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Abstract

We explore the ��armed bandit with Gaussian payo�s as a theoretical model for

optimization� We formulate the problem from a Bayesian perspective� and provide the

optimal strategy for both � and � pulls� We present regions of parameter space where a

greedy strategy is provably optimal� We also compare the greedy and optimal strategies

to a genetic�algorithm�based strategy� In doing so we correct a previous error in the

literature concerning the Gaussian bandit problem and the supposed optimality of

genetic algorithms for this problem� Finally� we provide an analytically simple bandit

model that is more directly applicable to optimization theory than the traditional

bandit problem� and determine a near�optimal strategy for that model�
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� Introduction

Multiarmed bandit problems are remarkably simple to state and yet deceptively di�cult to
solve� The problem consists in determining a strategy for sequential selections from k � �
stochastic payo� processes so as to maximize total expected payo� over m selections� The
strategy speci�es which of the k processes to select for every set of partial history of selections
together with their associated payo�s� Bandit problems have a long and rich history� First
posed in the �����s they have been used to model subjects as diverse as clinical trials in
medicine ���� job search in economics ���� and optimization �
� in all its settings�

Our focus in this paper is on bandit problems as related to optimization� The optimiza
tion problem requires extremization of some �gure of merit� such as cost minimization in
operations research� energy minimization in physics� or �tness maximization in biology� In
all cases the problem is to �nd an object in some search space which extremizes the �gure
of merit for that object� Bandit problems have been used in the theory of optimization to
explore the balance between exploration and exploitation necessary in e�ective optimization�
Exploration of the search space is important to identify regions in which good solutions may
be found� Exploitation is also important to put the knowledge gained from exploration to
use� This exploration�exploitation tradeo� is also the essence of the bandit problem� The
bandit problem we consider here has also been used as a theoretical underpinning for genetic
algorithms� a currently popular optimization technique�

We begin in Section � with an informal introduction to our bandit problem� We also
discuss the connections between bandit problems and e�ective optimization focusing on
the exploration�exploitation tradeo�� This background should be su�cient that readers
unfamiliar with bandit problems should be able to understand our major results�

In Section � we formalize the bandit problem by de�ning strategies and expected total
payo�s for these strategies� We adopt a Bayesian perspective that explicitly takes into
account the e�ects of prior knowledge� The task of maximizing expected total payo� under
a particular class of strategies is taken up in Section 
� We present complete solutions for
one and two pulls and comment on the di�culty of determining optimal strategies for larger
numbers of total pulls� Analytic results are complemented with numerical calculations whose
results should aid one�s intuition� Interestingly� we �nd the for some parameter settings the
optimal strategy need never take account of the results from previous pulls�

Section � considers the optimality of a certain class of myopic �greedy� purely exploitive�
strategies and shows that in many cases a simple greedy strategy is optimal� We determine
regions of parameter space in which we have been able to prove that a greedy strategy is
optimal� Some of these results apply to any bandit problem� not simply the Gaussian bandit
problem that this paper concentrates on�

In Section � we review the relationship between our Gaussian bandit problem and the
theory of genetic algorithms� a popular optimization method� We point out an error in
previous analyses of this relationship and indicate how to correct it� Our �ndings call into
question the relevance of bandit problems for the theory of genetic algorithms�

The di�culty of determining optimal strategies for Gaussian bandit problems calls into
question the utility of the traditional Gaussian bandit problem as a model for optimization�
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In light of this di�culty� we propose a new bandit problem that is simpler than the Gaussian
one as well as more directly applicable to optimization� We formalize the new bandit problem
and give a near optimal strategy� In Section 	 we conclude with a brief discussion of general
issues and list directions for future work�

To ease the burden on the reader we have attempted to highlight the important sections
and results� Major results are presented as theorems or lemmas and the background necessary
to understand these results are presented in de�nitions� Section 
 is the lengthiest section but
perhaps the least important� Readers not wishing to wade through the mathematical details
can simply note the major results� A skimming of this section will not impair understanding
of later sections� The most important results are found in Sections � and 	� Section � address
cases in which the simple greedy strategy is optimal while Section 	 formulates an improved
bandit� Those interested in genetic algorithms will �nd Section � of interest� where errors
are pointed out in Holland�s derivation of exponential allocation of trials to the observed
better arm�

� Bandits and Optimization

In this paper we focus on a particularly simple version of the general bandit problem� Con
sider a �armed bandit where it is known that each arm has one or the other of two possible
Gaussian payo� distributions� The parameters of each distribution� the means� ��� �� and
associated standard deviations ��� ��� are known� It is not known a priori which Gaussian
goes with which arm however� rather we have a prior probability of which arm has which
Gaussian�

We can imagine each distribution describing the behavior of a onearmed bandit slot
machine� The �payo�� for� pulling� a particular arm is a random number drawn from the
�unknown to us� probability distribution associated with that arm� We will make a total of
m pulls� with our strategy dictating which arm to pull at pull i based on the results of the
previous pulls and the �known� prior probability of which arm has which Gaussian� The goal
in determining our strategy at pull i is to maximize total expected payo� over the remaining
m � i pulls� In general the payo�s may be discounted into the future� we consider both
uniform and geometric discounting�

For a �nite set of possible payo�s �rather than the uncountably in�nite set of possible pay
o�s considered here� optimal strategies have been constructed using dynamic programming
���� The case considered here appears to be signi�cantly more di�cult� however�

A generic characteristic of bandit problems is the tradeo� between� on the one hand�
the need to gather information about which arm is which� and on the other hand the need
to maximize payo� as quickly as possible� Often these two goals are in direct opposition�
For example� we might gain a lot more information about which arm is which by knowingly
pulling an arm we believe will have lower expected payo�� Then it may be that this extra
information can be used in subsequent pulls to more than recoup our losses� If such a �more
than recoup� result is the average result� it makes sense to pull this lowimmediatepayo�
arm�
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Then again� it may be best just to maximize payo� over the short term� it may be that
the expected gain accruing from our extra information in making a lowexpectedpayo� pull
will never o�set the associated expected loss� Determining the optimal tradeo� involves
balancing the bene�t of gathering information �exploration� versus that of maximizing short
term payo� �exploitation��

This same tension between exploration and exploitation is also one of the central di�
culties in optimization� In this kind of optimization the goal is to determine an algorithm
�strategy� which e�ciently locates global extrema of some mapping �sometimes called a ��t
ness� or �cost� function� given a �nite total set of allowed samples of that mapping� Without
loss of generality assume that we are seeking minima� Then an �exploitive� strategy is a
greedy strategy each of whose moves in the search space always decreases the cost� Such
greedy algorithms quickly locate a local minima but are then at a loss on how to proceed
further� Imagine that instead a certain amount of �exploration� is used in the algorithm� so
that some of the moves in the search space increase cost� In practice� although this explo
ration will delay convergence to local minima� often it will result in a lower �nal cost� So
just like the bandit problem� optimization has a potential explorationexploitation tradeo��

This connection between the two kinds of problems has been noted many times previ
ously� In perhaps the most wellknown application of bandit problems to optimization� John
Holland �
� uses ideas from the Gaussian bandit problem considered in this paper to �pur
portively� prove that genetic algorithm search methods are near �optimal�� As part of our
analysis of bandits and optimization we will return to this claim� First though� we de�ne
the bandit problem formally�

� Expected payo� for any strategy

In this section we de�ne the bandit problem formally and derive the expected payo� in m
pulls as a function of any strategy for pulling the arms� Having found this expectation we
can then maximize the expected payo� with respect to strategies to �nd the optimal strategy
for pulling the arms� this is done in the section following this one�

��� Notational preliminaries

Given a strategy� for the ith pull� i � ��� �� � � � � m�� we denote the arm chosen by the strategy
as gi and the resulting payo� as pi� If we label the arms as � and �� then P denotes the
prior probability that arm � has mean �� and the associated standard deviation �� �and
consequently with probability P arm � has mean �� and standard deviation ����

The total payo� over the m pulls is p �
Pm

i�� �ipi where the factors� �i determine the
discounting� Most commonly� discounting is either uniform� �i � �� or geometric� �i � �i���
We will consider both types of discounting�

We compress notation by de�ning �� � ���� ��� and �� � ���� ��� and let � be a vector de
noting which set of parameters governs which arm� So � can either be farm � � ��� arm � �
��g� or farm � � ��� arm � � ��g� in short� � denotes the state of the twoarmed bandit� To
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further simplify notation� we will sometimes indicate the value of � by indicating the state
of arm � only� So for example� if a �valued random variable is said to have the value ��� we
mean farm � � ��� arm � � ��g�

Also� to simplify the calculations we de�ne the matrices

� �
�
�� ��

�� ��

�
� � �

�
�� ��
�� ��

�
�

We will use these matrices as shorthand in the following manner� The �rst row indicates
arm � and the second row indicates arm �� The column indicates the value of �� the �rst
column indicates that arm � is governed by �� �so arm � is governed by ��� and the second
column indicates that arm � is governed by �� �so arm � is governed by ����

Usually a row value will be speci�ed by a choice of an arm to pull� We let gi � f�� �g
represent the arm selected by a strategy for the i pull� The rows of � and � are then indexed
by the value of gi� A column value will usually be given by a speci�cation of �� So �g�� and
�g�� indicate the �g� �� matrix elements of � and � respectively� As an example� �g�������������

is the mean payo� if the �rst pull is arm � and if that arm has distribution ��� it equals ���
the entry in the �rst row and second column of the matrix ��

Note that in keeping with our shorthand for �� we will sometimes indicate �g�������������

�for example� by �g��������� or even ���� when we need to be as concise as possible� �The
context should always make the precise meaning of any such abbreviated notation clear��
Note how this notation relates to our matrix notation� ���� is the entry in the �rst row and
second column of the matrix �� The prior probabilities are expressed as P �� � farm � �
��� arm � � ��g� � P and P �� � farm � � ��� arm � � ��g� � � � P in this shorthand
notation are denoted as P ���� � P and P ���� � �� P�

Strategies for pulling arms are speci�ed as conditional probability distributions relating
the arm pulled to information at hand� Our probability notation is standard� P �e�je�� is
the probability of event e� occurring given that the value e� is known� E�e�je�� denotes the
expected value of e� given e�� and is related to P �e�je�� by E�e�je�� � P

e� e�P �e�je���
With this notation� P �g�j�� is our strategy for the �rst pull� it is the probability that the

�rst pull will be g� given the characteristics of the distributions� Since we are not allowed
see � when choosing g� �or any other gi�� g� is independent of �� so P �g�j�� � P �g���

Similarly� the second pull is speci�ed as P �g�jp�� g�� ��� This distribution is conditioned
on p� and g� since these values will certainly enter into any decision as to which arm to pull
for the second pull� Again� this is independent of �� so the strategy for the second pull is
speci�ed by P �g�jp�� g�� �� � P �g�jp�� g���

A complete strategy for m pulls is a speci�cation of m such probability distributions�
where P �gmjp�� p�� � � � pm��� gm��� �� � P �gmjp�� p�� � � � pm��� gm��� is again independent of
�� As an immediate consequence of this it follows that P ���jp�� g�� � � � pm��� gm��� gm� �
P ���jp�� g�� � � � pm��� gm���� �To see this use Bayes� theorem to invert the gm and the f�� �
��g terms��

As we shall soon see� optimal strategies are deterministic� the associated probability
distributions are delta functions about some optimal pull� For example� the optimal second






pull can be written P �g�jg�� p�� �� � 	�g��G�p�� g�� ��� for some singlevalued function G����
We will use this fact repeatedly in our determination of Bayes optimal strategies�

Using these notational conveniences we are now in a position to determine expected
payo�s�

��� Expected payo�s

We provide detailed expressions for expected payo�s for m � �� �� and � pulls and leave the
extension to arbitrary m to the reader�

����� The m � � case

We begin with the simplest case of a single pull� m � �� We need to calculate E�pjm � �� the
expected payo� of the �rst pull� We can easily calculate this by summing over all possible
payo�s� p�� guesses� g�� and possibilities for �� We have

E�pjm � �� �
Z
dp�

X
�

X
g�

E�p� g�� p�� �jm � ��

�
Z
dp�

X
�

X
g�

E�pjg�� p�� ��m � ��P �g�� p�� �jm � ��

�
Z
dp�

X
�

X
g�

p�P �p�jg�� ��m � ��P �g�j��m � ��P ��jm � ��

�
Z
dp�

X
�

X
g�

p�P �p�jg�� ��P �g��P ���

where the payo� probability is given by a Gaussian distribution� Using our shorthand matrix
notation�

P �p�jg�� �� � �p
�
�g���

exp���p� � �g����
����g�����

The expression for the expected payo� can be simpli�ed somewhat with the following de�
nition�

De�nition � De�ne the function f� of the �rst guess

f��g�� �
Z
dp�

X
�

p�P �p�jg�� ��P ��� �
X
�

P ���E�p�jg�� �� �
X
�

�g���P ��� ���

Lemma � With the above de�nition the expected payo� E�pjm � �� for a single pull is

E�pjm � �� �
X
g�

P �g��f��g��� ���

�



It is important to recognize that P �g�� is determined by the strategy while f��g�� is instead
determined by the parameters of the problem �f��g�� can be interpreted as the expected
payo� of arm g���

To �nd the optimal strategy for a single pull we must maximize Equation ��� with
respect to P �g��� Because the expected payo� is a linear equation in the strategy it will
clearly be maximized by the g� for which f��g�� achieves its maximum value� Consequently�
P �g�j�� � 	�g� � argmaxg� f��g����

Lemma � The maximum expected payo� for a single pull is given by

Eopt�pjm � �� � max
g�

f��g��

The determination of this value will be taken up in Section 
�

����� The m � � case

Next we turn to the case of two pulls� m � �� The calculation proceeds as before but now
we must also expand over the possible choices� g� and outcomes� p�� of the second pull� In
addition to determining the �rst pull� the strategy must now also specify the second pull�
P �g�jp�� g�� ��� We have noted the explicit dependence of the second pull on the results from
the �rst pull� The expected total payo�� p � p� � p� can be written as

E�pjm � �� �
ZZ

dp�dp�
X
g��g�

X
�

E�pjg�� p�� g�� p�� ��m � ��P �p�� g�� p�� g�� �jm � ��

�
ZZ

dp�dp�
X
g��g�

X
�

�p� � p��P �p�jg�� ��P �g�jp�� g�� ��P �p�jg�� ��P �g��P ���

�
X
g�

P �g��

�
� Z dp�

�
p�
X
�

P �p�jg�� ��P ��� �

X
g�

P �g�jp�� g��
Z
dp� p�

X
�

P �p�jg�� ��P �p�jg�� ��P ���

��	

Lemma � The expected payo� E�pjm � �� for two pulls is given by

E�pjm � �� �
X
g�

P �g��

�
f��g�� �

X
g�

Z
dp�P �g�jp�� g��f��g�� p�� g��

�
���

where f��g�� is de�ned as before and

De�nition � we de�ne the function f� of the second guess and results from the �rst pull as

f��g�� p�� g�� �
Z
dp� p�

X
�

P �p�jg�� ��P �p�jg�� ��P ��� �
X
�

�g��� P �p�jg�� ��P ��� �
�

�



Just as f� was related to the expected payo� on the �rst pull� f��g�� p�� g�� is related
to the expected payo� from pulling arm g� on the second pull� It is easy to show thatR
dp�f��g�� p�� g�� � E�p�jg��� a result we shall use later�
In this m � � case we must maximize Equation ��� with respect to both P �g�� and

P �g�jp�� g��� Again� the optimal algorithm will be deterministic and

Lemma � the maximum expected payo� Eopt�pjm � �� for two pulls is

Eopt�pjm � �� � max
g�



f��g�� �

Z
dp� max

g�
f��g�� p�� g��

�

����� Arbitrary m

The calculations are analogous for larger values of m� For example� the result for m � � is

E�pjm � �� �
X
g�

P �g��

�
�f��g�� �X

g�

Z
dp�P �g�jp�� g��

�
f��g�� p�� g�� �

X
g�

Z
dp�P �g�jp�� g�� p�� g��f��g�� p�� g�� p�� g��

��	

where

f��g�� p�� g�� p�� g�� �
X
�

Z
dp� p�P �p�jg�� ��P �p�jg�� ��P �p�jg�� ��P ���

�
X
�

�g���P �p�jg�� ��P �p�jg�� ��P ���

The extension to the case of general m is straightforward but tedious�
Note that for all m � �� the optimal strategy for the �rst pull depends on the strategy

based decisions made for subsequent pulls� This is where the explorationexploitation tradeo�
�also important in optimization� comes into play� For example� if the expected payo� from
later pulls rises su�ciently to o�set the expected loss associated with choosing the �rst pull
so as to minimize f��g��� then it behooves us to �explore� on the �rst pull rather than exploit�
On the other hand� there is no such explorationexploitation tradeo� for the �nal of m pulls�
since there are no subsequent pulls� you should always exploit maximally on the last pull�

� Optimal strategies

We now focus on optimizing the expected payo� E�pjm� with respect to strategies to �nd the
optimal pulling strategies� We present complete solutions for m � � and m � �� Solutions
for larger m are di�cult �if not impossible� to obtain analytically because of the integrals
involved� We begin with the simplest case�

	



��� The m � � case

Recall from Lemma � that E�pjm � �� is maximized by the strategy of choosing g� so as to
maximize f��g��� Recalling Equation ��� we have

f��g�� �
X
�

�g���P ��� � �g����P � �g������� P�

� P��g���� � �g����� � �g����

To determine the gopt� which maximizes this quantity we consider the di�erence f��g� �
���f��g� � �� and pick gopt� � � if the di�erence is positive or pick gopt� � � if the di�erence
is negative� The di�erence can be written as

�f� � P������ � ����� � ����� � ������ � ������ � ������

� P��� � �� � �� � ��� � ��� � ���

� ��P � ����� � ���

where it should be recalled that ��a�b� is shorthand for ��g��a���b��
Thus the optimal strategy for a single pull is to select arm � i� P � ��� and �� � ��

or P  ��� and ��  ��� Otherwise the optimal strategy picks arm �� Since �P��� � ��� �
��� � �P��� � ��� � ��� � �� � �� then �f���� � f������� � ��� � ������ and

Lemma � the expected payo� for the optimal strategy for a single pull is

Eopt�pjm � �� �
�� � ��

�
�

������f�
�

����� � �� � ��

�
�
����


P � �

�

�
��� � ���

���� � ���

��� The m � � case

Now we consider the more complicated case of m � �� Our starting point is Equation ����

E�pjm � �� �
X
g�

P �g��

�
f��g�� �

X
g�

Z
dp�P �g�jp�� g��f��g�� p�� g��

�

which must be maximized with respect to both g� and g�� We work backwards� �rst �nding
gopt� as a function of g� and then determining gopt� �

The optimal g� is that which maximizes f��g�� p�� g��� Recall from De�nition � that

f��g�� p�� g�� �
X
�

�g��� P �p�jg�� ��P ���

� �g����P �p�jg�� ���P � �g����P �p�jg�� ������ P�

To determine gopt� we calculate the di�erence� �f��p�� g�� � f��g� � �� p�� g�� � f��g� �
�� p�� g���

�f��p�� g�� � ������ � ������P �p�jg�� ���P � ������ � ������P �p�jg�� ������ P�

� ��� � ���
h
PP �p�jg�� ��� � �P � ��P �p�jg�� ���

i
���

�



Since we choose g� � � if �f��p�� g�� � � and g� � � otherwise� it is important to know
where in p�space �f��p�� g�� changes sign� Rearranging the equation �f��p� � z� g�� � �
and then taking logarithms we �nd

lnP �zjg�� ���� lnP �zjg�� ��� � ln

�� P
P

�
�

�z � �g�����
�

���
g����

� �z � �g�����
�

���
g����

� ln

��� P��g����
P�g����

�
�

There are two cases to consider� It may be that both arms have the same standard deviation�
�g���� � �g���� or they may di�er� In the case where they are equal the above equation becomes
linear in z� otherwise we must solve a quadratic expression� We begin with the linear case�

����� �� � ��

When �� � �� � � we have a linear equation for z whose solution is z � �� where

�� �
��

�g���� � �g����
ln

�� P
P

�
�
�g���� � �g����

�

We next need to determine on which side of p� � �� the quantity �f��p�� g�� is positive�
This can be determined by examining limp����f��p�� g��� since �f��p�� g�� is linear in p��
So we write

�f��p�� g�� � ��� � ���
�
P � ��� P� exp ��p���g���� � �g�������

�� exp ����
g��� � ��

g�������
��
�
�

�	�

If �g���� � �g���� �for example if g� � � and �� � ��� then the exponential kills o� the
��� P� term for large p�� so the sign of �f��p� ��� g�� is given by the sign of ��� � ����
Conversely� if �g����  �g����� then the sign of �f��p� � �� g�� is given by the sign of
��� � ����

So for example� if indeed �g���� � �g���� and �� � ��� and if p� � ��� then �f��p�� g�� � ��
In such a case� by the results of the previous subsection� we should choose g� � �� More
generally� denote the region region p�  �� by R� and the region p� � �� by R�� If p� is in
region R� then the optimal second pull is gopt� �R�� � � if ��� � �����g���� � �g����� � � and
gopt� �R�� � � otherwise� But notice that ��� � �����g���� � �g����� � ��� � ���

� for g� � �
and ���� � ���

� for g� � �� Thus we have the following result�

Lemma 	 If p� is in region R�� g
opt
� �R�� � g� and if it lies in region R� the guesses are

reversed �i�e�� for p� in that region gopt� �R�� � � if g� � � and gopt� � � if g� � ���

Given �� and gopt� we can determine the expected payo� for the optimal second guess�

�



Recalling De�nition � of f�� we see that this payo� is

F��g�� �
Z
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This can be simpli�ed somewhat in terms of the complimentary error function� From the
de�nition

erfc�p� �
�p
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p
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we �nd that
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Z �

��
dp�

exp��p� a����b�p
�
b

�
�

�
erfc

�
�� � ap

�b

�

So in terms of complimentary error functions the expected optimal payo� on the second pull
is
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To determine the optimal �rst pull we must now maximize f��g���F��g�� with respect to
g�� We can do this by considering the di�erence �f���F� � f�����f�����F�����F�����
Recalling that �f� � ��P � ����� � ���� we see that if �F� � �� � �P���� � ���� then
gopt� � �� while if �F�  ��� �P���� � ���� it follows that gopt� � ��

��



����� �� �� ��

As mentioned above� when the standard deviations are unequal we must solve a quadratic
expression� The solutions are z � ���g�� where

�� �
�g�����

�
g����

� �g�����
�
g����

	 �g�����g����

r
��g���� � �g�����

� � ����
g����

� ��
g����

� ln
h
���P�	g� ���
P	g����

i
��
g����

� ��
g����

For completeness we note a symmetry of our formula for the roots� ��� namely� �����P� �
����� � � P�� This re�ects the observation that � 
 � and P 
 � � P just amounts to a
relabeling of the arms� We also note that �g����  �g���� i� ��  ���

Henceforth� �� is used to denote the larger of the two roots and �� the smaller of the
two roots whether or not they are obtained from the � or � sign in the above equation�

Depending on the value of the discriminant there may be either �� �� or � distinct roots�
We consider each possibility in turn�

The no roots case

If we have � roots then the optimal second guess� gopt� doesn�t depend up the �rst payo��
This situation occurs if the discriminant is negative� i�e�

���
g����

� ��
g����

� ln

��� P��g����
P�g����

�
 ���g���� � �g�����

�

�

If �g���� � �g���� � then since ��� � ���
� � ��� � ���

�� this condition is met if

P �
�g����

�g���� exp ����� � ���������
g����

� ��
g����

�� � �g����

while if �g����  �g���� we require

P 
�g����

�g���� exp ���� � ���������
g����

� ��
g����

�� � �g����

A qualitative picture of these two situations is given in Figure �� In these situations the
optimal second pull is given in a �xed way by the sign of �f��p�� g��� regardless of the value
of p� at which �f��p�� g�� is evaluated �see Equation ��� These are the situations where the
prior P is su�ciently strong so that no result from the �rst pull can alter the second guess�

The single root case

For there to be a single distinct root the discriminant must be zero� In this case �f��p�� g��
has the same sign for all p� except one� for which it equals zero� As usual� the optimal
second pull is determined by the sign of �f��p�� g��� To determine this sign we write �f� �
��� � ����T� � T�� where both T� � PP �p�jg�� ��� and T� � ��� P�P �p�jg�� ��� are positive
�see Equation ���

��
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Figure �� An example of the case where the optimal second guess gopt� is independent of the
�rst payo� p�� If the higher of the two ��s also has a large standard deviation� and our prior
strongly biases our belief concerning which arm has that higher �� then regardless of the
�rst payo� the optimal strategy remains to choose that arm we believe to have the higher ��
�Intuitively� no value of p� can give strong evidence against the prior belief of which is the
better arm� since any value of p� is relatively compatible with that belief� due to the better
arm�s large ��� This can occur in two ways� ��� the variance of �� is large and P is large�
��� the variance of �� is large and P is small�

��



Given �� and ��� the sign of �f� is determined by the ratio T��T�� Since �f� has the
same sign for all values of p� we can determine the sign by evaluating the ratio for any
convenient p�� In particular� in the limit p� �� we �nd

lim
p���

T�
T�

�
P

�� P lim
p���

e�p
�
�
�	�
g� ���

�	�
g����

�
�	�
g� ���

	�
g����

If �g����  �g���� then this ratio is zero and so T� � T�  �� Otherwise the ratio is �� which
means that T� � T� � ��

De�nition � We de�ne the function � of the �rst guess and characteristics of the Gaussian
distributions as

��g�� � ��� � �����g���� � �g����� ���

With this de�nition of ��g�� we see that the optimal second pull is given by gopt� � � if
��g�� � � and gopt� � � if ��g��  �� For the particular p� that gives �f��p�� g�� � �
it doesn�t matter which arm we pick for the next guess since each has the same expected
payo��

The two roots case

When there are two distinct roots there are three regions with di�erent optimal second
guesses� We label these regions as R� for p� � ��� R� for ��  p� � ��� and R� for
��  p�� The optimal guess will change across each of the two boundaries� so determining
the optimal second guess in any single region will determine the optimal guess in all other
regions�� Consequently� it su�ces to consider behavior in the region R� as p� gets very large�
Just as in the case for a single root� we see that gopt� is determined solely by the sign of ��g���

R��

gopt� �R�� �

��
�� if ��g�� � �

� if ��g��  �

R��

gopt� �R�� �

��
�� if ��g��  �

� if ��g�� � �

R��

gopt� �R�� �

��
�� if ��g�� � �

� if ��g��  �

�Again� if p� lies on a boundary then the next pull doesn�t matter since both arms have the same expected

payo�

��



����� Evaluating the maximal expected second payo�

Having de�ned gopt� for all ��� ��� p�� and g� we can now evaluate the maximal expected second
payo� occuring for g� � gopt� � In the case where there are � or � roots gopt� doesn�t depend on
p�� so we have

F��g�� �
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dp�p
�
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where gopt� is given in the preceding section�
In the case where there are � roots and gopt� depends upon p� the situation is more

complicated� Then we must divide up the integration over p� into the three regions� R�� R��
R��
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Recalling the de�nition of the complimentary error function� erfc� we �nd
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so that F��g�� can be expressed as
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This lengthy expression can be simpli�ed by noting the following� erfc�z� � erfc��z� � ��
and �gopt
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Having calculated both gopt� and F��g�� we are now in a position to determine gopt� � Recall
from Lemma 
 that the optimal expected payo� is

Eopt�pjm � �� � max
g�

f��g�� � F��g��

To determine gopt� we calculate the di�erence f�����f�����F�����F���� � �f���F�� We
have previously evaluated �f� � ��P � ����� � ��� in the m � � case� Noting the explicit
dependence of gopt� and �� on g� we �nd the di�erence �F� to be�
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 From the de�nition of gopt� in terms of ��g�� we de�ne
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The sign of this di�erence determines the optimal �rst guess� gopt� � If �F� � ��f� then
gopt� � � while if �F�  ��f� then gopt� � ��

Plots of the expected payo� for the optimal algorithm can be found in Figure � where
E�pjm � �� for �� � ��� �� � � is plotted versus �� and �� for various P�

Had we included a geometric discounting factor we would have to optimize the payo�
p � p���p�� The optimal second guess would remain una�ected but gopt� would be modi�ed
to the g� which maximizes f��g�� � �F��g��� Consequently we would determine that guess
by considering the di�erence �f����F�� For some values of ��� ��� and P the optimal �rst
pull may change as � changes� To see this note that in Figure � the second expected payo�
given g�� �F��g�� can assume either sign as a function of �� and ��� In such scenarios� for
certain � � �� gopt� may change from what it is for uniform discounting�

The di�culty of evaluating expected payo�s for the optimal algorithm increases expo
nentially with m� Solving this bandit problem for m pulls requires doing an m dimensional
integral� Because of the Gaussian payo�s� the optimal guess for the ith pull will depend on
which of three regions the previous i� � dimensional payo� vector lies� Since integrands are
over these optimal guesses� for m pulls there are �m regions to consider� While such integrals
can be evaluated by Monte Carlo methods �at least for m not too large� we have not done
so here�

� Optimality of the Greedy Algorithm

Thompson ��� �rst posed the bandit problem and also suggested an often e�ective strategy "
the �myopic� or �greedy� strategy� The greedy strategy di�ers from the optimal strategy in
that gopt� is determined by maximizing f��g�� alone and then this value is used in f��g�� p�� g

opt
� �

��
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Figure �� E�pjm � �� for ���� ��� � ���� �� vs �� and �� for �a� P � ���� �b� P � ��
� �c�
P � ���� and �d� P � ���� E�pjm � �� for P � ��� � 	 is identical to P � ��� � 	 since
both re�ect the same amount of certainty as to which arm has which ��
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to P � ���� 	 since both re�ect the same amount of certainty as to which arm has which ��
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to determine the optimal second pull� More generally� the greedy algorithm selects the
arm which optimizes the payo� for the next pull� without any regard to performance on
subsequent pulls� This is simple to do since the posterior probability that arm � is associated
with distribution parameters �� is straightforward to calculate using Bayes� theorem�

For the m � � case discussed above the greedy algorithm will be optimal if the g�
determined by a greedy method agrees with the optimal g�� This is the case if ��f� �
�F���f� � �� which certainly holds if either j�F�j � j�f�j or less interestingly if �F� � �f�
and �F� and �f� are both positive and � �See the end of Section 
������ Substituting �f� �
��P � ���������� we see that the greedy algorithm will be optimal if j�F�j  j�P � �jj��j�

Numerically� this can be seen to hold for m � �� and later we shall comment on how to
prove this result� But is it the case that the greedy algorithm is in fact optimal for any m#
In the case of Bernoulli payo�s it has been proven that the greedy strategy is optimal for all
m ���� This conjecture is least plausible� The task for the optimal strategy is mostly one of
identi�cation� to determine which distribution is associated with which arm� Moreover there
are only two possibilities� either �� is associated with arm � or with arm �� Because there
are only these two cases� anything we learn about one arm is immediately transferable into
information concerning the other arm� So there appears to be no reason to explore� �i�e no
reason to pull an arm you think has lower �� since you would learn as much on average from
pulling the arm you think is better�

While we have been unable to prove that the greedy algorithm is optimal for all ��� �� and
P we have been able to prove it in a number of special cases� However the reader should bear
in mind that it is certainly not true that the greedy algorithm is optimal for all discounting
schedules� For example� we saw in Section 
���� that even for m � �� when � � �� so that
the future is weighted more heavily� the greedy strategy is suboptimal�

We �rst consider the case of uniform discounting when �� � �� and greedy can be proven
to optimal�

��� Proof of optimality of greedy algorithm for �� � ��

As always we consider m total pulls and imagine that there are k � � � � pulls remaining�
The information on hand is the result of the previous m � k � � pulls� namely �pm�k�� �
fp�� � � � � pm�k��g and �gm�k�� � fg�� � � � � gm�k��g� Given this information we would like to
know how the choice of the next pull� gm�k� will a�ect subsequent payo�s� Consequently�
we consider the sum of the expected payo�s pj for the future pulls j � �m� k � �� � � � � m��
conditioned on the information at hand and knowledge of our next pull�

E�
X
j

pj j �pm�k��� �gm�k��� gm�k� � E�
X
j

pj j �pm�k��� �gm�k�� ���

where the restriction on the range of j is implicitly understood �j is at least two pulls beyond
the ones whose resultant payo� we already know��

If we can show that for the optimal algorithm this expectation is in fact independent of
the next pull� gm�k� this will mean that there is no reason not to pull the arm we think is

��



best at pull m � k� since expected subsequent payo� �recall k � �� will not be a�ected by
the choice of which arm to pull� To this end we make the following de�nition�

De�nition � De�ne �m�k as the posterior probability after the m� k� � pulls that arm �
is associated with parameters ���

�m�k � P ��� � ��j�pm�k��� �gm�k���

More formally� �m�k is a realvalued random variable which is a function of the random
variables �pm�k�� and �gm�k�� �and of course of the parameters of the problem� P� ��� and
���� The de�nition of �m�k presented above says how its value is set� As an example� in
terms of our previous notation �� � P�

Intuitively� �i is the �exploitable information� we have about the state of the bandit at
the time we must decide on our i�th pull� Nonoptimal algorithms do not always re�ect
this fact� Such algorithms can make di�erent guesses gi for two di�erent sets of f�pi��� �gi��g
even if �i is the same for those two sets� The optimal algorithm can never do this� �This is
established formally in the proof of the lemma below��

Since the strategy subsequent to pull m � k is optimal� knowing �m�k�� tells us all we
need to know concerning �pm�k and �gm�k as far as calculating expected payo� for the pulls
j � m� k is concerned� Formally� the expectation value in Equation ��� can be written

Lemma � The expected future payo� conditioned on the information available at the �m�
k��th pull is

E�
X
j

pj j �pm�k��� �gm�k� �
Z
d�m�k��E�

X
j

pj j �m�k���P ��m�k��j�pm�k��� �gm�k��

Proof To prove this lemma it su�ces to show that

E�
X
j

pjj�m�k��� �pm�k��� �gm�k� � E�
X
j

pjj�m�k����

We begin by expanding the lefthand side of this proposed equality as

Z
dpm�k E�

X
j

pj j �m�k��� �pm�k� �gm�k�P �pm�kj�m�k��� �pm�k��� �gm�k��

Examining the integrand� it is clear that a su�cient condition for our proposed equality to
hold is that

E�
X
j

pj j �m�k��� �pm�k� �gm�k� � E�
X
j

pj j �m�k���

for all pm�k such that �m�k�� � P ��� � ��j�pm�k� �gm�k��

��



It is this equality that we shall prove� First de�ne �ga
b�a � fga� ga��� � � � gbg� and for
completeness have �ga
b�a be the empty set� De�ne �pa
b similarly� Then we can expand

E�
X
j

pjj�m�k��� �pm�k� �gm�k� �
X
j

X
�

Z
d�pm�k��
j

X
�gm�k���j

pjP ��� �pm�k��
j� �gm�k��
jj�m�k��� �pm�k� �gm�k�

Now break up the last term in the integrand�

P ��� �pm�k��
j��� �gm�k��
j��j�m�k��� �pm�k��gm�k� � P ��j�pm�k� �gm�k� �m�k���

� P ��pm�k��
j� �gm�k��
jj�� �pm�k� �gm�k� �m�k���

Collecting terms� we get

E�
X
j

pj j �m�k��� �pm�k� �gm�k� �
X
�

P ��j�pm�k� �gm�k� �m�k���
X
j

Z
d�pm�k��
j

X
�gm�k���j

pjP ��pm�k��
j� �gm�k��
jj�� �pm�k� �gm�k� �m�k���

To proceed expand the last term in our last integrand as

P ��pm�k��
j� �gm�k��
jj�� �pm�k� �gm�k� �m�k��� �
jY

i�m�k��

P �pijgi� ��
jY

i�m�k��

P �gij�pi��� �gi��� �m�k���

Now de�ne �m�k����� � �m�k�� if � corresponds to �� � ��� and �m�k����� � � � �m�k��

otherwise� Then P ��j�pm�k� �gm�k� �m�k��� � �m�k������ So writing it all out� we have

E�
X
j

pjj�m�k��� �pm�k� �gm�k� �
X
�

�m�k������

X
j

Z
dpm�k�� � � �

Z
dpj

X
gm�k��

� � �
X
gj

pj

jY
i�m�k��

P �pijgi� ��P �gij�pi��� �gi���

Collecting terms common to more than j� this can be rewritten as

E�
X
j

pjj�m�k��� �pm�k� �gm�k� �
X
�

�m�k������
X

gm�k��

P �gm�k��j�pm�k� �gm�k� �m�k���
Z
dpm�k��P �pm�k��jgm�k��� ��

h
pm�k�� �

X
gm�k��

P �gm�k��j�pm�k��� �gm�k��� �m�k���
Z
dpm�k��P �pm�k��jgm�k��� ��

�pm�k�� � � � �

���X
gm

P �gmj�pm��� �gm��� �m�k���
Z
dpmpmP �pmjgm� ��� � � � �

i
����

��



As usual� the strategy"that which the armpuller can vary"is the distribution P �gij�pi��� �gi����
Now perform a similar decomposition of E�

P
j pj j �m�k��� to get

E�
X
j

pjj�m�k��� �
Z
d�pm�k

X
�gm�k

P ��pm�k� �gm�kj�m�k���
X
�

�m�k������
X

gm�k��

P �gm�k��j�pm�k� �gm�k� �m�k���
Z
dpm�k��P �pm�k��jgm�k��� ��

h
pm�k�� �

X
gm�k��

P �gm�k��j�pm�k��� �gm�k��� �m�k���
Z
dpm�k��P �pm�k��jgm�k��� ��

�pm�k�� � � � �

���X
gm

P �gmj�pm��� �gm��� �m�k���
Z
dpmpmP �pmjgm� ��� � � � �

i
����

Examine the last term in this sum�

Z
d�pm�k

X
�gm�k

P ��pm�k� �gm�k j �m�k���

Z
dpm�k�� � � �

Z
dpm

X
gm�k��

� � �
X
gm

pm
mY

i�m�k��

P �gij�pi��� �gi���
X
�

� �m�k�����
mY

i�m�k��

P �pijgi� �� �

�Z
d�pm�k

X
�gm�k

P ��pm�k� �gm�k j �m�k���

Z
dpm�k�� � � �

Z
dpm

X
gm�k��

� � �
X
gm

pm
mY

i�m�k��

P �gij�pi��� �gi���

Fm��m�k��� �pm�k��
m� �gm�k��
m�

��



and rewrite this asZ
d�pm�k

X
�gm�k

P ��pm�k� �gm�k j �m�k���

Z
dpm�k�� � � �

Z
dpm��

X
gm�k��

� � �
X
gm��

m��Y
i�m�k��

P �gij�pi��� �gi���
X
gm

P �gmj�pm��� �gm���
Z
dpmpmFm��m�k��� �pm�k��
m� �gm�k��
m�

�Z
d�pm�k

X
�gm�k

P ��pm�k� �gm�k j �m�k���

Z
dpm�k�� � � �

Z
dpm��

X
gm�k��

� � �
X
gm��

m��Y
i�m�k��

P �gij�pi��� �gi���
X
gm

P �gmj�pm��� �gm��� $Fm��m�k��� �pm�k��
m��� �gm�k��
m�

By inspection� the optimal strategy for the m�th pull depends only on �m�k��� pm�k��
m���
and gm�k��
m��� �That optimal strategy is to pull the arm gm that maximizes the quan

tity $F ��m�k��� �pm�k��
m��� �gm�k��
m��� Accordingly� we can rewrite P �gmj�pm��� �gm��� as
P �gmj�m�k��� �pm�k��
m��� �gm�k��
m���� Note that this is independent of f�pm�k� �gm�kg for all
f�pm�k� �gm�kg consistent with the speci�ed value of �m�k���

We can now repeat the process� and examine the secondtolast term in the sum in
Equation ����� Our function Fm����m�k��� �pm�k��
m��� �gm�k��
m��� will now depend on the

quantity maxgm $Fm��m�k��� �pm�k��
m��� �gm�k��
m�� The end result will again be that the
values of f�pm�k� �gm�kg do not matter� so long as they are consistent with the speci�ed value
of �m�k���

P �gm��j�pm��� �gm��� � P �gm��j�m�k��� �pm�k��
m��� �gm�k��
m���

Continuing we see that the argument of the
R
d�pm�k

P
�gm�k P ��pm�k� �gm�kj�m�k��� in Eq� ����

is independent of the values f�pm�k� �gm�kg� so long as those values are consistent with the
speci�ed value of �m�k��� Accordingly� that

R
d�pm�k

P
�gm�k P ��pm�k� �gm�kj�m�k��� evaluates

to ��
This means that the expressions in Eq� ���� and Eq� ���� are identical which completes

the proof�

So to prove that our expectation value is independent of the next pull gm�k� it su�ces
to prove that P ��m�k��j�pm�k��� �gm�k��� gm�k� is independent of gm�k�

Now we know that

P ��m�k��j�pm�k��� �gm�k��� gm�k� �
Z
dpm�k 	

�
�m�k�� � P ��� � ��j�pm�k� �gm�k�

�
� P �pm�kj�pm�k��� �gm�k��� gm�k�

��



However by using Bayes� theorem� P ��� � ��j�pm�k� �gm�k� is easily calculated as

P ��� � ��j�pm�k� �gm�k� � P ��pm�k� �gm�kj�� � ���P ��� � ���P
�� P ��pm�k� �gm�kj�� � ���P ��� � ���

Expanding� we can write

P ��pm�k� �gm�kj�� � ��� �P �pm�kj�pm�k��� �gm�k� �� � ����
P �gm�kj�pm�k��� �gm�k��� �� � ����
P �pm�k��j�pm�k��� �gm�k��� �� � ����
���

P �g�j�� � ���

We note that P �pij�pi�� �gi� �� � ��� � P �pijgi� �� � ��� and for all i P �gij�pi��� �gi��� �� � ��� �
P �gij�pi��� �gi��� since strategies can not be conditioned on information that is unavailable�
Plugging these results in and cancelling terms we have

P ��� � ��j�pm�k� �gm�k� � P ��� � ���
Qi�m�k

i�� P �pijgi� �� � ���P
�� P ��� � ���

Qi�m�k
i�� P �pijgi� �� � ���

or more explicitly

P ��� � ��j�pm�k� �gm�k� � P ��pm�kj�gm�k� �� � �����

P ��pm�kj�� � ��� �gm�k��� � P ��pm�kj�� � ��� �gm�k���� ���

Finally� in the case of �� � �� � � we have

P ��pm�kj�� � ��� �gm�k� �
�

�
p
�
��m�k

exp

���

���

m�kX
i��

�pi � �gi����
�

�

Similarly

P �pm�kj�pm�k��� �gm�k��� gm�k� �
X
�

P �pm�kj�� gm�k�P ��j�pm�k��� �gm�k���

�
X
�

exp���pm�k � �gm�k���
������p

�
�
P ��j�pm�k��� �gm�k���

Having de�ned all the necessary quantities we can now do the integration and compare
E�pjj�pm�k��� �gm�k��� gm�k� for the two di�erent choices of gm�k�

De�nition � To facilitate the calculation we make the following de�nitions�

N��pm�k� �gm�k� � exp

���

���

m�kX
i��

�pi � �gi����
�

�
��

�
p
�
��m�k

D��pm�k� �gm�k� � exp

���

���

m�kX
i��

�pi � �gi����
�

�
��

�
p
�
��m�k

� exp

���

���

m�kX
i��

�pi � �gi����
�

�
�� ��

�
p
�
��m�k

�




Using Equation ����� we can write the posterior probability of �m�k�� as

P ��m�k��j�pm�k��� �gm�k��� gm�k� �
Z
dpm�k 	

�
�m�k�� � N��pm�k� �gm�k�

D��pm�k� �gm�k�

�
D��pm�k� �gm�k�

We want to know how this distribution changes when gm�k is changed to the other arm�
To do this note a symmetry of the N and D functions� namely that if we de�ne !pm�k �
�� � �� � pm�k then

N��pm�k� �gm�k� � N��pm�k��� !pm�k� �gm�k���gm�k�
D��pm�k� �gm�k� � D��pm�k��� !pm�k� �gm�k���gm�k�

where gm�k is the arm other than gm�k� So by changing the variable of integration we have

P ��m�k��j�pm�k����gm�k��� gm�k�

�
Z
dpm�k

�
�	
�
�m�k�� � N��pm�k��� !pm�k�pm�k�� �gm�k���gm�k�

D��pm�k��� !pm�k�pm�k�� �gm�k���gm�k�
�

�D��pm�k��� !pm�k�pm�k�� �gm�k���gm�k�
�
	

� �
Z ��

�
d!pm�k

�
�	
�
�m�k�� � N��pm�k��� !pm�k� �gm�k���gm�k�

D��pm�k��� !pm�k� �gm�k���gm�k�
�

�D��pm�k��� !pm�k� �gm�k���gm�k�
�
	

� P ��m�k��j�pm�k��� �gm�k���gm�k�
Thus we have proven that the probability of obtaining a particular posterior �m�k is inde
pendent of the next pull� gm�k� and thus any quantity like future payo�s that is dependent
on �m�k alone will also be independent of the next pull� In this case the greedy algorithm
is optimal� and we can do no better than follow the strategy of optimizing the payo� for the
next pull� Thus we have proven the following result�

Theorem � For �� � ��� the greedy algorithm is optimal�

��� Other cases in which the greedy strategy is optimal

Trivially� in addition to the result of the preceding subsection� it is also true that if the ��s are
the same but the ��s are di�erent� then the expected payo�s are identical for all algorithms�
so again the greedy strategy is optimal�

We can also prove that the greedy algorithm is optimal for arbitrary �� and �� for special
values of P� Intuitively� this follows from the fact that when P is close to either � or �� so
there is strong prior certainty about which arm is which� for small enough m no results of

��



preceding pulls can alter our choice for the current pull� Accordingly� when choosing a pull
in the past� we knew with certainty what the current pull would be� no information gained
by �exploring� can have any e�ect and so the greedy algorithm is optimal�

To establish this formally� here we derive lower bounds on the amount P can deviate
from either � or � with the greedy algorithm still being optimal� We �rst consider the case
of m � � and then generalize to arbitrary m�

We proceed as above by showing that E�p�jg�� is independent of g�� As before we expand
in the posterior probability that �� � ��� ��� and write the expected second payo� for the
optimal strategy as

E�p�jg�� �
Z
d��E�p�j���P ���jg��

�
�� � ��

�
� j�� � ��j

Z
d�� j�� � ���jP ���jg��

�see Equation ��� of Section 
����
So the change in the expected p� for di�erent initial guesses g� is

�E�p�� � E�p�jg� � ��� E�p�jg� � ��

� j�� � ��j
Z
d�� j�� � ���j

�
P ���jg� � ��� P ���jg� � ��

�

As we have previously noted� the greedy algorithm is optimal if j�E�p��j  j�E�p��j� So it
is optimal if Z

d�� j�� � ���jjP ���jg� � ��� P ���jg� � ��j  j��P � ��j

�again� see Section 
����
We will evaluate the integral on the left hand side of this inequality for the worst case�

and thereby determine worstcase conditions for the greedy strategy to be optimal� �A rough
picture of j�� � ���j� and typical P ���jg� � ��� and P ���jg� � �� is given in Figure 
��

To �nd our worstcase scenario for a particular P� we maximize the di�erence P ���jg� �
��� P ���jg� � ��� Now

E���jg�� �
Z
d�� ��P ���jg�� �

Z
d��dp� ��	��� � P ��� � ��jp�� g���P �p�jg���

but by interchanging the order of integration we can evaluate this as P ��� � ��jg��� So
E���jg�� � P� independent of g�� Therefore to maximize our di�erence we should have

P ���jg� � �� � P	��� � �� � ��� P�	����

P ���jg� � �� � 	��� � P�

For this extreme case� our integral gives �E�p�� � ���� jP � ���j�
Using this result in our inequality we see that in the worst case the greedy strategy will

be optimal if ���� jP � ���j  j�P � �j� i�e�� either P  ��� or P � ����

��
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Figure 
� A schematic view of j��� ���j and the two probability distributions P ���jg� � ��
and P ���jg� � ��� We seek the P ���jg� � ���P ���jg� � �� which when integrated against
j�� � ���j gives the largest possible value� given that the two distributions must have the
same mean�

Note that this worst case analysis is fairly weak in that �for example� it does not capture
the fact that for m � � the greedy algorithm is in fact optimal for all P� However this type
of analysis has the advantage that it is trivial to extend it to arbitrary m� For such a case
the greedy algorithm will be optimal if the absolute value of

�E
� mX
i��

pi
�
� E

� mX
i��

pijg� � �
�
� E

� mX
i��

pijg� � �
�

is less then j�E�p��j� Again using worst case analysis� we �nd

�E
� mX
i��

pi
�
� j�� � ��j�m� ������� jP � ���j�

This can be seen by bounding �E�pi� �
R
d�ij�i � ���jj�P ��ijg� � �� � P ��ijg� � ��� as

above and then bounding �E�
Pm

i�� pi� by summing the m � � associated bounds on the
individual �E�pi�� Thus we have established the following�

Theorem � If either P  ���m � �� or P � m��m � ��� then the greedy algorithm is
optimal�

It should be emphasized just how poor these worst case bounds really are� It is hard to
imagine how a distant future expected payo�� E�pijg�� for large i� can be as sensitive to g�
as this worst case analysis requires� So this worst case analysis must overestimate �E�

P
i pi�

signi�cantly� and therefore it must signi�cantly underestimate the range of P for which the
greedy strategy is optimal�

Note that nowhere in this proof of the optimality of the greedy strategy did we make use of
the fact that our payo� distributions are Gaussian� Consequently� the results derived above
hold for all payo� distributions� There may be ways to extend these bounds considerably by

�	



exploiting properties of particular payo� distributions �e�g�� the properties associated with
Gaussian distributions��

We could also have done these calculations with a discounting factor included� For
geometric discounting with �  �� which weights the near future more importantly than the
distant future� we would expect the greedy algorithm to be optimal for even larger ranges
of P� However� in mapping the bandit problem to optimization where we are interested
in extremal values the proper discounting might be that which strongly weights extremal
payo�s while largely ignoring all the others� In this case the discounting is far from uniform
and we might expect a greedy strategy to perform very poorly indeed� In this situation it is
not at all clear how relevant the present bandit model is to optimization�

Before we address these drawbacks by presenting a bandit model more directly related to
issues of importance in optimization� we turn to a previous analysis of this bandit problem
as it relates to genetic optimization algorithms�

� Previous analysis of bandits and genetic algorithms

The bandit problem analyzed in this paper has been invoked by Holland �
� as one of the
theoretical motivations for genetic optimization algorithms� Genetic algorithms are opti
mization techniques loosely based on biological metaphors where a population of candidate
solutions �breeds� with each other to produce a new and hopefully improved population�
We make two points regarding Holland�s analysis in this section� We point out a fatal �aw
in Holland�s analysis and its resultant �supposed� justi�cation for genetic algorithms� Then
we demonstrate how poorly Holland�s genetic algorithmoriented strategy performs when
compared to even the most simple of alternative allocation strategies�

Holland�s work considers the case of m total pulls with no discounting� Though he states
that �the object ��� is to discover a procedure for distributing an arbitrary number of trials
��� so as to maximize the expected payo�� he goes on to restrict himself to a severly limited
class of strategies� Only strategies which allocate n pulls each to arms � and � and then
assign the remaining m� �n pulls to the observed best arm are considered� �It is not at all
clear why one should believe Holland�s assertion that results concerning such a limited class
of strategies should have implications about the optimal strategy for multiarmed Gaussian
bandits��

Given this class of strategies� Holland seeks to determine n�� the value of n which opti
mizes the expected payo� within this class of strategies� In �
� he �nds

n� � b� ln

�
m�

��
b� lnm

�

where b � ������ � ��� and �� is the � associated with the higher mean� ��� This result
seems very odd since n� does not depend upon ��� After all� if �for example� �� � � a single
pull of either arm categorically determines which arm is which while if �� is larger more work
is needed to identify the arms� So the fact that Holland�s result is independent of �� is ipso
facto reason to believe it is wrong�

��



This questionable nature of Holland�s result can be understood by going over Holland�s
calculation carefully� The problem is that� unfortunately� he makes a serious mathematical
error early in his calculation� an error that leads directly to his incorrect result� This error
is as follows�

Holland calculates the expected loss in net payo� that would result were we to pull the
arm observed �based on the initial �n pulls� to have the lower mean for the remainingm��n
pulls� He then uses this to determine n�� He calculates this expected loss as �m�n�j�����j�
However� this quantity is the unconditioned expected loss� it is not the loss conditioned on
the information available after the �n pulls� The proper quantity to calculate is instead the
expected loss conditioned on the fact that the arm being pulled in the remaining m��n pulls
was observed to have the higher payo� in the �rst �n pulls� This quantity will in general be
much smaller than the unconditioned loss� and may actually even be negative� indicating a
gain from using the arm which appears to have a lower mean% �For example� appropriate
values of P can result in such a phenomenon�� Indeed� intuitively� if P � � or � �something
Holland never precludes�� why wouldn�t the proper conditioned expected loss be minimized
by having n� � �#

We now sketch how a proper calculation leads to the determination of n�� We begin by
writing the expected payo� as

E�pjm�n� � n��� � ��� �

�m� �n�
Z
d�p�d�p�

X
g

�P ��� � ����g��� � P ��� � ����g����P �gj�p�� �p�� n�P ��p�� �p�jn�
����

where �p� and �p� are the nvectors of payo�s for arms � and � respectively in each one�s �rst
n pulls� g labels the arm selected at the decision point� and the probability P ��p�� �p�jn� is
given by

Qn
i��

P
� P �p�i j�� ��P �p�i j�� ��P ���� The arm pulled at the decision point P �gj�p�� �p��

is the only undetermined quantity for the class of strategies Holland considers� If we follow
Holland and select the observed best arm we have

P �gj�p�� �p�� n� � 	�g � �� �

�
nX
i��

�p�i � p�i �

�
� 	�g � �� �

�
nX
i��

�p�i � p�i �

�

where ���� is the Heaviside step function� Substituting this result into Equation ���� and
doing all integrations leaves E�pjm�n� as a function of m and n alone� It is this function
which should be maximized with respect to n to determine n� � argmaxnE�pjm�n�� We will
not undertake that calculation here since nothing interesting can be learned from doing so�
Holland does not use this strategy �rather he uses what he argues is a good approximation
to it�� nor is this strategy optimal�

Although determining the optimal strategy in practice appears to be quite di�cult� in
Holland�s problem it is straightforward to determine the greedy strategy� One can then use
that greedy strategy"a strategy with only exploitation and no exploration at all"to see
how well Holland�s strategy performs� It turns out that Holland�s strategy performs quite
poorly even in comparison to the greedy strategy� To see this consider the case of m � ���
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Figure �� Monte Carlo determination of expected payo�s E�pjm � ���� for ��� pulls and
P � ��� for both greedy strategies �top surface� and geneticalgorithmlike strategies �bottom
surface��

pulls with P � ��� �Holland also focussed on P � ����� We ran Monte Carlo simulations
to estimate the expected payo�s for this scenario� E�pjm � ����P � ����� The results are
presented in Figure �� For no values of �� or �� does Holland�s strategy perform better than
the simple greedy strategy� �As an aside� note that because Equation ���� for n� contains ��
but not ��� the payo�s for the geneticalgorithmlike strategy are not symmetric about the
line �� � ����

The implications of this for genetic algorithms are very strong� genetic algorithms are
based on the premise that one should engage in exploration� yet for the very problem that
Holland invokes to justify genetic algorithms� the strategy of not exploring at all performs
far better than Hollandstyle ��geneticalgorithmlike�� exploring algorithms� Of course�
this does not mean that one should never explore when performing optimization� Rather it
means that Holland�s argument justifying exploration is �awed� �In fact it has been proven
that there is no optimization technique that works better than any other� across the set of
all optimization problems� and in this neither using exploration nor not using exploration is
a priori preferable� See �����

One reason that Holland�s strategy performs so poorly is that it makes very poor use of
data in making its decisions� After all� in Holland�s strategy there is only a single decision
point� In this regard it is unlike most e�cient optimization methods� Indeed� even the
greedy strategy described earlier makes a decision after every pull� Holland was not unaware
of this shortcoming in his strategy� he himself suggests that his strategy might be improved
be having a number of decision points separated by an exponentially increasing number
of pulls� This will do little to alleviate the problem though because during exponentially
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long periods the strategy is committed to a single arm in spite of what new data might
be indicating� And in any case� as proven above� Holland�s strategy is based on fallacious
mathematics�

	 A better bandit

We have seen how deceptively di�cult the �armed bandit problem is� Due to this di�culty�
analytic insights into optimization through a study of this bandit problem will be hard to
obtain� Moreover� in some of the cases where we have been able to obtain results� the
greedy algorithm is optimal� indicating that in those cases there is no reason to explore to
gain information� In contrast� it is rarely the case in realworld optimization that greedy
algorithms are optimal� Usually there is some bene�t to exploring� because even though the
short term payo� might be lower� with such a strategy there is the potential for very high
longterm payo�s� More concretely� in practice it is usually the case that a good optimization
algorithm will in some circumstances make a decision whose associated payo� distribution
has low mean� as long as the distribution has a very long tail extending into the high payo�
region�

In this section we present an improved bandit model that matches realworld optimization
better than the Hollandstyle bandit problem discussed so far� This new bandit problem is
also analytically simpler than the Hollandstyle problem� In sum� this new problem has none
of the shortcomings of the Holland problem discussed above� and it is straightforward to use
it to investigate the tradeo� between exploration and exploitation� Bandit problems similar
to the one presented in this Section have been studied previously �	� though almost always
for Bernoulli payo�s�

To minimize the di�erences from the Hollandstyle bandit problem already analyzed we
consider the case where all payo� distributions are again Gaussian� However� in the present
case we assume that arm � is characterized by parameters �� �i�e�� we know beforehand the
payo� distribution of arm ��� but that arm � is characterized by either parameters �� or ���
For simplicity we assume that �� � �� � �� The goal as always is to maximize the total
payo� over m pulls� We do not include any discounting� though it would be simple to do so�
There is a prior probability P that arm � has parameters given by �� and a prior probability
�� P that arm � has parameters ��� Without loss of generality we assume that �� � ���

For simplicity� rather than investigate the optimal algorithm� we consider pseudooptimal
strategies� S� where S pulls arm � n times� and then based on the n dimensional payo� vector
�p deduces which of �� or �� has the higher posterior probability� S then chooses either �
or � depending on this posterior� and pulls that arm for the remaining m � n pulls� �Note
the similarity of this class of strategies to Holland�s strategies for his bandit problem�� We
assume that P�� � �� � P���  �� so that a greedy strategy� G� would always guess � for
all m pulls with an expected payo� of E�pjG� � m���

We now determine the payo� of the pseudooptimal strategy� S� The calculation parallels
that found for the �armed bandit� We de�ne the n dimensional vector �p to be the �rst n
payo�s and �q to be the m � n dimensional vector of the remaining payo�s� We also let g
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label the choice of arm after the n pulls� and let �� run over the two possibilities for arm ��
With this notation the expected payo� is

E�pjS� m� n� �
Z
d�p d�q

X
g���

�
nX
i��

pi �
m�nX
i��

qi

�
P ��p� �q� ��� gjS� m� n�

�
Z
d�p d�q

X
g���

�
nX
i��

pi �
m�nX
i��

qi

�
P ��qjg� ��� m� n�P �gj�p� ���P ��pj���P ����

We split the sum into two terms� one for �p and one for �q and obtain�

E�pjS� m� n� �
Z
d�p
X
��

nX
i��

piP ��pj���P ���� �

Z
d�p

X
g���

�Z
d�q

m�nX
i��

qi

�
P ��qjg� ��� m� n�P �gj�p� ���P ��pj���P ����

Both terms in the above equation can be simpli�ed since the i payo�s are independent�
P ��pj��� �

Qn
i�� P �pij��� and P ��qjg� ��� m� n� �

Qm�n
i�� P �qijg� ���� This means we obtain

the same result for each pi in the associated sum pi and the same result for each qi in its
associated sum� Thus we can write the above as

E�pjS� m� n� � n
Z
dp

X
g���

p P �pj���P ���� �

�m� n�
X
g

Z
dq qP �qjg�m�N� ���

Z
d�p
X
��

P �gj�p� ���P ��pj���P ����

� n�P��� � ��� � ��� � �m� n�
�
��P� � ��P

�
c � ��P

�
i

�
� n�P��� � ��� � ��� � �m� n�

�
�� � ��� � ���P

�
c � ��� � ���P

�
i

�
where P �

i is the probability that S deduces the payo� distribution for � incorrectly and
chooses arm �� P �

c is the probability S it deduces it correctly and chooses arm �� and P � is
the probability that S selects arm �� �The fact that these three probabilities must sum to �
has been used in deriving the last line�� Explicitly these probabilities are�

P �
c �

Z
d�pP �g � �j�p�P ��pj���P ���� � P

Z
d�pP �g � �j�p�P ��pj���

P �
i �

Z
d�pP �g � �j�p�P ��pj���P ���� � ��� P�

Z
d�p P �g � �j�p�P ��pj���

To continue we next must calculate P �g � �j�p�� After obtaining the n dimensional payo�
vector �p from arm � we can calculate the probability the the arm � is associated with either
�� or ��� This probability is then used to determine g� To evaluate this probability we use
Bayes� theorem�

P ��� � ��j�p� � �

N P ��pj�� � ���P ��� � ��� �
�

�
p
�
��nN exp ����

����
��P

P ��� � ��j�p� � �

N P ��pj�� � ���P ��� � ��� �
�

�
p
�
��nN exp ����

����
����� P�

��



where ��
i �

Pn
j���pj � �i�

� and i � � or �� and N � P ��� � ��j�p� � P �� � ��j�p� is a
normalization constant�

Our strategy is to stick with arm � for our remaining m� n pulls if in light of our data
�p we believe it has a higher expected payo� than arm �� i�e�� if ��P ��� � ��j�p� � ��P ��� �
��j�p� � ��N � Rather than evaluate this condition� which is analytically messy� we simplify
once again� and consider an algorithm S � that uses an alternate criterion for choosing g� �As
shown below� even this simpli�ed algorithm has much better performance than the greedy
algorithm G� in contrast to the situation with Holland�s algorithm and his bandit problem��

The strategy S � chooses to stick with arm � simply if it is more likely� given the data�
that arm � is described by the parameters �� rather than the parameters ��� we remain with
arm � if P ��� � ��j�p� � P ��� � ��j�p��

With this new strategy the normalization constant� N � no longer matters� Substituting
in for the relevant probabilities we �nd the that S � says we should continue with arm � if

exp ����
� � ��

�����
�� �

�� P
P

Accordingly� under this strategy�

P �g � �j�p� � �

�
exp ����

� � ��
�����

��� �� P
P

�

where as usual ���� is the Heaviside function�
To calculate the expected payo� E�pjS �� m� n� we need to evaluate the probabilities

P �
i and P �

c introduced earlier� These probabilities depend on the boundaries in �p space
where the choice of S � for g changes� Thus we are lead to consider the boundary where
exp ���

� � ��
����

�� � ���P��P� i�e�� where ��
����

� � ��� ln����P��P�� As a function of �p� this
equation describes a hyperplane in an ndimensional space with normal vector equal to �� �
��� �� � � � � ��� We translate and rotate our coordinate axes so that the origin lies at ��� � ��

��
and �� lies in the $r� direction� ��� �� �� � � � �� The length of the vector ��������� is

p
n�������

so that in this new coordinate system ��������� � ��� � �
p
n�������� �� � � � � ��� The hyper

plane intersects the $r� axis at �z� �� � � � � �� where z���z�pn�������
� � ��� ln���� P��P���

Solving for z we �nd

z �
��� ln ���� P��P�� n��� � ���

�

�
p
n��� � ���

In these coordinates P �
c is simple to calculate� With �r an ndimensional dummy variable�

we get

P �
c � P

Z
d�r

exp ����r � ����
������

�
p
�
��n

��r� � z� � P
Z �

z
dr�

exp
h
�
�
r� �pn��� � ���

��
����

i
p
�
�

�
P
�
erfc


z �pn��� � ���p

��

�
����
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Figure �� Gain in payo� of the pseudooptimal algorithm S � over a greedy algorithm for
n � ��� and m � ��� and various prior probabilities� P� All P values plotted obey P�� �
��� P��� � �� so that the greedy strategy always guesses arm ��

Similarly we can calculate P �
i as

P �
i � ��� P�

Z
d�r

exp ����r � ����
������

�
p
�
��n

��z � r�� � ��� P�
Z z

��
dr�

exp ��r�������p
�
�

�
�� P

�
erfc

 �zp
��

�
��
�

Using Equations ���� and ��
� in Equation ���� we have an expression for the expected
payo� of the pseudooptimal algorithm S �� which can be compared to the expected payo�
for the greedy algorithm� G� In that the greedy algorithm never explores� this allows us to
investigate the tradeo� between exploration �done by S �� and pure exploitation �done byG��

The expected payo� of S � is

E�pjS �� � n��P��� � ��� � ��� � �m� n�

�
�� �

P��� � ���

�
erfc


z �pn��� � ���p

��

�

�
��� P���� � ���

�
erfc

 �zp
��

��

A plot of the expected gain of the pseudooptimal algorithm S � over the greedy algorithm"a
plot of how much exploration can help"is presented in Figure �� Parameters are chosen so
that the greedy algorithm always guesses arm �� Note that as P increases� it becomes more
likely that �� � ��� and the pseudooptimal algorithm does increasingly well� But even when
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it is less likely that arm � has the higher mean� our pseudooptimal algorithm S � can still
outperform the greedy algorithm� depending on the value of ��

Using our expression for the expected payo� of S � we could also determine the optimal
amount of time� nopt� to spend gathering information given a �xed number of total pulls� m�
This would be done by maximizing our expression for the expected payo� of S � with respect
to n� Such an optimization would improve the performance of S � over the greedy algorithm
even further�

Such a calculation is very much along the lines of what we would like to accomplish in
optimization� After all� in realworld optimization we are given some �xed time in which
to locate an extremal point and we would like to calculate the optimal balance between an
exploratory phase and an exploitive phase so as to locate a good point� However performing
such a calculation is beyond the scope of this already lengthy paper�


 Discussion and Conclusions

We have considered a much simpli�ed bandit problem in the hopes of learning about the
exploration�exploitation tradeo� important in optimization� But as Section 
 amply demon
strated� even for the deceptively simple bandit problem that we consider� it is very di�cult
to solve for the optimal strategy� Despite this though� it must be kept in mind that in
corporating domain knowledge in constructing e�ective optimization strategies �as we have
tried to do here� is vital� Indeed� theorems exist ��� showing that when no domain speci�c
knowledge is utilized all optimization algorithms perform equally poorly on average�

Previous analyses of this bandit problem have been used as theoretical justi�cation for
genetic optimization algorithms� We have demonstrated that the Holland�s analysis of the
bandit problem is �awed and its connection to the supposed optimality of genetic algorithms
is seriously called into question�

Because of the di�culty of this bandit problem there is much room for future work� In
particular� it would be very interesting to determine the �phase diagram� of ranges of relevant
parameters for which the greedy strategy is optimal� Even if analytic progress cannot be
made in this direction Monte Carlo simulations could go a long way towards answering this
question� We have not spent alot of e�ort on the e�ects of di�erent discounting schedules�
More detailed work on the e�ects of discounting schedules would prove very illuminating
and presumably increase the range over which the greedy algorithm is optimal�

Given these di�culties with our original bandit problem� we considered a modi�ed one
that is not only simpler� but also exhibits more interesting behavior from an optimization
point of view� Our modi�ed bandit problem can be extended in a number of interesting ways
to more closely mimic the kinds of problems that occur in real optimization�

The algorithm S � we investigated for our modi�ed problem naturally suggests an im
proved algorithm"a recursive version of S �� In the recursive version we imagine applying
the same criterion used to determine the single guess to be made for all pulls following the
preliminary explorative phase �i�e�� all pulls following the �rst n pulls� to pulls both during
the exploratory phase and after it� This should further increase total expected payo�� and
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thereby result in an even more pronounced advantage to exploration� �Such advantage is
very hard to come by in our original bandit problem�� It would also be interesting to explore
the e�ects of discounting schedules on this bandit problem�
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