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We study an evolutionary game of chance in which the probabilities for different
outcomes (e.g., heads or tails) depend on the amount wagered on those outcomes.
The game is perhaps the simplest possible probabilistic game in which perception
affects reality. By varying the ‘reality map’, which relates the amount wagered to
the probability of the outcome, it is possible to move continuously from a purely
objective game in which probabilities have no dependence on wagers, to a purely
subjective game in which probabilities equal the amount wagered. The reality map
can reflect self-reinforcing strategies or self-defeating strategies. In self-reinforcing
games, rational players can achieve increasing returns and manipulate the outcome
probabilities to their advantage; consequently, an early lead in the game, whether
acquired by chance or by strategy, typically gives a persistent advantage. We in-
vestigate the game both in and out of equilibrium and with and without rational
players. We introduce a method of measuring the inefficiency of the game, and show
that the inefficiency decreases slowly in the approach to equilibrium (for large t it is
a power law t−γ with 0 6 γ 6 1, depending on the subjectivity of the game).

I. INTRODUCTION

A. Motivation

To capture the idea that objective out-
comes depend on subjective perception
Keynes used the metaphor of a beauty con-
test in which the goal of the judges is not to
decide who is most beautiful, but rather to
guess which contestant will receive the most
votes from the other judges [12]. Economic
problems typically have both purely objective
components, e.g., how much revenue a com-
pany creates, as well as subjective compo-
nents, e.g., how much revenue investors col-
lectively think it will create. The two are in-
extricably linked: subjective perceptions al-
ter investment patterns, which affect objec-
tive outcomes, which in turn affect subjective
perceptions.

To study this problem this paper intro-
duces a simple probabilistic game in which
the probability of outcomes depends on the

amount bet on those outcomes. The game in-
troduces the idea of a ‘reality map’ that me-
diates between subjective perception and ob-
jective outcome. This goes beyond Keynes,
in that subjective perception actually alters
the reality (in his example the faces of the
contestants). The form of the reality map can
be tuned to move continuously from purely
objective to purely subjective games, and dif-
ferent levels of feedback from perception to
reality are easily classified and studied.1

Consider a probabilistic event, such as a
coin toss or the outcome of a horse race.
Now suppose that the odds of the outcomes
of the event depend on the amount wagered
on them. In the case of a coin toss, this
means that the probability of heads is a func-
tion (the ‘reality map’) of the amount bet on
heads. For a purely objective event, such as

1 The results in this paper are presented in more
detail in reference [7].
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the toss of a fair coin, the reality map is sim-
ple: the probability of heads is 1/2, indepen-
dent of the amount bet on it. But most events
are not fully objective. In the case of a horse
race, for instance, a jockey riding a strongly
favored horse may make more money if he se-
cretly bets on the second most favored horse
and then intentionally loses the race. This is
an example of a self-defeating map from per-
ception to reality: if jockeys misbehave, then
as the horse becomes more popular, the ob-
jective probability that it will win decreases.
Alternatively, in an economic setting, if peo-
ple like growth strategies they will invest in
companies whose prices are going up, which
in turn drives prices further up. This is an
example of a self-reinforcing reality map.

B. Review of related work

There has been considerable past work on
situations where subjective factors influence
objective outcomes. Some examples include
Hommes’s studies of cobweb models [9, 10],
studies of increasing returns [2], Arthur’s El
Farol model and its close relative the minor-
ity game [3, 6], Blume and Easley’s model
of the influence of capital markets on natural
selection in an economy [4, 5], and Akiyama
and Kaneko’s example of a game that changes
due to the players’ behaviors and states [1].
The model we introduce here has the advan-
tage of being very general yet very simple,
providing a tunable way to study this phe-
nomenon under varying levels of feedback.

II. GAME DEFINITION

A. Wealth dynamics

Let N agents place wagers on L possible
outcomes. In the case of betting on a coin,
for example, there are two outcomes, heads
and tails. Let sil be the fraction of the i-th
player’s wealth wi that is wagered on the l-
th outcome. The vector (si1, . . . , siL) is the

i-th player’s strategy, and pil = silwi is the
amount of money bet on the l-th outcome by
player i. Let pl =

∑
i pil be the total wager

on the l-th outcome. If the winning outcome
is l = λ, the payoff πiλ to player i is pro-
portional to the amount that player bets and
inversely proportional to the total amount ev-
eryone bets, i.e.

πiλ =
piλ
pλ

=
siλwi
pλ

.

This corresponds to what is commonly called
pari-mutuel betting. We assume no “house
take”, i.e. a fair game. Assume

∑
l sil = 1,

i.e. that each player bets all her money at
every iteration of the game, typically betting
non-zero amounts on each possible outcome.
The total wealth is conserved and is normal-
ized to sum to one,∑

i

wi =
∑
i,l

pil = 1 .

We will call ql the probability of outcome
l, where

∑
l ql = 1. The expected payoff Eπi

is

Eπi =
∑
l

qlπil .

If the vector q is fixed, after playing the game
repeatedly for t rounds the wealth updating
rule

w
(t+1)
i =

siλw
(t)
i

pλ

is equivalent to Bayesian inference, where

the initial wealth w
(t)
i is interpreted as the

prior probability that qλ = siλ and the fi-

nal wealth w
(t+1)
i is its posterior probability.

In Bayesian inference, models whose predic-
tions match the actual probabilities of out-
comes accrue higher a posteriori probability
as more and more events occur. Here players
whose strategies more closely match actual
outcome probabilities accrue wealth on aver-
age at the expense of players whose strategies
are a worse match.
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B. Strategies

We first study fixed strategies. For con-
venience we restrict the possible number of
outcomes to L = 2, so that we can think
of this as a coin toss with possible outcomes
heads and tails. Because the players are re-
quired to bet all their money on every round,
si1+si2 = 1, we can simplify the notation and
let si = si1 be the amount bet on heads —
the amount bet on tails is determined auto-
matically. Similarly q = q1 and p = p1. The
space of possible strategies corresponds to the
unit interval [0, 1]. We will typically simu-
late N fixed strategies, si = i/(N −1), where
i = 0, 1, . . . , N − 1. Later on we will also add
rational players, who know the strategies of
all other players and dynamically adapt their
own strategies to maximize a utility function.

C. Reality maps

The game definition up to this point fol-
lows the game studied by Cover and Thomas
[8]. We generalize their game by allowing for
the possibility that the objective probability
q for heads is not fixed, but rather depends
on the net amount p wagered on heads. The
reality map q(p), where 0 6 q(p) 6 1, fully
describes the relation between bets and out-
comes. We restrict the problem slightly by re-
quiring that q(1/2) = 1/2. We do this to give
the system the chance for the objective out-
come, as manifested by the bias of the coin,
to remain constant at q = 1/2. We begin
by studying the case where q(p) is a mono-
tonic function, which is either nondecreasing
or nonincreasing. Letting q′(p) = dq/dp, we
distinguish the following possibilities:

• Objective. q(p) = 1/2, i.e. it is a fair
coin independent of the amount wa-
gered. (Other values of q = constant
are qualitatively similar to q = 1/2.)

• Self-defeating. q′(p) < 0, e.g. q(p) =
1 − p. In this case the coin tends to
oppose the collective perception, e.g.

if people collectively bet on heads, the
coin is biased toward tails.

• Self-reinforcing. q′(p) > 0. The coin
tends to reflect the collective percep-
tion, e.g. if people collectively bet on
heads, the coin becomes more biased
toward heads. A special case of this is
purely subjective, i.e. q(p) = p, in which
the bias simply reflects people’s bets.

It is convenient to have a one parameter
family of reality maps that allows us to tune
from objective to self–reinforcing. We choose
the family

qα(p) =
1

2
+

1

π
arctan

πα(p− 1
2
)

1− (2p− 1)2
. (1)

The parameter α is the slope at p = 1/2.
When α = 0, q(p) is constant (purely objec-
tive), and when α > 0, q(p) is self-reinforcing.
The derivative q′α(1/2) is an increasing func-
tion of α; when α = 1, q′(1/2) = 1, and q(p)
is close to the identity map.2 We study the
self-defeating case separately using the map
q(p) = 1− p.
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FIG. 1: qα(p) with different values of parameter:
(a) α = 1/3; (b) α = 1; (c) α = 3.

2 An inconvenient aspect of this family is that qα(p)
does not contain the function q(p) = p. However,
q1(p) is very close to q(p) = p (the difference does
not exceed 0.012, with the average value less than
half of this). Still, to avoid any side effects, we
study the purely subjective case using q(p) = p.
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III. DYNAMICS OF THE
OBJECTIVE BIAS

In this section we study the dynamics of
the objective bias of the coin, which is the
tangible reflection of “reality” in the game.
This also allows us to get an overview of
the behavior for different reality maps q(p).
We use N = 29 agents each playing one of
the 29 equally spaced strategies on (0, 1):
1/30, 2/30, . . . , 29/30, and begin by giving
them all equal wealth. We then play the
game repeatedly and plot the bias of the coin
q(t) as a function of time. This is done sev-
eral times to get a feeling for the variability
vs. consistency of the behavior of different re-
ality maps, as shown in Figure 2.

For the purely objective case q(p) = 1/2,
the result is trivial. For the self-defeating
case, q(p) = 1 − p, the results become more
interesting, as shown in (a). Initially the bias
of the coin varies considerably, with a range
that is generally about 0.3 – 0.7, but it even-
tually settles into a fixed point at q = 1/2.
For this case the bias tends to oscillate back
and forth as it approaches its equilibrium
value. Suppose, for example, that the first
coin toss yields heads; after this toss, play-
ers who bet more on heads possess a major-
ity of the wealth. At the second toss, be-
cause of the self-defeating nature of the map,
the coin is biased towards tails. As a result,
wealth tends to shift back and forth between
heads and tails players before finally accruing
to players who play the ‘sensible’ unbiased
strategy.

We then move to the weakly self-
reinforcing case using equation (1) with α =
1/2, as shown in (b). The behavior is similar
to the previous case, except that the fluctu-
ations of q(t) are now larger. At the end of
2000 rounds of the game, the bias is much
less converged on q = 1/2. The bias is also
strongly autocorrelated in time — if the bias
is high at a given time, it tends to remain
high at subsequent times. (This was already
true for the self-defeating case, but is more
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FIG. 2: The objective bias of the coin q(t) as
a function of time, for different random number
seeds. (a) q(p) = 1 - p; (b) in equation (1),
α = 1/2; (c) q(p) = p; (d) α = 1.5; (e) q(p) = 3p
mod 1. (a)–(d) 50 runs up to t = 2000; (e) 100
runs up to t = 10000.

pronounced here). Although this is not obvi-
ous from this figure, after a sufficiently long
period of time all trajectories eventually con-
verge to q = 1/2.

Next we study the purely subjective case,
q(p) = p, as shown in (c). In this case the bias
fluctuates wildly in the early rounds of the
game, but it eventually converges to one of
the strategies si, corresponding to the player
who eventually ends up with all the wealth.

As we increase α > 1, as shown in (d), the
instability becomes even more pronounced.
The bias initially fluctuates near q = 1/2,
but it rapidly diverges to fixed points either
at q = 0 or q = 1. Which of the two fixed
points is chosen depends on the random val-
ues that emerge in the first few flips of the
coin; initially the coin is roughly fair, but as
soon as a bias begins to develop, it is rapidly
reinforced and it locks in. The extreme case
occurs when q(p) is a step function, q(p) = 0
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for 0 6 p < 1/2, q(1/2) = 1/2 and q(p) = 1
for 1/2 < p 6 1. In this case the first coin
flip determines the future dynamics entirely:
If the first coin flip is heads, then players who
favor heads gain wealth relative to those who
favor tails, and the coin forever after yields
heads, until all the wealth is concentrated
with the player that bets most heavily on
heads. (And vice versa for tails).

Finally in (e) we show an example of
the bias dynamics for the multi-modal map
q(p) = 3p mod 1. In this case the bias oscil-
lates between q = 0 or q = 1, with a variable
period that is the order of a few hundred it-
erations. We explain this behavior at the end
of the next section.

IV. WEALTH DYNAMICS

How do the wealths of individual players
evolve as a function of time? The purely ob-
jective case q = constant with fixed strate-
gies and using a bookmaker instead of pari-
mutuel betting was studied by Kelly [11] and
summarized by Cover and Thomas [8]. As-
suming all the strategies are distinct, they
show that the agent with the strategy clos-
est to q asymptotically accumulates all the
wealth. Here “closeness” is defined in terms
of the Kullback-Leibler distance between the
strategy sil and the true probability ql.

For all reality maps q(p) that we have
studied we find that one player asymptoti-
cally accumulates nearly all the wealth. As
a particular player becomes more wealthy,
it becomes less and less likely that another
player will ever overtake this player. This
concentration of wealth in the hands of a sin-
gle player is the fundamental fact driving the
convergence of the objective bias dynamics to
a fixed point, as observed in the previous sec-
tion. The reason is simple: once one player
has all the wealth, this player completely de-
termines the odds, and since her strategy is
fixed, she always places the same bets.

It is possible to compute the distribution
of wealth after t steps in closed form for the

purely subjective case, q(p) = p. The proba-
bility that heads occurs m times in t steps is
a sum of binomial distributions, weighted by

the initial wealths w
(0)
i of the players,

P (t)
m =

N∑
j=1

w
(0)
j

[(
t

m

)
smj (1− sj)t−m

]
,

and the corresponding wealth of player i is

w
(t)
i =

smi (1− si)t−mw(0)
i∑

j s
m
j (1− sj)t−mw(0)

j

.

When the initial wealths are evenly dis-
tributed among the players, no player has an
advantage over any other. However, as soon
as the first coin toss happens, the distribution
of wealth becomes uneven. Wealthier players
have an advantage because they have a big-
ger influence on the odds, so the coin tends
to acquire a bias corresponding to the strate-
gies of the dominant (i.e. initially lucky) play-

ers. Figure 3 shows the probability P
(t)
m for

t = 1000 and t = 105. After 1000 steps the
binomial distributions are still strongly over-
lapping, and there is still a reasonable chance
to overtake the winning strategy. After 105

steps, however, the bias of the coin has locked
onto an existing strategy si, due to the fact
that this strategy has almost all the wealth.
Once this happens, the probability that this
will ever change is extremely low.

We now explain the peculiar bias dynam-
ics observed for the multi-modal map q(p) =
3p mod 1 in Figure 2(e), in which the bias
of the coin oscillates wildly between 0 and
1. Through the passage of time the wealth
becomes concentrated on strategies near ei-
ther s = 1/3 or s = 2/3, corresponding to
the discontinuities of q(p). Suppose, for ex-
ample, that p =

∑
iwisi is slightly greater

than 1/3, where the q(p) map is close to
zero. This causes a transfer of wealth to-
ward strategies with smaller values of s until
p =

∑
iwisi < 1/3. At this point the bias

of the coin flips because q(p) is now close to
one and the transfer of wealth reverses to fa-
vor strategies with higher values of s. Due to
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FIG. 3: The probability that heads occurs m
times in t rounds of the game with q(p) = p,
assuming uniform initial wealth, for (a) t = 1000
and (b) t = 105. In (b) note that, although
some peaks appear higher than others, the total
weight of each peak is the same.

fluctuations in the outcomes of the coin toss
this oscillation is not completely regular. It
continues indefinitely, even though with the
passage of time wealth becomes concentrated
more and more tightly around s = 1/3. A
similar process occurs if the first coin tosses
cause convergence around s = 2/3. We dis-
cuss the initial convergence around s = 1/3
or s = 2/3 in more detail in the next section.

V. RATIONAL PLAYERS AND
NASH EQUILIBRIA

So far we have studied the evolution with
a fixed set of strategies. What happens when
we instead consider rational players? What
are the Nash equilibria? We will see that
while the general situation here is quite com-
plicated, we can nonetheless get some ana-
lytic insight into the attractors of the game
with fixed strategies. Furthermore, we will
argue that if one is interested in surviving
to dominate the game, the choice of utility
function is not arbitrary.

The first question that must be addressed
is, “What would rational players reasonably
optimize?”. The answer is not obvious. For
example, suppose a player maximizes the ex-
pected payoff on the next step. Assuming
there is higher expectation for the coin to
yield heads, the strategy that maximizes the

expected payoff is si = 1, i.e. betting all the
player’s wealth on heads. However, this gives
a non-zero probability of bankruptcy, and in
the long run guarantees that this player’s
wealth will asymptotically be zero. This illus-
trates the need for risk aversion, and the need
to look ahead more than one move. In gen-
eral looking ahead is very complicated, due
to the fact that each player’s move affects not
only the player’s expected wealth on the next
step, but also the future bias of the coin, and
hence the future wealths of all other players.

For the case q = constant it is possible to
show that the strategy that asymptotically
accumulates all the wealth maximizes the ex-
pected log-return [8]

Er
(t+1)
i = E log

w
(t+1)
i

w
(t)
i

= E log
πi

w
(t)
i

=
∑
l

ql log
sil
pl
.

For q = constant and fixed strategies, maxi-
mizing the log-return repeatedly for one step
is equivalent to maximizing it over a long
time horizon. For a general reality map q(p),
however, this is no longer sufficient; it is easy
to produce examples for which two step opti-
mization produces different results than sin-
gle step optimization, due to the effect of
changes in the strategy’s wealth on the fu-
ture bias of the coin. For the case where the
strategy’s wealth is negligible, however, the
situation is greatly simplified: It is possible
to show that maximizing the one step log-
return at each step is equivalent to maximiz-
ing the log-return over many steps [7]. In a
game with many players, each of whom has
small wealth, maximizing the log-return for
the next step may be a good approximation
to the optimal strategy. As we have already
seen, acquiring a lead in the early stages of
the game gives an advantage that tends to
persist later on.

The expected log return for one step can
be written

r(s) = q log
s

p
+ (1− q) log

(1− s)
(1− p)

,
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where as before q = q1, s = s1, w = w1, etc.
The first derivative is

dr

ds
= q′w

[
log s−log p−log(1−s)+log(1−p)

]
+q

(
1

s
− w

p

)
+(1−q)

(
− 1

1− s
+

w

1− p

)
,

where q′ = dq/dp. A sufficient condition for
dr/ds = 0 is s = q = p. In this case the
second derivative is

d2r

ds2
=

1− w
s(1− s)

[
2wq′ − (1 + w)

]
.

For the map qα the strategy s = 1/2 is a lo-
cal maximum when α < (1 + w)/(2w). Pro-
viding this condition holds, this implies that
this strategy is what we will call a myopic log
Nash equilibrium, i.e., it is a strategy that,
when played against itself, gives the best pos-
sible expected log return for the next round of
the game. The myopic log Nash equilibria de-
pend on the reality map q(p), but in general
they also depend on the wealth of the players,
so that they can be dynamic, shifting with
each coin toss. For example, when α < 1,
s = 1/2 is always a myopic log Nash equilib-
rium, but when α > 1 the myopic log Nash
equilibria strongly depend on the wealth of
the players. This makes long-range optimiza-
tion difficult.

This is illustrated in Figure 4, where we
show the expected log return for a player
(arbitrarily labeled “first”) playing a myopic
log Nash strategy against another (second)
player using a fixed strategy with s = 1/2.
When the first player’s wealth is low, 1/2
is the optimal strategy, and it is a myopic
Nash equilibrium. As the first player gains in
wealth two strategies on either side of s = 1/2
become superior; as wealth increases, these
strategies become more and more separated
from s = 1/2, and in the limit as w → 1 the
optimal strategy is either s = 0 or s = 1.

In the limit as the first player’s wealth gets
large the possible myopic log Nash equilib-
ria do a good job of predicting the attractors
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FIG. 4: The expected log-return r(s) for a player
(arbitrarily labeled “first”) using a myopic log
Nash strategy against a player using a fixed
strategy s = 1/2, where q(p) = qα with α = 2.
This is plotted against the first player’s wealth
on the x axis and the first player’s optimal bet
on heads on the y axis.

of the objective dynamics shown in Figure 2.
For the self-defeating case, q(p) = 1−p, there
is a unique myopic log Nash equilibrium at
s = 1/2, corresponding to the unique attrac-
tor for q. For the self-reinforcing case with
α < 1 this is also true. For the identity map
q(p) = p the entire interval 0 6 s 6 1 is a
myopic log Nash equilibrium. When α � 1
either s = 0 or 1 can be myopic log Nash
equilibria. In each case these correspond to
the attractors of the wealth dynamics.

The multimodal map q(p) = 3p mod 1 is
interesting because all the intersections with
the identity are local minima for the expected
log return. Instead, the system is attracted to
the discontinuities of the map at s = 1/3 and
s = 2/3. It is as if one can think of the discon-
tinuities of the map as being connected (with
infinite slope), creating intersections with the
identity that yield local maxima of the log re-
turn. While we do not have a formal method
of proving this, we gave an intuitive expla-
nation for how this stability comes about in
Section IV.
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VI. EFFICIENCY

As the game is played the reallocation of
wealth causes the population of players to be-
come more efficient in the sense that there
are poorer profit opportunities available for
optimal players. This is analogous to finan-
cial markets, where wealth reallocation due
to profitable vs. unprofitable trading has long
been hypothesized to result in a market that
is efficient in the sense that all excess profit-
making potential has been removed. In finan-
cial economics efficiency is taken as a postu-
late; there is no theory that guarantees that
markets out of equilibrium will always be at-
tracted to a perfectly efficient market equilib-
rium, and no way to quantitatively measure
the inefficiency of a market when it is out of
equilibrium. Our game provides a simple set-
ting to study the approach to efficiency in an
out-of-equilibrium context.

We can measure the inefficiency of our
game based on the returns of what we will
call a rational ε player. This player knows
the strategies of all other players, and pur-
sues an optimal strategy that maximizes her
expected log returns. This player has in-
finitesimal wealth ε, so that her actions have
a negligible effect on the outcome of the
game. In the purely objective setting where
q = constant the approach to efficiency is
guaranteed by the fact that the wealth dy-
namics are formally equivalent to Bayesian
updating, implying all the wealth converges
on the correct hypothesis about the bias of
the coin. For more general settings this is no
longer obvious, as there is no longer such a
thing as an objectively correct hypothesis.

We have studied the approach to efficiency
numerically for a variety of different reality
maps as shown in Figure 5. To damp out the
effect of statistical fluctuations from run to
run we take an ensemble average by varying
the random number seed. For q(p) = p we
find that the inefficiency is essentially zero
at all times. In every other case we find that
the efficiency is a decreasing function of time,

asymptotically converging as a power law t−γ

with 0 6 γ 6 1. For the self defeating case
q(p) = 1 − p we observe γ ≈ 1; for other
values of α we observe γ < 1. For example,
for α = 0.5, γ ≈ 0.6, for α = 1.5, γ ≈ 0.25,
and for α = 2, γ ≈ 0.5. For maps close to
the purely subjective case, the inefficiency is
initially quite small but convergence is corre-
spondingly slow. For example, compare 5 (a)
and (b). The self-defeating case is initially
much more inefficient than the mildly self-
reinforcing case, but by t = 10, 000 the situ-
ation is reversed. The rate of convergence in
efficiency reflects the slow convergence in the
bias of the coin to its fixed point attractor.3
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FIG. 5: The inefficiency of the game is measured
by the log returns of an optimal ε player, shown
as a function of time using N = 3000 players.
Plots are in double logarithmic scale. (a) q(p) =
1− p; (b) α = 0.5; (c) α = 1.5; (d) α = 2.0.

3 We have performed simulations with different num-
bers of agents and find that domain of validity of
the power law scaling is truncated for small N (e.g.
for N ≈ 30 it extends only to roughly t ≈ 1000).
The length of validity of the power law scaling in
time increases with N . Thus there is a finite size
effect, indicating that the power law scaling is ex-
actly valid only in the limit as N →∞ and t→∞.
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VII. INCREASING RETURNS

When the reality map for a game of chance
is purely objective a player can’t manipulate
the outcome unless she cheats. In contrast,
for more general reality maps, under some
circumstances the player can use the subjec-
tive dependence of q(p) to manipulate the ob-
jective odds to her advantage. This manifests
itself as increasing returns to scale — as the
player acquires more wealth, the ability to
manipulate the odds increases, and the ex-
pected return also increases.

To measure this we study a rational strat-
egy that exploits its complete knowledge of
the strategies of the other players to max-
imize the expected log-return for the next
step. We start with given wealth assignments
for the players and vary the fraction of the
wealth for the rational player vs. the other
players. Under some circumstances, which
depend both on q(p) and the distribution of
wealth, for self-reinforcing reality maps we
find that the returns are an increasing func-
tion of the wealth of the rational player. Two
examples are given in Figure 6.

VIII. SUMMARY

We have introduced a very simple evolu-
tionary game of chance with the nice prop-
erty that one can explicitly study the influ-
ence of the player’s actions on the outcome of
the game. By altering the reality map q(p)
it is possible to continuously vary the set-
ting from completely objective, i.e. the odds
are independent of the players’ actions, to
completely subjective, i.e. the odds are com-
pletely determined by the players’ actions.

This is an evolutionary game in the strong
sense: Only one player survives to have non-
negligible wealth. Our results suggest that
the myopic maximization of expected log re-
turns is a fairly good survival strategy, cer-
tainly much better than simply maximizing
returns. However, in contrast to the purely
objective case, it is provably not an optimal

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

wε

r(
w

ε)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wε

s ε(w
ε)

0 0.2 0.4 0.6 0.8 1
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

wε

r(
w

ε)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wε

s ε(w
ε)

FIG. 6: The left column shows the expected log
returns r(w) for an optimal player and the right
column shows the corresponding optimal strate-
gies s(w), both as a function of her wealth w.
In the top row α = 1/2 and t = 7, where w(7)

i

is produced by starting at w(0)
i = 1/N and gen-

erating 7 heads, where N = 29. In the bottom
row α = 2, t = 0, and w

(0)
i = 1/N .

strategy. This is due to the complications in-
duced by the feedback between the success
of the players and the objective reality as re-
flected in the bias of the coin.

It has long been known that subjective ef-
fects can play an important role in games,
causing problems such as increasing returns
and lock-in to a particular outcome due to
chance events. This model shows that the
existence of subjective effects alone are not
enough. Instead, for most of the proper-
ties we study here, such as selecting between
alternative equilibria or increasing returns,
we need the self-reinforcing effects to be suf-
ficiently strong to destabilize the objective
dynamics. There is a competition between
the stabilizing force of wealth concentration
and the destabilizing properties of q(p) when
q′ > 0. This game shows how these effects be-
come steadily stronger as the self-reinforcing
nature of the reality map increases. It also
shows that these effects are generally com-
plicated and wealth dependent, even in this
simple situation. The myopic log Nash equi-
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libria are strongly wealth dependent. Since
wealth evolves through time, the myopic log
Nash equilibria also evolve in a time depen-
dent manner.

This game provides a setting in which to
study the progression toward efficiency in an
out-of-equilibrium context. We have intro-
duced a notion of efficiency that closely re-
sembles arbitrage efficiency in financial mar-
kets. We always observe a progression toward
efficiency, except for the purely subjective
case, in which it appears that any configu-
ration of player strategies automatically pro-
duces an efficient market. This isn’t surpris-
ing, since in the purely subjective case there
is no preferred strategy. In every other case,
as wealth is reallocated, the game becomes
more efficient, in the sense that there are
fewer profit-making opportunities for skillful
players. For the examples we observe that
the inefficiency as a function of time asymp-
totically decreases as a power law.

One might consider several extensions of
the problem studied here. For example, one
could study learning (see e.g. [13]). Another
interesting possibility is to allow more gen-
eral reality maps, in which q is a multidi-
mensional function with a multidimensional

argument that may depend on the bets of in-
dividual players. For example, an interesting
case is to allow some players, who might be
called pundits, to have more influence on the
outcome than others. It would also be very
interesting to modify the game so that it is
an open system, e.g. relaxing the wealth con-
servation condition and allowing external in-
puts. This may prevent the asymptotic con-
vergence of all the wealth to a single player,
creating more interesting long-term dynam-
ics.
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