all possible embedding dimensions,
starting with highest dimension taken to be one less than the number of points. Just
how pronounced the \knee" is in a plot of �nal E versus D is a function of the quantity
and quality of the experimental data.

We also note that since some distances are missing in the case of aÆnity data,
achieving a good reconstruction relies on the assumption that the M antigen points
and the N antibody points are intermingled. If instead, the \center of mass" of
e.g. the antigens were signi�cantly displaced from that of the antibodies (i.e. if in
actuality they formed two distinct clouds of points, as opposed to two intermingled
clouds in shape space) then knowing the distances between points of the two clouds is
not as constraining as if the clouds were intermingled. Intuitively, this point is made
clear by thinking of a two dimensional example with two clouds of points, either (1)
intermingled/overlapping, or (2) signi�cantly displaced and not overlapping.

Various weighting factors can be introduced in E, if desired [Kruskal(1964a)],
[Borg(1997)]. For example

E =
X

ij

(Dexpt
ij �Dij)

2=D2
ij



will weight the smaller distances more heavily, and therefore place importance on
the higher aÆnity values. To more directly relate MDS algorithms to solutions of
the shape space problem, where high aÆnities correspond to small distance in shape
space, one can introduce parameterized monotonic transformations, f(Dexpt

ij ) into the
function E

E =
X

ij

(f(Dexpt
ij )�Dij)

2=D2
ij

such that large Dexpt
ij corresponds to small distance. Examples of such functions are

f(X) = C �X, where C is a �xed positive constant converting large values of Dexpt
ij

to small values of Dij. Alternatively, one might try f(X) = Cexp(�X) or similar
transformations. A priori the correct monotonic transformation between distances
in shape space and experimental values of any given data set is unknown. It may
be veri�ed via simulation (data not shown) that if \experimental values" involve one
function, f1(), and if the attempted reconstruction of shape space involves a di�erent
function (used in the minimization of E, above) , f2(), then (a) the reconstructed
dimension is typically arti�cially in
ated, and (b) a spread of reconstructed distances
against true distances (similar to Figure (1)) is obtained. Presumably, if an assumed
parametric functional form with adjustable parameters is suÆciently general, e.g.
involving monotonic splines, then such errors could be mitigated, however we do not
pursue that approach here.

Ordinal MDS, considered next , avoids these problems. Ordinal MDS algorithms
result in a completely general, nonparametric description. After analysis by ordinal
MDS algorithms, a parametric description of the relation of HI value to distance in
shape space may be determined by inspection. We �nd that the relation between HI
values and distance in shape space (which in principle can be any monotonic function)
is described by the following simple parametric form (see Results).

HI = C � e�(distance)

where C is a positive constant. If desired, it is possible to return to a metric MDS
analysis, using the parametric form (above) obtained by analysis of ordinal MDS
results, in order to account for errors in the experimental determination of HI values
via the Least Mean Squares formulation of metric MDS.

Ordinal MDS Ordinal MDS addresses the monotonic transformation problem
by using only rank order information, in which only the relative magnitude of the
aÆnities and of the distances between points in shape space matter. The numerical
values of the experimental data are not used other than to sort the values in rank
order. A surprising and quite valuable property of ordinal MDS style algorithms is
that metric information (i.e. relatively accurate 
oating point values for points in the
underlying true space) can often be recovered from nonmetric (i.e. rank) information.
This occurs because imposition of the set of rank inequalities e�ectively divides the
space into suÆciently small regions such that coordinates for the points are highly
constrained.



If there are M antigens and N antibodies then there are M � N experimental
values, Eij, to be related to the distances between the representative points in shape
space. Each such value is assumed to be monotonically related to a distance Dij

between antigen i and antisera j.. Order the experimental values from high to low,
and index the resulting list of Eij and the associatedDij with a number from 1 toMN ,
such that rank one is the highest experimental value which is to be associated with
the smallest distance. An objective function, which when minimized as a function
of shape space coordinates ranks the computed distances in shape space in the same
order as the experimental values, is:

E = �
i=MNX

i=1

log(g(Di+1 �Di) (1)

Here, Di references the MN computed distances between pairs of points repre-
senting antigens and antibodies in shape space, using the index based on the rank
ordering of the experimental values explained above. Implicit in the notation for Di

is the fact that each Di is de�ned from a particular antigen/antisera pair of vec-
tors from which the distance is being computed. g() is a sigmoidal function which
is zero at large negative values of its argument and one at large positive values e.g.
g(x) = 0:5 � (1 + tanh(x)). The exact algebraic form is not critical, and it is stressed
that this monotone function is not at all related to the monotonic function relating
distances in shape space to HI values.

This objective function is minimized as a function of the antigen/antisera coor-
dinates in shape space, and achieves value equal to zero, when the rank order of the
computed distances agrees with the rank order of the experimental values. This satu-
rates the g() function near the value 1.0 and sends the log() terms toward zero. Con-
jugate gradient algorithms work well in implementing an eÆcient minimization. Local
minima, a minor problem in the analyses described below, can easily be surmounted
by choosing a few initial starting values for the coordinates of the points. For the
data considered below, minimization of the above objective function has proven sim-
pler and more robust than the technique of monotonic regression [Borg(1997)] which
has been described in the literature to accomplish ordinal MDS using a di�erent ob-
jective function (however extensive comparisons were not performed). Extensions of
the above objective function are possible, including a \soft" version (using sigmoidal
functions) of Kendall's coeÆcient of rank order correlation, � [Lehmann(1975)].

Even though rank information (as opposed to quantitative values) can be used to
de�ne coordinates in shape space, experimental precision still remains an issue. If,
for example, hemagglutination inhibition assay values which do not di�er by a factor
of four are essentially indistinguishable due to experimental precision, as is typically
the case for standard in
uenza serological assays analyzed below, then ambiguity can
occur in the rank ordering of such \tied" experimental values. Other assays may have
di�erent (hopefully better) precision. Analysis of repeated HI assays for a given panel
of in
uenza antigens and associated antisera (data kindly provided by the In
uenza
Branch, Centers for Disease Control and Prevention [CDC]) shows that the underlying



geometry of immunological shape space is recovered to good precision in spite of such
experimental uncertainties (see Results).

Note that the algorithms described here for computing the geometry of shape
space provides similtaneous coordinates for both antigens and for antibodies. Hence
antigen-antigen and antibody-antibody distances can also be calculated, even though
experimental information is provided only for antigen-antibody interactions. Anti-
gens and antibodies are represented by points in the same space where the distances
between antigens and antibodies is, by construction, related to their aÆnities. On the
other hand, the antigen to antigen distances and the antibody to antibody distances
quantify the similarity among antigens, respectively antibodies, in regards to the in-
teraction(s) being measured. Since visualization of the relative positions of points in a
space higher than three dimensions is diÆcult, standard techniques such as neighbor-
joining [Hillis(1990)] may be used to provide dendograms which illustrate the relations
between points in dimensions higher than three. Investigation of the relation of such
\HI dendograms" to phylogenetic trees [Hillis(1990)], produced by sequence analysis
using the DNA sequences of the antigens, could potentially be used to illuminate the
relation between sequence changes and associated antigenic changes.

3 Results

In
uenza is a rapidly mutating RNA virus for which there is a national and inter-
national policy of annual vaccination. Abundant HI data is produced each year to
assess the cross-reactivity of di�erent annual strains of in
uenza with antisera that
has been raised against strains of interest, typically those of preceding years. Such
data is an important component of a decision process involving HI data, sequence
data, and epidemiological data to select strains for inclusion in the in
uenza vaccine
for any given year. A more detailed analysis of the antigenicity and evolution of
in
uenza virus using our methods will be given elsewhere. Here we concentrate on
the determination of the dimension of immunological shape space given experimental
HI data, and the exposition and validation of the algorithms which reconstruct shape
space from experimental data.

We apply our version of ordinal multidimensional scaling to various data sets of
HI values for in
uenza below. These comprise two published panels of HI values
[Raymond(1986)], [Both(1983)], �ve unpublished HI panels [CDC] representing re-
peated determinations on �ve separate days of HI values for identical sets of antigens
and antisera (to test invariance of the recovered geometry to experimental uncertain-
ties in determination of HI values), and �nally, various sets of simulated HI data (to
test if special properties of HI tables, e.g. the fact that they result from two-fold
dilution studies, can produce arti�cially low dimensions under MDS analysis). All
data sets obtained from laboratory experiments turn out to have dimension equal to
either four or �ve. .

Analysis of HI Assay Data: H1 In
uenza Hemagglutinin 1950-1957
and 1977-1983 The �rst data set we consider consists of a panel of HI values for 19



antigens (in
uenza viral strains) versus 14 antisera (hence, M = 19 and N = 14) for
in
uenza H1 subtype hemagglutinin, published in an investigation [Raymond(1986)]
of the evolution and antigenicity of the re-emergent in
uenza strain A/USSR/90/77.
The 19 antigens are selected strains of in
uenza virus from the years 1950-1957 and
1977-1983, the 14 antisera are corresponding antisera to a subset of these 19 antigens.
A/USSR/90/77 in
uenza is of interest, in part, because of the re-emergence in 1977
of a strain (A/USSR/90/77) remarkably similar to one �rst observed in 1950.

Application of Eqn.(1) in successive dimensions results in the rank order of the
hemagglutination inhibition (HI) assay values published in [Raymond(1986)] being
preserved in a minimum of �ve dimensions. A clear signature of the underlying di-
mension of shape space is given by the minimal dimension in which points representing
antisera and antigens may be embedded without rank errors. The number of rank
errors is de�ned to be the number of times the inequality Di+1 > Di of Eqn. (1) is
violated. This signature may be seen graphically in Figures (2) and (3). In Fig.(2)
the log of the experimental HI values are plotted on the x-axis, versus the associated
distance between antigen-antisera in �ve dimensions, on the y axis.
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Figure 2: Plot of log(HI) value on x-axis versus computed distance in shape space
(dimension �ve) on y-axis. Note that the rank order of distances in shape space agrees
with the rank order of the experimental HI values in shape space dimension �ve.



Similarly, Fig.(3) shows the result of the same algorithm in four dimensions.
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Figure 3: Plot of log(HI) value on x-axis versus computed distance in shape space
(dimension four) on y-axis. Note that the rank order of distances in shape space does
not agree with the rank order of the experimental HI values if the dimension of shape
space is too low, e.g. four dimensional as opposed to �ve dimensional (c.f. Fig. (2)).

It may be seen that rank order of the HI values are preserved (zero rank errors)
in �ve dimensions (Fig. (2)) while rank orders in dimension four (Fig.(3)) are not
preserved (144 rank errors), thereby providing a numerical as well as graphical sig-
nature of the dimension of immunological shape space. This determination of the
dimension shape space is in accord with Perelson's and Oster's earlier estimate of
a low dimension [Perelson (1979)] resulting from qualitative arguments concerning
binding of B-cells to random antigens.

It is important to verify that (a) the resulting inferred geometry of shape space is
independent of the initial starting values for the coordinates used to minimze Eqn (1),
and that (b) the resulting relative positions of antigens and antisera are so highly con-
strained by the rank relations that the rank relations can not be satis�ed with grossly
di�erent geometries. To illustrate these points consider multiple runs in �ve dimen-
sions, with di�erent initial starting values for the coordinates. Di�erent coordinate
values which are related by scale, translation, rotation, and re
ection transformations



can result. To separate such inessential transformations from possible variations in
the geometry from run to run which are related either to either (a) local minima
in Eqn. (1) and/or (b) to the imprecise nature of rank order constraints, we evalu-
ated the correlation between pairs of runs of the set of interpoint distances resulting
from each run. Such a correlation measure of interpoint distances is insensitive to
inessential rotation, re
ection, translation, and scale changes from run to run. Low
correlation is an indicator of variable geometries from run to run. Five initial choices
of starting coordinates were used, resulting in 5 � 4=2 = 10 possible pairwise corre-
lation measures. The average of these 10 correlations was 0:92, indicating a good
reconstruction of the same underlying geometry from run to run. We conclude the
�nal computed geometry does not sensitively depend on the initial values of coordi-
nates used in the computation and that the set of rank relations highly constrains
the relative locations of points in shape space.

Analysis of HI Assay Data: In
uenza H3 Hemagglutinin 1968-1980
The second data set we consider is HI assay data from a panel ofM = 14 antigens

versus N = 14 antisera published in [Both(1983)] for strains selected from the years
1968-1980. Application of Eqn.(1) in successive dimensions shows that rank order
relations between experimental HI values and distances in shape space is preserved
in dimension �ve, but not in lower dimensions (data not shown). A clear signature
is therefore again obtained, using di�erent experimental data, that the dimension of
immunological shape space is low, on the order of �ve dimensions.

Evaluating the correlation of interpoint distances between �ve di�erent runs, anal-
ogous to the correlation analysis performed on the previous data set, results in a
average interpoint distance correlation from run to run of 0:8. Hence there is more
variability in the geometry resulting from the Both data set than that of the Ray-
mond data set. The reason for the lower correlation (more variability of the computed
geometry from run to run) for the Both data set is because in this data set there are
antigens with low cross-reactivity (i.e. low HI values, and therefore associated high
distance) to a large number of the antisera used in the data set (data not shown).
Hence the associated points in shape space are less constrained by the given data.
This is re
ected in the �nal computed distances, where small interpoint distances
are highly correlated across the �ve runs, but large distances (associated with low
HI values) are poorly correlated across runs, resulting in the average correlation of
0:8. This makes intuitive sense: if speci�c antigens (respectively, antisera) have low
reactivity across the set of antisera (respectively, antigens) then the points in shape
space corresponding to those members of the HI table with low reactivity will be
poorly constrained. HI panels in which any given antigen (respectively, antisera) has
a measurable cross-reactivity with a minimum number of antisera (respectively, anti-
gens), solves this problem, which is an issue of the data and not one intrinsic to the
algorithm. In the Raymond data set, as well as other data sets considered below, this
issue is not a problem, as evidenced by the higher average correlation of interpoint
distances from run to run.

Of interest in this data set are the relative relationships of the strains A/HK/68,



A/Eng/72, A/PC/73 and A/Vic/75 in shape space. These strains appear in data
collected from outbreaks of H3N2 in
uenza at Christ's Hospital in 1974 and in 1976.
Smith et. al., [Smith(1999)], suggest that patients innoculated in successive years
can expect to have higher attack rates of virus compared to �rst time vaccinees if the
vaccine 1 to vaccine 2 distance is small, and the vaccine 1 to epidemic strain distance
is comparatively medium or large. In 1974 the epidemic strain was A/PC/73-like
and patients were previously innoculated in successive years with the vaccine strains
A/HK/68 followed by A/Eng/72. In 1976 the epidemic strain was A/Vic/75-like
and patients were previously innoculated in successive years with the vaccine strains
A/Eng/72 followed by A/PC/73.

To visually represent the relationship of points in �ve-dimensional shape space
we borrow a device used in sequence analysis. Phylogenetic trees are a convenient
method to represent the distance relationships between sequences in such a way that
the relations can be viewed in a two-dimensional drawing. The neighbor-joining
algorithm is a classic tree building algorithm [Hillis(1990)] that uses a matrix of
pairwise distance relations as input. We use the same device to represent distance
relationships in shape space. Distances were calculated from the points assigned to
the antigens and the antisera in the minimal �ve-dimensional space which preserved
the rank order relationships of the HI values. Fig. (4) is a neighbor-joining tree
produced by the Phylip package [Phylip(1993)] which illustrates the relation in �ve
dimensional shape space between all points, including both antisera and antigen.

The vaccine 1 (HK68ag) to vaccine 2 (ENG72ag) distance is seen to be less than
the the vaccine 1 to epidemic strain (PC73ag) distance. The attack rate for �rst time
vaccinees was 3% and for two time vaccinees was 11%, in accord with the suggestion
by [Smith(1999)]. Similarly, for the 1976 outbreak the vaccine 1 to vaccine 2 distance
is less than the vaccine 1 to epidemic strain distance. The attack rate for �rst time
vaccinees was 13% and for two time vaccinees was 22%, also in accord with the
suggestion.

Such trees displaying relationships in shape space, enable one to begin to see the
antigenic evolution of in
uenza over time, similar to the way standard phylogentic
trees [Hillis(1990)] display sequence evolution over time. However, the available HI
data is broken up into separate (and often overlapping) tables covering di�erent time
periods, and it will be necessary to link the di�erent geometries arising from separate
tables together into one global geometry to attempt to survey the antigenic evolution
of in
uenza over broad time scales (see Discussion).

Repeated HI Tables Experimental variability can result in di�erent reported
HI values for the same set of antigens and antisera if experiments are repeatedly
performed on di�erent days. Here we consider the e�ects on the computed geome-
try of experimental variability in determining HI values. Data kindly provided by
the CDC (private communication [CDC]) reports results of �ve di�erent HI assay
experiments performed on the same set of antisera/antigens over �ve separate days
in 1990: 8/10/90, 8/30/90, 9/26/90, 9/27/90, 10/2/90. The data comprised 11 anti-



Figure 4: A neighbor-joining tree, produced by the Phylip package, illustrating the re-
lations between antisera and antigens in �ve dimensional shape space. Names ending
with \ag" denote antigens, those ending in \sr" denote antisera. AÆnity or HI value
is monotonically related to the distance between antigens and antisera: the smaller
the distance, the higher the HI value. Antigen-antigen or antisera-antisera similari-
ties are related to the respective antigen-antigen or antisera-antisera distances: the
smaller the distance, the higher the similarity.



gens and 11 associated antisera for the following H3N2 in
uenza antigens, spanning
a period from 1987 to 1990: BEIJING/337/89, BEIJING/353/89, CZECHOSLO-
VAKI19/89, ENGLAND/427/88, ENGLAND/648/89, GUIZHOU/54/89, SHANG-
HAI/06/90, SHANGHAI/11/87, SHANGHAI/16/89, SICHUAN/68/89, VICTORIA/5/89.

In agreement with the analysis of other data analyzed in previous sections, the �ve
data sets can be represented without rank errors in a shape space of low dimension
(dimension is �ve for the 8/10/90 data set, and dimension is four for the remaining
data sets). Of interest is the variability in the computed geometry of the points
across the �ve di�erent data sets. Each of the �ve data set was subjected to an
ordinal MDS analysis (see Material and Methods) in �ve dimensions. Five di�erent
geometries resulted, yielding �ve sets of interpoint distances.

Similar to the previous analysis which compared variation in geometries across
di�erent initial starting coordinates, irrelevant scale, rotation, translation and re
ec-
tion variations can be factored out of the results of these �ve repeated data sets by
examining the correlations between sets of interpoint distances in the �ve di�erent
geometries. There are 5 � 4=2 or 10 such possible correlations possible between the
�ve geometries of the �ve data sets. The average of these 10 correlations was 0.96,
indicating a very good correspondence between the computed geometries, in spite
of variation in the reported HI values across the �ve data sets due to experimental
precision.

A striking relation between distance in shape space and the HI value, correspond-
ing to HI = e�(Distance), may be seen in Fig. (5). This illustrates a potential staged
use of ordinal MDS algorithms followed by metric MDS algorithms. Ordinal MDS
can be used �rst to deduce the a priori unknown monotonic relationship between
HI value and shape space distance. Then metric MDS can employ this empirically
determined relation to further improve the �t.

Validation/Simulation Studies: Further validation addressing issues of ex-
perimental precision and small sample sizes is warranted. In this section we report
simulation results which address the issue that the experimental HI data results from
two-fold dilution studies and hence the reported HI values are \binned" into a set
of distinct values. The experimental protocol involves a total titration by a factor
of approximately 1000 (210 = 1024, corresponding to 10 two-fold dilutions) which
results in only 10 possible distinct values appearing in any given HI panel. The �rst
issue we address in simulation Study 1 (below) is whether this relatively small number
of discrete values could result in the algorithmic determination of an arti�cially low
dimension even for high dimensional, random data, if such data is similarly binned.

Simulation Study 1 We create arti�cial data in a high dimensional space, e.g.
15 dimensions, by generating 14 points for antisera, and 19 additional points for anti-
gens, with coordinates drawn from a Gaussian distribution with zero mean and unit
variance in 15 dimensional space. It is necessary to transform the distances between
the antigens and the antisera to simulated HI values associated with two-fold dilution
studies. HI values resulting from two-fold dilution studies can be assumed to take val-
ues in the discrete set 10, 20, 40, 80, 160, 320, 640, 1260, 2560, 5120. These numbers



10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9

Figure 5: Plot of distances as computed in shape space on the y-axis for one of the
repeated data sets, versus (the log) of the associated HI value on the x-axis. The linear
relationship evident in the graph is a consequence of the following simple empirical
relation between HI values and distances in shape space HI = e�(Distance)



are powers of two, multiplied by a scale factor of 10, which was introduced to pro-
duce simulated \HI tables" which have the appearance of expermentally determined
tables. The factor of 10 is irrelevant to the numerical analysis and is introduced for
aesthetic reasons.

To relate these values to the generated distances, we �rst scale the distances
between 0 and 1 for convenience, and assign HI values to the distances as follows:

0:9 < Distance <= 1:0 implies HI = 10
0:8 < Distance <= 0:9 implies HI = 20
0:7 < Distance <= 0:8 implies HI = 40
...etc.
Next we determine if the data, generated in �fteen dimensions, and �ltered through

the simulated two-fold HI dilution study (above) can be �t in a low dimensional, e.g.
�ve dimensional space. This addresses whether the dimension of shape space can
be arti�cially estimated as being low, even when the generating points exist in high
dimension, as a consequence of two fold dilution studies producing data comprised of
a small number of discrete values which is �t by the algorithm.

Result 1
Five separate sets of binned data, generated in �fteen dimensions as described

above, were �rst �t in �fteen dimensions, and as one would expect the �t was suc-
cessful. However, the same data generated in �fteen dimensions could not be �t in �ve
dimensions. Similarly, �ve sets of data prepared in ten dimensions was successfully
�t in ten dimensions, but not in dimension �ve. Finally, �ve sets of data created in
seven dimensions was successfully �t in seven dimensions, but not in dimension �ve.

All runs used �ve di�erent initial starting values for the points to verify consistency
over di�erent starting values. This illustrates that even binned data, comprising only
ten discrete values, will not result in an algorithmically determined dimension that
is signi�cantly less than the real dimension of the space in which the points were
generated. The determination of a dimension of �ve for the real, experimental HI
values would therefore seem signi�cant.

Simulation Study 2 In this simulation the HI values of the experimentally
determined data were randomly permuted within a given HI table. The issue is
whether or not such randomly assigned, discrete, HI values can be �t in low dimension.
If permuted data could be �t in low dimension, this would vitiate the conclusion that
the dimension of immunological shape space, as determined from unpermuted tables
of experimental HI values, is low. Clearly, given the the small number of possible
discrete HI values, and the size of the data set (14*19), there will exist a dimension in
which it is in fact possible to �t such randomized data. The question is whether this
dimension is signi�cantly greater than the �ve dimensions in which the unpermuted
experimental data can be successfully �t.

Result 2
For conciseness, we report results on the Raymond data set [Raymond(1986)]

considered earlier. It turns out not possible to �t this data in low dimensions, e.g.
dimension �ve if the relationships between the HI values are broken by randomly



permuting the HI values within a given table. For example, �ve di�erent sets of
initial values for the coordinates of points representing antigens and antisera of the
(randomly permuted) data of [Raymond(1986)] were tested in attempts to �t the
permuted data in dimension �ve. All �ve attempts to �t the permuted data in
dimension �ve were failures. Five such attempts at �tting the same permuted data
was performed in dimension ten, and also in dimension �fteen. In dimension ten three
of the �ve initial sets of random values for the coordinates resulted in failure to �t
in ten dimensions In �fteen dimensions, all �ve sets of random initial values for the
coordinates for Russian strain resulted in successful �ts.

It is not surprising that permuted data can be �t in ten or �fteen dimensions,
because in a high dimensional space there is suÆcient \room" to adjust the coordi-
nates of only 14 + 19 = 33 points to accommodate the small number of discrete HI
values. Reassuringly, in a low dimensional space, e.g. �ve dimensions, there is not
suÆcient freedom. Discrete HI values relating to distances between 14 + 19 = 33
points need deterministic, i.e. non-random relationships, between them for the data
to be successfully �t in low dimensions such as �ve dimensions.

4 Discussion

The computational techniques developed here, when applied to sets of experimental
HI data for in
uenza, yield a consistent estimate of four to �ve dimensions for the
dimension of immunological shape space. These techniques can:

(1) Deduce the dimension of shape space from experimental data and assign co-
ordinates to both antisera and antigen in the shape space

(2) Accommodate arbitrary monotone relationships between distance in shape
space and experimental measurements related to aÆnity.

(3) Calculate antibody-antibody and antigen-antigen similarities based on exper-
imental data quantifying antibody-antigen interactions.

(4) Accommodate imprecise data whose only signi�cance may lie in the rank order
of the experimental values.

The approach presented here can infer a detailed geometry of immunological shape
space given experimental data of limited precision such as a panel of hemagglutination
inhibition assay data, or other measures of aÆnity. This ability is potentially of value
in a number of application areas, such as analysis of HI data as part of the selection
process for deciding components of the annual in
uenza vaccine.

Each HI table produces a separate shape space in which the antigens and antisera
for that table are located. Since reference panels for successive years typically con-
tain points which overlap, it is possible in principle to construct one large shape space
(and resulting HI table) incorporating the results of several separate but overlapping
assays. \Overlap" in this context means that the separate HI tables, e.g., reference
panels used in successive years, contain some antigens and antisera in common. Hence
each shape space geometry will have a subset of points that have identical geome-
tries to a subset of points in the shape space produced from another (overlapping)



panel. Computationally aligning these overlapping subsets of points using a rigid
body transformation then relates the di�erent shape space geometries. The accuracy
of the resulting global shape space geometry (and equivalent global HI table) will
depend on error propagation as successive geometries/tables are joined. In principle,
however, such an approach could be used to describe the global evolution of anti-
genicity in shape space across decades of viral evolution. Alternatively, phylogenetic
trees are a standard way of representing viral evolution based on sequence data, and
it will be of interest to relate shape space evolution de�ned above to sequence space
evolution.

Clearly the formalism presented here is independent of the speci�c application
to in
uenza. It may be applied to other serological data, as well as to other aÆn-
ity studies quantifying the binding of arbitrary molecules and ligands. Additional
applications will be considered elsewhere.
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