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Abstract
Dynamic models of molecular networks and pathways enable in silico evaluations of the
consistency of proposed interactions and the outcomes of perturbations as well as of hypotheses
on system-level structure and function. We postulate a continuous model of the activation
dynamics of the ETHYLENE RESPONSE FACTOR 1 (ERF1) gene in response to ethylene
signaling. This activation elicits the response of the PLANT DEFENSIN 1 (PDF1) gene, which
also responds to jasmonic acid, and the inhibition of the PUTATIVE AUXIN RESPONSIVE
FACTOR 2 (ARF2) gene, that also responds to auxin. Our model allows the effect of different
ethylene concentrations in eliciting contrasting genetic and phenotypic responses to be evaluated
and seems to consider key components of the ethylene pathway because the ERF1 dose-response
curve that we predict has the same qualitative form as the phenotypic dose-response curves
obtained experimentally. Therefore, our model suggests that the phenotypic dose-response curves
obtained experimentally could be due, at least in part, to ERF1 changes to different ethylene
concentrations. Stability analyses show that the model’s results are robust to parameter estimates.
Of interest is that our model predicts that the ethylene pathway may filter stochastic and rapid
chaotic fluctuations in ethylene availability. This novel approach may be applied to any cellular
signaling and response pathway in plants and animals.

Running title:
Arabidopsis ethylene signaling system; ethylene pathway cross-talk; ethylene pathway noise filtering properties.
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Hormones are key signaling molecules for animal and plant cell function and they
generally have non-linear responses to environmental factors. Also, different hormone
pathways are not independent from each other. Non-linear dynamic models are thus
necessary tools for understanding how living cells integrate and respond to various
hormone pathways that imply the concerted action of multiple genes and molecules. As data
on the plant experimental system, Arabidopsis thaliana, accumulate testable models to study
the dynamic behavior of hormone signaling and response pathways are becoming possible
and necessary. In this paper we present a model that simulates the activation response of a
gene array involved in the A. thaliana ethylene signaling and response pathway in the face
of different concentrations and temporal regimes of this key plant hormone. This model is
grounded on available experimental data for the ethylene pathway, and enables in silico
evaluations of the consistency of proposed interactions and the outcomes of perturbations,
as well as novel hypotheses for this system behavior. The response genes considered are also
targets of pathways of other important plant hormones (jasmonic acid and auxin) and thus
provides a first approximation to studying how hormone pathways are interconnected via
shared nodes and provides a novel mechanistic explanation for some observed phenotypes.
Our model recovers observed results and it is used also to propose novel hypotheses that
can be tested experimentally. Interestingly, our model predicts that the ethylene pathway
may filter stochastic and rapid chaotic fluctuations in ethylene availability. The approach
proposed here may be adapted to other cellular signaling and response pathway in plants
and animals.

Introduction
Understanding the behavior of complex and integrated biological systems and the

consequences of intervening in them present serious challenges to contemporary biologists.  One
of the requirements to meeting these challenges is the development and application of dynamic
models. Boolean or discrete network models which focus on the nonlinear interactions between
functions of gene expression or the activity of their products, but consider variables, functions
and parameters that can take a limited number of integral values (0 and 1 in the simple Boolean
case), have been used for modeling complex regulatory networks of cell or segment identities in
animals and plants. Recent studies support their suitability and suggest that it is the topology of
these complex networks and not the precise form of the kinetic functions of gene activities and
interactions which underlies developmental identities in a predictable and robust manner and that
such robustness has important functional and evolutionary significance (Mendoza, L. & Alvarez-
Buylla, 2000; Von Dassow, Meir, Munro & Odell, 2000; Albert & Othmer, 2003; Espinosa-Soto,
Padilla-Longoria & Alvarez-Buylla, 2004; Perkins, Hallett & Glass, 2004). 

In contrast, Boolean or discrete modeling might be limited to address important aspects of
the cellular mechanisms of signal perception and response. In this paper we use a continuous
model to analyze the dynamic behavior of genes that are common targets of different hormone
pathways in response to different concentrations of ethylene that is an important phytohormone.
The model presented here is a useful tool to further our understanding of the interconnections
among signaling pathways via common nodes and the long-held observation that different
concentrations of the same hormone yield contrasting gene expression and phenotypic effects.
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We also explore the consequences of different temporal regimes of a signal on genetic responses
within a cell.

Signal transduction pathways are complex and dynamic systems by which biological cells
perceive and respond to environmental and internal cues. However, to date, no theoretical model
has linked the intensity and temporal regime of the external signal that triggers a particular signal
transduction pathway to the activation of specific genes that may be the key in orchestrating
cellular responses and integrating several response pathways to the original signal.

In the model plant Arabidopsis thaliana, an important signaling pathway in response to
ethylene, a gaseous plant-specific growth regulator hormone, is implicated in the triple response
of etiolated seedlings (Kieber, 1997; Chang. & Stadler, 2001; Chang, 2003; Guo & Ecke, 2004)
and in several key aspects of plant development such as seed germination, cell elongation, fruit
ripening, and organ senescence and abscission (for recent reviews: Guo & Ecke, 2004; Stepanova
& Alonso, 2005). The pleiotropic effects of phytohormones and the fact that genetic and
phenotypic effects of plant hormones are concentration-dependent have made functional analyses
of plant hormones very complicated. In addition, recent experimental evidence suggests that all
or most hormone pathways are interconnected in complex ways.

In this paper we use the ethylene signaling pathway to exemplify an approach that links
signaling regimes and cellular genetic responses. Ethylene is the smallest of the phytohormones
and we propose a specific dynamic continuous model for a single-cell response pathway to
ethylene in Arabidopsis roots. We explicitly consider the probability that specific genes are
activated or inactivated in response to different concentrations and temporal regimes of ethylene
signaling. We explicitly evaluate the effects of varying concentrations of ethylene on the
probability of activating ETHYLENE RESPONSE FACTOR 1 (ERF1), which could, in turn,
activate genes like PLANT DEFENSIN 1 (PDF1), part of the jasmonate acid pathway (Ton et al.,
2002; Brown et al., 2003) or inhibit genes like the PUTATIVE AUXIN RESPONSIVE FACTOR
2 (ARF2) (Lorenzo et al., 2003; Li et al., 2004) which responds to auxin. The model could
provide a possible explanation for the experimental dose-response curves obtained in Chen &
Bleecker (1995). Our model predicts that the phenotypic response curves obtained by these
authors for mutants of upstream signaling components could be due, at least in part, to ERF1
changes to different ethylene concentrations. In fact, the ERF1 dose-response curve that we
predict has the same qualitative form as the phenotypic dose-response curves obtained by Chen &
Bleecker (1995), and is robust to parameter fluctuations. It also shows that the response of the
three-gene array yields a continuous probability distribution for the activation states of the three
genes for any given ethylene concentration. This probability distribution may be interpreted as
the plastic responses of Arabidopsis root cells to the environmental factors that trigger ethylene
signaling and response. Dynamic mechanisms that underlie plastic cellular responses may be
particularly important in plants that are sessile and rely on plastic developmental and growth
responses to contend with changing environmental conditions.

We also simulated different temporal regimes of ethylene signaling and found that gene
expression fluctuated when ethylene signaling was simulated as an ordered periodic temporal
pattern. However, when a chaotic temporal ethylene signaling pattern was assumed, the
probability of activation of the three genes fluctuated and tended to a chaotic attractor only when
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the fluctuations were slow, suggesting that the system is unable to respond to input signals that
fluctuate very rapidly. Stochastic ethylene fluctuations were only reflected in stochastic
expression fluctuations of the gene directly affected by ethylene (ERF1), suggesting that the cell
translational machinery may filter out stochastic fluctuations. The novel predictions of this study
may extend to other signaling and response pathways in both plants and animals.

Model for the ethylene response
Two antagonist modules have been documented for the ethylene signaling and response

pathway (Guo & Ecke, 2004; Fig. 1). In the first, inside the endoplasmic reticulum (ER), a
MAPK module, in which the MAPKKK molecule is the constitutive triple response 1 (CTR1)
molecule (a Raf-like serine/threonine kinase (Guo & Ecke, 2004)), is constitutively active when
either one of the ethylene receptors is active; this causes EIN2 (ETHYLENE INSENSITIVE 2)
molecule to be inactive (Bleecker et al., 1998). In the second, a module in the nucleus membrane
is activated when ethylene binds to its receptors. In the latter case, EIN2 is activated, thereby
allowing activation of the EIN3 transcription factor, which then binds to the ERF1 promoter
(Guo & Ecke, 2004). ERF1 binds to GCC boxes located in the promoter regions of various genes,
such as PDF1 . Also, ethylene negatively regulates ARF2 protein accumulation in a
HOOKLESS1 dependent manner (Lorenzo et al., 2003; Li et al., 2004; Guo & Ecker, 2004).

Fig. 1. The ethylene pathway consists of two antagonist modules. The first consists of a  MAPK module that is
constitutively activated when either one of the ethylene receptor types is constitutively active. When the MAPK
module is activated, the EIN2 molecule is inactive. The second module is located in the cell nucleus and is activated
when the ethylene molecule binds to its receptor. In this case, the EIN2 molecule is activated, thereby allowing the
subsequent activation of the EIN3 transcription factor, which binds to the ERF1 promoter. In the final step, the
ERF1 transcription factor binds to GCC boxes located in the promoter regions of various genes, such as PDF1, and
inhibits genes like ARF2, subsequently producing the ethylene response in the plant root. The dashed arrow only
indicates the positive effect of the inhibition of the ethylene receptor on the activation of EIN2 and not a direct
mechanism of activation.
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We use ordinary differential equations and two-state Markov chains  to model: (1) the
activation dynamics of ERF1 in response to ethylene signaling, which in turn elicits the response
of PDF1 that also responds to jasmonic acid, and (2) the HLS1-dependent inhibition of ARF2, a
gene that also responds to auxin. The activation of PDF1 induces the transcription of a defensin,
protein which is also part of the jasmonate-dependent defense response (Ton et al., 2002; Brown
et al., 2003), while ARF2 regulates the activity of the auxin signaling pathway and is involved in
the light-dependent seedling apical hook development. Exposure to light decreases HLS1 protein
levels and evokes a concomitant increase in ARF2 accumulation (Li et al., 2004).

We present a detailed derivation of the mathematical model of the ethylene response in
the Appendix I of this manuscript, and a summary of the eeeqqquuuaaatttiiiooonnnsss,,,   iiinnniiitttiiiaaalll    cccooonnndddiiitttiiiooonnnsss   aaannnddd
pppaaarrraaammmeeettteeerrr   vvvaaallluuueeesss   aaarrreee   ppprrreeessseeennnttteeeddd   iiinnn   Table 1 shown below. The equations were numerically
integrated using the predictor-corrector Euler method with a fixed time step of 0.04s.  We present
the stability analysis of the model in the Appendix 2 of the manuscript.

Table 1. One-cell ethylene model: differential equations and parameters
 (ET is given in µM).

1. Equations for the inactivation of the ethylene receptor:

  

dETR(− )

dt
= κ

1
(ET − ETR(− ) ) ETR

T
− ETR(− )( ) −κ 2

ETR(− )

ETR
T
= ETR(+ ) + ETR(− )

2. Equations for the CTR1 module:

  

dCTR1*

dt
= κ

3
ETR

T
− ETR(− )( ) CTR1

T
− CTR1*( ) −κ 4

CTR1*

  

dMAPKK *
dt

= κ
5
CTR1* MAPKK

T
− MAPKK *( ) −κ 6

MAPKK *

  

dMAPK *

dt
= κ

7
MAPKK * MAPK

T
− MAPK *( ) − κ

8
MAPK *

3. Equations for the EIN2 module:

  

dEIN 2
(− )

dt
= κ

9
MAPKc * EIN 2

T
− EIN 2

(− )( ) − κ10
EIN 2

(− ) ETR
(−)

ETR
(−) + β

  

EIN 2
T
= EIN 2(+ ) + EIN 2(− )

dEIN 2(+ )

dt
= − dEIN 2(− )

dt

  

dEIN 3*

dt
= κ

11
EIN 2(+ ) EIN 3

T
− EIN 3*( ) −κ12

E1N 3*

  

dmRNA
dt

=
pon (t)V

trans
mRNA

mRNA+κ
15

−κ
16

mRNA

  

dERF1
dt ER

= κ
17

mRNA− D
erf 1

ERF1

  

dERF1
dt nucleus

= D
erf 1

ERF1n −κ
18

ERF1n

4. Equations for the activation of ERF1, PDF1 and ARF2
genes:

  

dp
ERF1

off

dt
= −κ

13
N

ein3
p

ERF1

off +κ
14

p
ERF1

on

dp
ERF1

on

dt
= κ

13
N

ein3
p

ERF1

off −κ
14

p
ERF1

on

N
ein3

= 602.3V
nucleus

EIN3*

  

dp
PDF1

on (t)

dt
= κ

19
N

ERF1n
p

PDF1

off (t) −κ
20

p
PDF1

on (t)

dp
PDF1

off (t)

dt
= −κ

19
N

ERF1n
p

PDF1

off (t) +κ
20

p
PDF1

on (t)

  

dp
HLS1

on (t)

dt
= κ

21
N

ERF1n
p

HLS1

off (t) −κ
22

p
HLS1

on (t)

dp
HLS1

off (t)

dt
= −κ

21
N

ERF1n
p

HLS1

off (t) +κ
22

p
HLS1

on (t)
1602.31ERFnnucleusNVERF=
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Table 1. One-cell ethylene model: differential equations and parameters
 (ET is given in µM). (Continued)

Results
Probability of ERF1, PDF1 and ARF2 activation as a function of ethylene concentration.

In the ground state of a root cell in the absence of ethylene both ETR receptors are
activated. In our model (Appendix I: Eqn. [2] of Model; Section 1 of Table 1), this state
corresponds to ETR(-) = 0 and ETR(+) = ETRT = 0.3µM. For this concentration of activated ETR,
the system reaches, following a brief transient period, a steady state in which CTR1 = 0.28µM,
MAPKK = 0.18µM and MAPK = 0.19µM (Appendix I: Eqns. [3], [4] and [5] of Model; Section 2
of Table 1). This set of values for the MAPK cascade represents the ground state in which the
system remains steady in the absence of ethylene (Chang, 2003; Guo & Ecke, 2004).

Conversely, in the presence of ethylene, our model predicts that there is a threshold value
of ethylene concentration above which the cascade is completely inactivated (Fig. 2, obtained
from the numerical solution of Eqns. [3], [4] and [5] of Model in Appendix I and section 2 of

5.- Adjust of MAPK concentration from ER to nucleus:

  

n
MAPK

= 5x10−21 MAPK *

MAPKc* = 1.908x1018 n
MAPK

Adjustment of  ERF1 concentration from ER to nucleus:

  

n
erf 1

= 5x10−21 ERF1

ERF1n = 1.908x1018 n
erf 1

6.- Initial conditions:

CTR1*(0) = 0.3µM          ERF1(0) = 0;
ETR(-) (0) = 0                  ERF1n(0) = 0;

MAPKK*(0) = 0.5µM;  
  
p

PDF1

off 0( ) = 1;

MAPK*(0) = 0.5µM;    
  
p

PDF1

on 0( ) = 0;

EIN2(-)(0) = 0.005µM;  
  
p

HLS1

off 0( ) = 1;

EIN3* (0) = 0;               
();100onHLSp=

  
p

ERF1

on 0( ) = 0;

  
p

ERF1

off 0( ) = 1;

7. Parameter values:

κ1 = 5µΜ−1 s-1; κ2 = 0.0003s-1; κ3 = 3µM-1 s-1;
κ4 = 0.085s-1;κ5 = 9.196µM-1 s-1; κ6 = 4.598s-1; κ7 = 0.318µM-1s-1;
κ8 = 0.0954s-1; κ9 = 2µM-1s-1; κ10 = 0.005s-1;
κ11 = 5µM-1s-1;
κ12 = 0.005s-1; κ13 = 0.003s-1; κ14 = 0.09s-1; κ15 = 0.0001µM; κ16 =
0.0009s-1; κ17 = 0.1972s-1; κ18 = 0.198s-1; κ19 = 0.0025s-1 ;
κ20 = 0.61s-1 ; κ21 = 0.003s-1; κ22 = 0.65s-1;   _ = 6µM;
Vtrans = 0.000003µMs-1;  Derf1 = 0.99s-1; ETRT = 0.3µM;
CTR1T = 0.3µM; MAPKKT = 0.5µM;  MAPKT =0.5 µM;
EIN2T = 0.005µM; EIN3T = 0.005µM; Vnucleus = 524µm3.

8. Variables:
ETR = concentration of ethylene receptor in cell membrane; ET =
total concentration of ethylene outside the cell (control variable);
CTR1* = concentration of activated constitutive triple response1
protein; MAPKK* = concentration of activated mitogen-activated
protein kinase kinase; MAPK* = concentration of activated mitogen-
activated protein kinase; EIN2 = concentration of  ethylene
insensitive 2 protein; EIN3* = concentration of activated ethylene
insensitive 2 protein; mRNA = concentration of messenger RNA in
nucleus; ERF1 = concentration of ERF1 transcription factor; Nein3 =
number of activated EIN3 molecules in nucleus; Nerf1 = number of
activated ERF1 molecules in nucleus;   Vnucleus = nuclear volume;
nMAPK = number of moles of activated MAPK; M A P K c* =
concentration of MAPK in nucleus; nerf1 = number of moles of
activated ERF1 molecules; ERF1n = concentration of activated
ERF1 transcription factor in nucleus.   The symbol (+) means the
activated form of the corresponding receptor, while the symbol (-)
represents its inactivated form. The subscript T stands for the total
concentration of the corresponding molecule.
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Table 1). This value is ~1µL/L, and above this value the activity of the cascade in the ER falls
with increasing ethylene concentration. Thus, ethylene produces its effects even when the MAPK
cascade has not been completely inactivated. The inactivation of the cascade strongly depends on
the dynamical behavior of the ETR-CTR1 complex, as shown in figure 2B, in which we repeated
the above calculations in the absence of the MAPKK and MAPK components of the kinase
cascade, whose presence in the chain of reactions inside the ER has been put into doubt
(Stepanova & Alonso, 2005). In this case, neither the threshold for inactivation nor its
dependence on ethylene concentration is different to the ones found in cases in which the
MAPKK and MAPK components were considered.

Fig. 2. (A) Inactivation of the MAPK cascade by ethylene. The curve shows a threshold value of ethylene
concentration (~ 1µL/L) for the total inactivation of the cascade. Before this threshold value is reached, the
concentration of activated CTR1, MAPKK and MAPK slowly decreases, indicating that there is a range of ethylene
concentrations for which the root cells may exhibit a simultaneous activity of the MAPK cascade and the ethylene
response molecular machinery. (B) Inactivation of CTR1 by ethylene in absence of MAPKK and MAPK. This curve
shows a threshold value of ~ 1µL/L for the total inactivation of the kinase. This result indicates that the kinases
downstream CTR1 are required only to ensure the fidelity of the signal transmitted to EIN2.

In Fig. 3A we show how the probability that ERF1 is activated (“on” state), denoted
by  pERF1

on , changes as the concentration of ethylene increases, which is the first novel prediction

emerging from our model (calculated from the numerical solution of Eqn. [10] of the Model in
the Appendix I; see also Section 4 of Table1): the probability that ERF1 is activated as a
function of the concentration of ethylene slowly increases following a sigmoid curve.

This conclusion is unaffected by removing the equations for the MAPKK and MAPK
activation from the set of equations of the model (see Section 2 of Table 1). In Fig. 3B we show
the probability of activation of the ERF1 gene as a function of ethylene concentration, without
the incorporation of the two kinases. As is clearly observed the curve practically has no variations
with respect to curve 3A, indicating that the above conclusion is independent of the form in
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which the activation of the EIN2 molecules is controlled: directly by CTR1 in a one-step process
or by a three-step process which includes the MAPKK and MAPK molecules.

Fig. 3. (A) Dose-response curve for ERF1 as a function of ethylene concentration. (B) Dose-response curve for
ERF1 as a function of ethylene concentration in the absence of MAPKK and MAPK in the chain of reactions of the
model.

Thus, the model presented here provides testable hypotheses on how environmental
perturbations perceived by a root cell via changes in ethylene concentrations affect the activation
response of specific genes.

We may adjust the obtained dose-response curve predicted by our theoretical model to a
Hill function as follows:

  
p

ERF1
on =

0.9924ET 0.97

ET 0.97 + 0.46
  with a R2 = 0.9942     [M.1]

in which the Hill coefficient is 0.97 ± 0.029. This range contains the value of 0.99 reported by
Chen and Bleecker (1995) for the experimentally documented dose-response curve of the wild-
type Arabidopsis root to ethylene and strongly suggests that the assumptions made in the model
for both parameters and functions capture important key aspects of the actual system operating
inside plant cells. A Hill coefficient of approximately 1 indicates that it would not be adequate to
model the activation kinetics of ERF1 with a Boolean function because there is a wide range of
ethylene concentrations values - from 0.01µL/L to 10µL/L - for which the probability of the state
on of the gene takes values that are less than 1 but not close enough to zero to postulate an “all”
or “none” response (Figs. 3A and 3B).
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Equation [M.1] of main text (see above) also indicates that the genetic machinery of
ethylene response is switched on even when the MAPK cascade is still in its activated state.
Thus, for a wide range of ethylene concentrations, Arabidopsis cells should have a mix of states
induced by both signaling pathways. In Figure A1 of the Appendix I (Model section), we show
this in the phase portrait generated by the plot of activated CTR1* vs.   pERF1

on .

According to Eqns. [10], [12] and [13] of the Model presented in the Appendix I, once1onERFp
can be tabulated for each ethylene concentration, we can calculate the amount of ERF1

protein that can be produced in the ER in terms of 
1onERFp

, which determines the translation rate of

ERF1 in the following form:

  v(t) = p
ERF1
on (t)V

trans
                    [M.2]

where Vtrans is the maximum rate of translation of the gene (Section 7 of Table 1 and  Eqn. [12] of
Model in Appendix I), assuming that the overall rate of translation of ERF1 can be modeled with
a Michaelis-Menten type of equation.

In Fig. 4 we show the amount of ERF1 protein that accumulates in the nucleus as a
function of the ethylene concentration. As observed in this figure, the model can also be used to
predict the concentration of ERF1 protein accumulated in the nucleus as a function of the
ethylene concentration and this could, in principle, be tested experimentally.

Fig. 4. Amount of ERF1 protein accumulated in the nucleus for two different concentrations of ethylene. As the
concentration of the phytohormone is increased the rate and amount of ERF1 accumulation is also increased.

According to the experimental evidence, ERF1 continuously moves from the ER into the
nucleus (by some yet uncharacterized mechanism), activating a series of genes - for example,



11

PDF1 - and inactivating others, such as ARF2.  From the value of the nuclear concentration of
the ERF1 protein (Section 5 of Table 1 and Fig. 4) it is possible to calculate the respective
number of ERF1 molecules in the nucleus (Section 4 of Table 1). With this value, Eqns. [15] and
[16] of the Model (Section 4 of Table 1 see also Appendix I) can be used to obtain the
probabilities that the PDF1 and ARF2 genes are active (in the “on” state) as a function of
ethylene concentration. Therefore, we can summarize the state of the three genes by a point
(  pERF1

on ,  pPDF1
on ,  pARF 2

on ) in a three-dimensional probability space, in which each point represents the

activity configuration of the array for each ethylene concentration.  The succession of the values
of (  pERF1

on ,  pPDF1
on ,  pARF 2

on ) constitutes the trajectory of the gene array in this probability space. In

Fig. 5, we show three possible steady-state configurations of the array for three different
concentrations of ethylene.

Fig. 5. (A) Steady-state activity configuration of the array conformed by the ERF1, PDF1 and AXR2 genes in the
absence of ethylene. This configuration corresponds to the point (0, 0, 1) in the probability space for the array. (B)
Activity configuration of the array in the presence of less than 0.24µL/L ethylene. This configuration corresponds to
the point (0.35, 0.58, 0.50) in the probability space for the array. (C) Activity configuration of the array in the
presence of less than 24µL/L of ethylene. This configuration corresponds to the point (0.98, 0.80, 0) in the
probability space for the array.

Filtering properties of the ethylene response system
A dynamic and continuous system such as the one proposed here for simulating a specific

signaling and response pathway (to a hormone in this case) enables us to predict the temporal
patterns of gene response to different temporal regimes of ethylene signaling. Such predictions
can be tested experimentally. We specifically set out to analyze the behavior of the three-gene
array considered in our system in response to different ethylene signaling regimes. The first step
was to study the dynamical response of the three-gene array to an ordered pattern of periodic
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variations in ethylene concentration. In order to characterize this kind of response, we used the
sinusoidal signal  ET (t) = 0.5+ 0.5sin(ωt) , where ET is the ethylene concentration. The response

of the ERF1 gene to this function is shown in Fig. 6A. It is clear from the figure that   pERF1
on  also

becomes periodic, showing a maximum and a minimum value for each value of ω. In every case,
the maximum probability for the on state of the gene is practically unaffected by the periodic
variations in the input signal. However, the minimum probability value is clearly affected, giving

rise to oscillations of   
p

ERF1
on

with a small amplitude for ω < 0.00001s-1 and ω >0.001s-1 and with a

larger amplitude in the interval between these values. As we have   ω = 2π / T , where T is the
period of the signal, the maximum response of the ERF1 gene to ET(t) increases in the interval of
T values between 0.35h (~20min) and 174h (0.00001s-1 < ω  < 0.005s-1). Figure 6B shows the
trajectory of the three-gene system in the probability space for the array that falls under the
fluctuations in ethylene concentration given by the function ET(t)  with ω = 0.00005s-1. This
graph shows the trajectory of the array towards a cycle following a transient response to the
input.

Fig. 6. (A) Values of 
  
p

max
on  and   pmin

on  for the ERF1 gene as a function of the angular frequency of function ET(t); the

number (1) indicates the minimum value of the response of ERF1. (B) Cyclic response of the three-gene array to the
periodic changing environmental conditions simulated by the function E(t).

If the model proposed here does indeed capture the key elements of the dynamic genetic
response of Arabidopsis cells to ethylene signaling elicited by changing internal or external cues,
then such a cycle can simulate the type of continuous genetic adjustments that may occur inside
Arabidopsis cells in response to periodic ordered environmental fluctuations. In turn, such
genetic responses may underlie the visible periodic changes in the plant following physiological
or even plastic morphological adjustments.
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These results lead to the question of how the system responds when the environmental
conditions consist of stochastic fluctuations. To simulate this situation, we represented the input
signal by non-Gaussian stochastic fluctuations in ethylene concentration between 0µM and 1µM
(24µL/L), with the ethylene concentration changing every 360s. As we show in Fig. 7, the

random fluctuations are reflected in the   pERF1
on  value but are practically absent in the probability

of the on state of the remaining genes. This results in the trajectory of the system in the
probability space being a smooth curve that leads the system to a probability subspace in which
the state of the system changes randomly as a consequence of the random changes in   pERF1

on  (Fig.

7). Thus, the fluctuating environmental conditions are reflected only in the activation of the gene
directly affected by ethylene (ERF1), and they apparently do not affect the expression of the
genes downstream of ERF1, indicating that the cell translation machinery filters any possible
fluctuation in the level of mRNA from this gene.

Fig. 7.  Probability subspace generated by the fluctuations in 
1onERFp

in response to the slowly fluctuating input signal.

We also tested the dynamic features of the gene response to a chaotic temporal pattern of
ethylene signaling. In this case, we simulated the effect of a signal that has a rapid chaotic
temporal behavior on the probability of activating the three genes considered in the system. The
signal was simulated by logistic chaos given by the equation ET(i+1) = rET(i)(1-ET(i)), with r =
3.99 and i = 0,1,2,3,..., and allowing changes in ethylene concentration every 0.04s (Fig. 8A). The
response of the cell under such a situation is smooth rather than a reflection of the variations in
the ethylene signal (Fig. 8B). Under a chaotic ethylene signaling behavior as the one simulated,
the array of gene expression reaches the same attractor point (0.98, 0.80, 0) in the probability
space (Fig. 8C) as that attained in absence of the chaotic signal for ET = 0.5µM (12µL/L). This
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result suggests that under our assumptions, the activation of the genes considered responds to the
average value of the signal and that the chaotic fluctuations around this value are either ignored
or filtered out. The probability of activation of the three genes fluctuated and tended to a chaotic
attractor only when the fluctuations were slow, suggesting that the system is unable to respond to
input signals that fluctuate very rapidly (Figure 9 from A to C). This result is of theoretical
relevance and it also makes novel predictions on how plants may respond to contrasting temporal
patterns of signaling.

Fig. 8 (A) Chaotic logistic signal, represented by the function ET(i+1) = rET(i)(1-ET(i)), where r
= 3.99 and i = 0, 1, 2, 3,…, with i changing every 0.04 s; (B) trajectory of the three-gene array in
response to the chaotic signal. The trajectory is a smooth curve that drives the system to the
attractor point (0.98, 0.80, 0), which is the same point under a steady concentration of 0.5 µM (12
µL/L) of ethylene.

Discussion
We present here a formal quantitative framework for simulating the activation response of

a gene array involved in the Arabidopsis ethylene signaling and response pathway. The proposed
approach can be applied to generate hypotheses on how a cell perceives and transduces ethylene
signaling. Different ethylene concentrations and contrasting temporal regimes were tested for
their effect on the activation responses of three important target genes. Our approach, or
variations thereof, may be extended to other signaling and response pathways in both plant and
animal cells.
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Fig. 9 (A) Chaotic logistic signal, represented by the function ET(j+1) = rET(j)(1-ET(j)), where r = 3.99, j = 0, 1, 2,
3,…, with j changing each 360 s; (B) temporal response of the three-gene array to the chaotic signal, showing chaotic

variations in   pERF1
on  in response to the input; (C,D) trajectory of the three-gene array in response to the chaotic

signal. The trajectory is a smooth curve that drives the system to an attractor basin generated by the chaotic

fluctuations in  pERF1
on .

We have proposed 15 nonlinear differential equations that simulate temporal courses of
the genetic response in Arabidopsis root cells to ethylene signaling. This set of equations
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incorporates the dynamic features of the two modules that have been shown to constitute the
ethylene signaling and response pathway in plant cells, and both the qualitative and the
quantitative aspects of the model are grounded on available experimental data (see Table 1 and
Appendix I: Model Section).

The model presented here for the MAPK cascade associated with the ethylene receptor
suggests that this pathway in fact works as a molecular switch that is very stable even when part
of the ETR is inactivated by the presence of ethylene (see Fig. 2). Based on this model, the
threshold ethylene concentration needed to inactivate the cascade is in the order of 1µL/L; above
this value, the cascade rapidly becomes inactive.  Such a relatively high inactivation threshold
value has important interesting physiological implications. According to the model, as ethylene
concentration increases, the number of inactivated ETR molecules also increases and some of the
EIN2 molecules of the nuclear membrane are activated (Guo & Ecke, 2004). Active EIN2
molecules allow the number of active EIN3 molecules in the nucleus to increase, which in turn
activates the transcription of the ERF1 gene, thereby generating the ethylene response.

As indicated in Fig. 3, the   pERF1
on  begins to increase at low ethylene concentrations above

0.001µL/L and reaches a plateau at ethylene concentrations above 10µL/L. Our analyses also
suggest that because the ethylene response is highly dependent on the activation of the ERF1
gene, this range of probability values possibly underlies the form of the experimentally based
curve observed in Chen and Bleecker (1995). In addition, the results shown in Fig. A1 of the
Appendix I suggest an explanation for the intermediate phenotypes reported in the latter study of
Chen and Bleecker (1995): these could correspond to states in which the MAPK cascade is not
completely inactivated by ethylene and for which the ERF1 gene is expressed at less than its full
capacity. Therefore, we predict that ERF1 function is dose-dependent and that there should be a
correlation between the phenotypes observed and the level of expression of this gene.

The existence of CTR1 downstream components of the MAPK cascade in Arabidopsis
ethylene pathway has been questioned (Stepanova & Alonso, 2005;  Seger & Krebs, 1995; Ecker,
2004). Our results indicate that if the MAPKK and MAPK are actually in the ethylene reponse
chain of reactions, these may function only as carriers that increase the fidelity and stability of the
signal from CTR1 to EIN2.  In this case, in the ethylene response, the set of phosphatases
associated to their respective kinases that act along the chain of reactions could determine the rate
and duration of the signal transmission, while the chain of phosphorylation reactions acting
through the set of kinases could determine the amplitude of the transmitted signal (Huang &
Ferrell, 1996; Kholodenko, 2000; Cho. & Wolkenhauer, 2003; Yamada, Taketomi & Yoshimura,
2004; Díaz & Martínez-Mekler, 2005). But all the conclusions derived from the model that does
include the MAPKK and MAPK hold for the case that does not incorporate these.

The theoretical dose-response sigmoid curve obtained by our model is well adjusted by
Eqn. [M.1], with a Hill coefficient of ~0.97 and a confidence range that includes the
experimentally derived value of 0.99 in the phenotypic response curves obtained by Chen and
Bleecker (1995) for mutants of upstream signaling components. Our model results thus suggest
that such experimental curves could be due, at least in part, to ERF1 changes to different ethylene
concentrations. Furthermore, this result suggests that the parameter values used in this paper are
sufficiently close to the actual values in plant cells and that our model incorporates key
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dynamical features of the actual ethylene signaling and response pathway. Although additional
experimental work will be needed to obtain accurate estimates of the parameters of the dynamic
system, our stability analysis (Appendix 2) strongly suggests that the overall qualitative
postulates of our model should not be affected by variations in the estimates of the parameters.
Therefore, we do not expect the actual parameter values to be orders of magnitude different from
those proposed here.

Given that our ERF1 dose-response curve was similar to that derived experimentally for
the phenotype of the wild type plants; we proceeded to use our system to simulate the genetic
responses of root cells subjected to different concentrations of ethylene and different temporal
regimes of ethylene signaling by modeling the dynamics of the ERF1 protein that is synthesized
under the action of ethylene. The model ignores the complex processing of the protein in the ER
and allows us to estimate the accumulation rate of the ERF1 transcription factor in the nucleus.
With the value of ERF1 in the nucleus, we were able to estimate NERF1 and then used a Markov
model to obtain   pPDF1

on  for the activation of PDF1 and   pHLS1
on for the activation of HLS1. The

activation of HLS1 promotes the inactivation of ARF2 (Section 6 of Table 1 and Appendix I).
This enabled us to link the temporal pattern of a stimulus - in this case eliciting an ethylene
response - with the probability of expression of an array of genes that can mediate a particular
cellular response to the original stimulus.

Therefore, the model proposed here is a useful new tool that can simulate the dynamics of
gene response to different concentrations and temporal regimes of signals. This approach can be
applied to any characterized signaling and response pathway. We have particularly modeled the
activation dynamics of ERF1 in response to ethylene signaling, which in turn elicits the response
of PDF1 and the inhibition of ARF2. In actual plant cells, ERF1 is an activator or inhibitor of
several other genes, and the response of the latter could also be modeled by extending the present
model to a simulated genetic response that incorporates other genes in addition to the two
considered here. In such a case, the array that records the states of activation of the genes would
be of a higher dimension.

The promoter of PDF1 contains a GCC box at which ERF1 binds, and the activation of
PDF1 induces the transcription of a defensin as part of the jasmonate-dependent defense
response (Ton et al., 2002; Brown et al., 2003). The promoter of HLS1 also has a GCC box at
which ERF1 binds, and the activation of HLS1 induces hook formation in darkness and functions
as an integrator center for the ethylene, auxin and light pathways. HLS1 negatively regulates the
expression of the ARF2 gene at a posttranslational level, avoiding the hook disruption due to
ARF2 protein activity (Li et al., 2004).

The genes that we have chosen to model have been functionally characterized, and our
approach provides several novel predictions and a dynamic and complementary interpretation of
the phenotypes mediated by these genes under different ethylene signaling regimes. Figure 5
shows that the probability configuration adopted by the gene array is dependent on the
concentration of ethylene applied to the system. In the absence of ethylene, the probability of
ARF2 expression is 1, and the probability of ERF1 and PDF1 expression is 0. This configuration
corresponds to the point (0, 0, 1) in the probability space of the gene array (Fig. 5A) and to a
phenotype in which root growth and hook formation is under the exclusive control of auxin and
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in which the jasmonate-dependent defensive mechanism has not been activated. At 1.2µL/L of
ethylene, the array moves to the point (0.35, 0.58, 0.5) in its probability space (Fig. 5B), which
corresponds to a state of intermediate ERF1 and PDF1 expression and low ARF2 expression.
This state correlates with a phenotype in which root length and hook development are also
controlled by ethylene and in which the jasmonate-dependent defensive mechanism is activated
at an intermediate level. Finally, at 24µL/L of ethylene (Fig. 5C) the array moves to the point
(0.98, 0.80, 0) in the probability space, which corresponds to a state of full expression of the
ERF1 and PDF1 genes and complete inhibition of the ARF2 gene expression. This state
correlates with a triple response phenotype, including characteristics related to the ethylene
response (Chang, 2003), while the role of auxin in root development and hook disruption is
barely noticeable, and a full expression of the jasmonate-dependent defensive mechanisms is
predicted.

The possibility of predicting the cell’s dynamic genetic and phenotypic responses to
variations in phytohormone concentrations will be the key to further understand the
interconnections among signaling pathways and to predict the plant’s responses to different
hormone regimes. The theoretical approach proposed here has enabled in silico simulations of
additional dynamic features of the cells genetic response to ethylene that are not commonly
studied empirically and that provide novel predictions for future experimental tests.

We have shown (Figs. 6 and 7) that the gene array studied here has very interesting
dynamical responses to different temporal regimes of ethylene signaling. Low- and high-
frequency periodic variations in ethylene concentration produce small oscillations in the
activation probability values of the genes studied. However, variations with a period value
between 20min and 174min produce the transition between the maximum and minimum values
of activation probability (pon) for each gene. This is an unexpected prediction of our model that
implies that only certain temporal regimes of environmental fluctuations can induce a high
amplitude genetic response in the root cell. In addition, Fig. 6B clearly shows that under a
periodic signal of ~35h the gene array shows a response that is confined to a cycle within its
probability space. These results lead to the prediction that real root cells exposed to such a regime
of ethylene signaling may transit through different observable gene expression profiles
approximately every 35h, depending on other environmental conditions. Attempts at testing this
and other related hypotheses that can be derived from the model’s analyses experimentally should
prove to be very interesting.

A more realistic situation corresponds to random fluctuations in ethylene
concentrations. As a result, the trajectory drives the system into a confined probability subspace
generated by   pERF1

on  (Fig. 7).  In this case, only the gene immediately activated by the signaling

cascade is affected by noise, while the probability of the on state of PDF and ARF2 is not
markedly affected by this non-Gaussian noise, suggesting that the complex translational
machinery and protein processing of ERF1 in the ER filter out random fluctuations in the
incoming signal. Thus, the phenotypes that are predicted to be expressed under random
fluctuations in ethylene concentration are expected to be fairly similar to those observed under
constant ethylene availability.
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Chaos is a deterministic but irregular signal that can be used to obtain information on the
full response capacity of the system because the trajectory of the system never goes through the
same point in its phase space (Nicolis, 1995). In our case, the slow chaotic signal successfully
induces the full capacity response of ERF1 (Fig. 3), driving the system towards a chaotic
attractor generated by this gene. However, the signal does not induce a chaotic response in PDF1
and ARF2, indicating that the response pathway that we have simulated, and which may very
well reflect key aspects of the real cellular mechanisms, filters out any effect that this slow
chaotic signal could have on the activation probability of the PDF1 and ARF2 genes. Thus, the
phenotypes elicited under the command of these two genes would not be significantly affected
under such a temporal signaling regime. A similar result is obtained for different values of the
parameter r in the chaotic window of the logistic equation ET(i+1) = rET(i)(1-ET(i)) with i =
0,1,2,3,…(data not shown). Further simulations would still be required to fully characterize the
dynamic response of the system to chaotic signals, but this is out of the scope of the present
work.
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APPENDIX 1: Model
Root cell modeled as a three-compartmental system

The ethylene receptor, which appears to be located in the endoplasmic reticulum (ER)
membrane of the root cell, induces a chemical reaction that is located inside the lumen of the ER,
with a volume VER. This volume, considered in the model to be the first compartment, can be
used to model the concentration of all the signaling molecules of the MAPK cascade.  The
inactivation of the ethylene receptors induces the activation of a series of transcriptional
processes in the nucleus of the root cell, which can be considered to be the second compartment,
with a volume of Vnucleus. Both compartments are enclosed in a rectangular cylindrical cell with a
diameter of 30 µm and a height of 10 µm; this space can be taken to be the third compartment.

In plants, the ER shows very complex spatio-temporal dynamical features that are not
observed in animal cells (Matsushima et al., 2002; Galili, 2004; Hara-Nishimura et al., 2004).
The presence of compartments attached to the main structure of the ER produces a membranous
structure whose geometry is difficult to model (Hara-Nishimura, et al., 2004). However, we
assume that the set of reactions of the MAPK module occurs inside the ER main body and that
this main body can be modeled as a cylinder with a diameter of 1 µm and a height of 10 µm
(Galili, 2004). Consequently, VER has a value of 7.86 µm3 (7.86 x 10-15 l) in our model.

The nucleus can be modeled as a sphere with a diameter of 10 µm, which implies that
Vnucleus has a value of 524 µm3 (5.24 x 10-13 l). The concentrations of the molecules that are
transported from the ER to the nucleus, and vice versa, can now be described by the ratio
Vnucleus/VER, which based on our values is 66.5.  Assuming that the concentration of molecule k in
the ER at time t is ck(t), then if this molecule is moved into the nucleus (either by diffusion or by
transport of any kind) its concentration would be:

  Ck
(t) = c

k
(t)V

ER
/ V

nucleus
                       [1]

Thus, the concentration of molecule k in the ER is 0.015-fold lower than in the nucleus.
Likewise, for movements in the opposite direction, the concentration of a molecule k will be
66.6-fold higher with respect to its concentration in the ER (see Table 1, Section 5).

Activation of the MAPK module
In the model, we assume that the total concentration of ethylene receptors in the ER

membrane (denoted by ETRT) is ~ 0.3 µM (which is equivalent to ~1,400 molecules of the
receptor). The activated state of the receptor is denoted by ETR(+) and its inactivated state by
ETR(-). In the absence of ethylene, all receptors are in their constitutive activated state, and ETR(+)

= ETRT. In the presence of ethylene, both states obey the balance equation:

ETR(+) +  ETR(-) = ETRT                                [2]

In this form, if we use CTR1* to denote the concentration of the activated constitutive triple
response 1 molecule and MAPKK* and MAPK* to denote the activated state of the kinases
downstream of CTR1*, we obtain the following balance equations for the activation rates of the
kinases that conform to the MAPK module at the ER lumen of the root cell:
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dCTR1*

dt
= κ

3
ETR

T
− ETR(− )( ) CTR1

T
− CTR1*( ) −κ 4

CTR1*            [3]

  

dMAPKK *

dt
=κ

5
CTR1* MAPKK

T
− MAPKK *( ) −κ 6

MAPKK *  [4]

  

dMAPK *

dt
=κ

7
MAPKK * MAPK

T
− MAPK *( ) −κ 8

MAPK *         [5]

Equation [3] indicates that the velocity of activation of CTR1 is directly proportional to
the product of the concentration of activated ETR and to the amount of inactivated CTR1
molecules minus the rate of deactivation of the activated CTR1 molecule. We assume that one
activated CTR1 molecule is associated at each and every moment to the activated ETR; thus,
CTR1T ~ 0.3 µM in our model. The value of the κ3 rate constant of Eqn. [3] was adjusted by
assuming that at zero ethylene concentration all of the CTR1* molecules are in a steady activated
state. The value of κ4 was based on the observations of Chen and Bleecker (1995) that at very
low values of ethylene concentration (<<0.001 µL/L) almost all of the CTR1 molecules are in
their steady activated state. The values of these parameters for CTR1* ~ 0.29 µM for low
ethylene concentrations are given in Table 1, Section 7.

The activation of the kinases downstream of CTR1* (Fig. 1 of main article) are modeled
following Yamada, Taketomi and Yoshimura (2004) and Diaz and Martinez-Mekler (1995),
giving rise to Eqns. [4] and [5]. In these equations, MAPKKT and MAPKT are assumed to be ~0.5
µM (7), which is equivalent to a total amount of ~2,370 molecules of each kinase in the ER.
Equation [4] indicates that the rate of activation of the MAPKK is a balance between its rate of
activation by CTR1* and its rate of inactivation by its phosphatase. Equation [5] indicates that
the rate of activation of the MAPK is a balance between its rate of activation by MAPKK* and its
rate of inactivation by its phosphatase.

The values of the rate constants of Eqns. [4] and [5] are taken from Yamada et al. (2004),
assuming, as a first approximation, that the kinetics of activation of the MAPKK and MAPK
molecules in the Arabidopsis cells is very similar to that observed for MEK and ERK in animal
cells (see Table 1).

Inactivation of EIN2
MAPK* blocks the EIN2 molecule of the nuclear membrane (main article: Fig. 1) at a

rate given by:

  

dEIN 2(− )

dt
=κ

9
MAPKc * EIN 2

T
− EIN 2(− )( ) −κ10

EIN 2(− ) ETR(− )

ETR(− ) + β
   [6]

where EIN2(-) represents the concentration of inactivated EIN2 in the nucleus and EIN2T its total
concentration. According to the above equation, the rate of inactivation of EIN2 is a balance
between its rate of phosphorylation by MAPK* and its rate of dephosphorylation by a still
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unknown process. However, we assume that it depends on the rate of inactivation of the ethylene
receptors according to a Michaelis-Menten behavior.

In this equation, we assume that the total concentration of EIN2 (denoted by EIN2T) is
0.005 µM with respect to the nucleus, which is equivalent to ~1,580 molecules of the channel. In
the absence of ethylene, all of the EIN2 molecules are in their phosphorylated state; thus, EIN2(-)

= EIN2T . We then adjust the rate constants in order to obtain EIN2(-) ≈ EIN2T  ≈ 0.005 µM for
very low concentrations of ethylene (<<0.001 µL/L) because the response of the system to
ethylene is minimal at these concentrations (Chen & Bleecker, 1995). For other ethylene
concentrations, the number of inactivated EIN2 molecules slowly decreases according to the
balance equation, EIN2(-) + EIN2(+) = EIN2T. Consequently, at high concentrations of ethylene
(>10 µL/L), all of the EIN2 molecules are in their dephosphorylated state and EIN2(+) = EIN2T .
The respective values of the rate constants of Eqn. [6] are shown in Table 1, Section 7.

MAPKc* represents the corrected concentration of the activated MAPK with respect to
the nuclear volume in Eqn. [6]. The form in which this concentration is scaled is shown in the
Table 1, Section 5.

Inactivation of the MAPK cascade and activation of the ethylene response
Inactivation of the MAPK cascade occurs when the ethylene gas binds to either of its

specific receptors at a rate proportional to the amount of ethylene gas still unbound and to the
number of receptor molecules that are still in their activated state (Figure A1). Thus, the rate of
inactivation of the receptor is given by:

  

dETR(− )

dt
=κ

1
(ET − ETR(− ) ) ETR

T
− ETR(− )( ) −κ 2

ETR(− )         [7]

where ET represents the total amount of ethylene gas, which is a control parameter.  This
equation is subject to balance equation [2]. The values of the rate constants of Eqn. [7] were
obtained from the work of Chen and Bleecker (1995) in that at very high concentrations of
ethylene (>10 µL/L), the MAPK cascade should be completely inactivated; thus, ETR(-) ~ 0.3
µM. These values are shown in the Table 1.

Once the MAPK has been blocked by the presence of ethylene, the EIN2 molecule of the
nuclear membrane (main article, Fig. 1) is activated at a rate given by:

  

dEIN 2(+)

dt
= −

dEIN 2(−)

dt
                [8]

subject to EIN2(-) + EIN2(+) = EIN2T (see Eq. [6] above).

Once EIN2 has been activated (dephosphorylated), the EIN3 molecule inside the nucleus
is activated by a still unknown process (8) at a rate given by:
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dEIN3*

dt
=κ

11
EIN 2(+ ) EIN3

T
− EIN3*( ) −κ12

E1N3*     [9]

where EIN3*  is the concentration of the activated form of the EIN3 transcription factor in the
nucleus, and EIN3T  is the total concentration of the molecule in the nucleus. We assume that
EIN3T  = 0.005 µM, which is equivalent to ~1,580 molecules, which has been taken to be the size
of the  pool of this molecule in the nucleus. The rate constants in Eqn. [9] were adjusted in order
to obtain a value of EIN3* ~ 0.005 µM for high concentrations of ethylene. (See Table 1, Section
7).

The activated EIN3 transcription factor binds to the promoter site of the ERF1 gene,
thereby allowing its expression. The two-state Markov model for this process is given by the
equations:

  

dp
ERF1
on (t)

dt
=κ

13
N

EIN 3*
p

ERF1
off (t) −κ

14
p

ERF1
on (t)

dp
ERF1
on (t)

dt
= −κ

13
N

EIN 3* p
ERF1
off (t) +κ

14
p

ERF1
on (t)

                       [10]

where the rate constants were chosen from a set of values for which    pERF1
on > 0.95 when the

concentration of ethylene is greater than 10 µL/L (see Table 1, Section 7). In the absence of
ethylene, the ERF1 gene is in the off state with a probability 1. The number of activated EIN3*
molecules for these equations can be easily calculated as:
 

  
N

EIN 3*
= 1x10−21( )EIN3*V

nucleus
N

Avogadro                        [11]

Activation of target genes downstream ERF1
Once the ERF1 gene has been activated in response to ethylene, it is transcribed, as a first

approximation, at a rate given by:

  

dmRNA

dt
=

p
ERF1
on (t)V

trans
mRNA

mRNA+κ
15

−κ
16

mRNA                    [12]

where mRNA is the nuclear concentration of the transcripts of the ERF1 gene, and Vtrans is the
maximum transcription rate of EFR1 (see Table 1, Section 7), which is obtained when   pERF1

on  = 1.

According to Goutsias and Kim (2004), the transcription rate for mRNA is of the order of 0.0001
pM s-1 to 1 pM s-1. We used a slightly higher value of  0.000003 µM s-1 (3 pM s-1) in order to
obtain a steady pool of a rounded-off number of mRNA molecules in the nucleus (~1,000); this
value is also obtained when the values reported in the Table 1, Section 7, for the other rate
constants of Eqn. [12] are taken into consideration.

The rate of production of the ERF1 protein is then:
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dERF1

dt ER
=κ

17
mRNA− D

erf 1
ERF1                            [13]

where k17  is the translation rate and Derf1ERF1 is the amount of ERF1 protein moved (by some
yet unknown mechanism) from the ER into the nucleus. According to Goutsias and Kim (2004),
k17 has an estimated value between 0.05 s-1 and 0.20 s-1. In our model, we considered a value of
0.1972 s-1 (see Table 1, Section 7), for which the number of ERF1 molecules in ER is also ~1,000
molecules at an ethylene concentration of greater than 10 µL/L.

In the nucleus and following an adjustment of the corresponding concentration (see Table
1, Section 5), the amount of ERF1 varies according to the balance equation:

  

dERF1

dt nucleus
= D

erf 1
ERF1n −κ

18
ERF1n                    [14]

where the first term of the right side of Eqn. [14] represents the amount of ERF1 moved from the
ER into the nucleus (ERF1n), and the second term represents the degradation of the protein. In
the model, we assigned the value of 0.99 s-1 to Derf1; at this value, most of the ERF1 molecules
produced in the ER are moved into the nucleus. k18 is then adjusted to obtain a steady
concentration of ~1,000 ERF1 molecules for high concentrations of ethylene (see  Table 1,
Section 7).

Finally, we can then model, as a first approximation, the activation of the PDF1 gene
with a two-state Markov model given by:

  

dp
PDF1
on (t)

dt
=κ

19
N
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PDF1
off (t) −κ

20
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                  [15]

The inactivation of the HLS1 gene is given by another two-state Markov model:
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dt
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                     [16]

where NERF1n is calculated as indicated in the Table 1, Section 4 in the main article.
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With respect to Eqns. [15] and [16], the value of the rate constants were adjusted to obtain
a  p

on  > 0.75 for high ethylene concentrations (>10 µL/L) (see Table 1, Section 7).

As we do not know the posttranslational mechanism by which the expression of the gene
ARF2 is negatively regulated by the HLS1 gene (Li et al., 2004) we modeled the expression of
ARF2 as a three-state discrete variable given by:

  

p
ARF 2
on t( ) =

0                  if p
HLS1
on t( ) > 0.75

0.5               if 0.5 < p
HLS1
on t( ) ≤ 0.75

1                   if p
HLS1
on t( ) ≤ 0.5

⎧

⎨
⎪⎪

⎩
⎪
⎪

                           [17]

Thus, according to Eqn. [17], if HLS1 is fully expressed at time t, the probability of
expression of ARF2 is 0 at time t. In this form, we are combining a continuous approach (HLS1
activation) with a three-state, time-dependent discrete approach (ARF2 negative regulation).

If we remove Eqns. [4] and [5] from the set of equations, the dynamical features of the
model do not change. See Figs. 2B and 3B in the Main Article and compare them with Figs 2A
and 3A in the Main Article, indicating that the role of the kinases downstream of CTR1, if they
exist, is only to transmit the signal from the ETR to EIN2.
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Figure A1.- Phase portrait for the dependence of   pERF1
on on CTR1*. This plot shows that the full expression of the

ethylene response is obtained only when the MAPK cascade in the ER has been completely inactivated. The model
predicts the coexistence of the effects of the MAPK cascade with those of the ethylene response that can give rise to
a series of intermediate phenotypes that could be observed experimentally.

Appendix 2:
In this section we perform the stability analysis of the model for the ethylene response.

The 8 equations for ETR, CTR1, MAPKK, MAPK, EIN2, EIN3, 
  
p

ERF1

off  and 
  
p

ERF1

on  (see Sections

from 1 to 4 of Table 1 in the main article) are the model’s core and the stability of these equations
determines the global stability of the model.

According to Table 1 in the main text the steady state values for these variables are:

  

ETR( − )0 =
γ
2
−

γ 2 − 4 ET( ) ETR
T( )

2

γ = ET + ETR
T
+
κ

2

κ
1

          [A1]

  

CTR1*0 =
ETR

T
− ETR −( )0( )CTR1

T

ETR
T
− ETR −( )0( ) + κ 4

κ
3

           [A2]

  

MAPKK *0 =
CTR1*0 MAPKK

T

CTR1*0 +
κ

6

κ
5

             [A3]

  

MAPK *0 =
MAPKK *0 MAPK

T

MAPKK *0 +
κ

8

κ
7

             [A4]

  

EIN 2 −( )0 =
MAPKc*0 EIN 2

T

MAPKc*0 +
κ

10

κ
9

ETR −( )0

ETR −( )0 + β

             [A5]

where 
00000954MAPKc*.MAPK*=

  

EIN3*0 =
EIN 2 +( )0 EIN3

T

EIN 2 +( )0 +
κ

12

κ
11

                 [A6]
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p
ERF1

on0

=
N

EIN 3

0

N
EIN 3

0 −
κ

14

κ
13

                       [A7]

where   N EIN 3

0 = 602.3V
nucleus

EIN3*0

  pERF1

off 0

= 1− p
ERF1

on0

           [A8]

and the set of linearized equations around the steady state point of the system is, according to
Table 1 in the main article:

  

dδe

dt
= Jδe                                 [A9]

where

   

δe =

δETR −( )
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δ MAPKK *
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subject to:

δETR −( ) = −δETR +( )

δEIN 2 −( ) = −δEIN 2 +( )

δ MAPKc* = 0.00954δ MAPK *

      [A10]

                                  
and J is the Jacobian matrix of the linearized system given by:

   

J =

J
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0 0 0 0 0 0 0

J
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J
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0 J
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J
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0 0 0 0 0 0 J
87

J
88

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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               [A11]

where:
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The characteristic equation of the Jacobian matrix [A11] is given by:

  
J − λI = 0              [A12]

      which leads to:

  
J

11
− λ( ) J

22
− λ( ) J

33
− λ( ) J

44
− λ( ) J

55
− λ( ) J

66
− λ( ) J

77
− λ( ) J

88
− λ( ) − J

78
J

87
⎡⎣ ⎤⎦ = 0     [A13]

Equation [A13] was numerically solved for each ethylene concentration from 0 to 10µM
(0 to 240µL/L) and in Figure A2 we show the behavior of the eight eigenvalues obtained from
the characteristic equation solution.

Figure A2 shows that all the eigenvalues of the linearized system remains upper bounded
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by zero, i.e., 
  
λ

j
≤ 0 , j = 1, 2, 3,...,8, for each ethylene concentration, which indicates that the

steady state reached by the system is stable against small perturbations in every case. Thus, under
each ethylene concentration the system evolves towards a stable point attractor in the 8-
dimension phase space.

 Figure A2.- Eigenvalues as a function of Ethylene concentration from the characteristic equation of the linearized
system of equations of the ethylene model. The number in the parenthesis represents the corresponding eigenvalue at
each ethylene concentration.

A possible weak aspect of our model is that we do not have accurate estimates of the
parameters and that these are prone to stochastic variation in biological systems. Hence it is
important to test the model’s behavior under different value estimates. We addressed this by
numerically solving equation [A13] assuming that all parameter values considered were random
variables. However, we focus this analysis in three equations that are fundamental for the global
dynamics of the system:  activation of the ETR and of the CTR1 molecule in the ER and
activation of EIN2 in the nucleus.

These three processes are the key ones for the expression of the phenotypic characteristics
of the root cell and command the state of activation of the MAPK in the ER lumen and of the
genetic ERF1-dependent machinery in the nucleus. Thus, it is very important to know if the
steady states predicted for the genes activation differential equations in the model hold for all the
parameter phase state space, or depend on the parameter values used and a few others. The latter
situation would greatly limit the descriptive and predictive power of our model.

We analyzed effects of random fluctuations in κ1 and κ2 that command the activation of
the ETR; in κ3 and κ4 that command the activation of the CTR1 molecule and in κ9 and κ10 that
command the activation of the EIN2 molecule. The ranges tested were from 0 to 15µM-1 s-1 for
κ1, κ3 and κ9; from 0 to 0.01s-1 for κ2, and from 0 to 0.015s-1 for κ4 and κ10.  In the latter we
allowed the random variation of β that commands the activation of the EIN2 molecule allowing a
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variation between 0 and 15µM. The ranges considered included the parameter values that we
used in the model (see Table 1 Supporting). Ethylene concentration was varied from 0.12µL/L to
120µL/L and for each ethylene concentration 6000 parameter values for each couple of
parameters was tested.

In all cases the global behavior of the eigenvalues remained bounded by zero and was not
affected as we show in the example presented in figure A3.
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Figure A3.- Example of the results obtained from the random variation in each couple of parameter values of the
equations indicated in the text. (a) Eigenvalues of the linerized system under stimulation with 0.005µM (0.12µL/L)
of ethylene; (b) Eigenvalues of the linerized system under stimulation with 5µM (120µL/L) of ethylene. In both
panels κ3 was randomly varied from 0 to 15µM-1s-1 and κ4 from 0 to 0.15s-1.  The number in parenthesis indicates the
respective eigenvalue. In this figure we show only two values of the range of ethylene concentration used during the
analysis (0.12µL/L to 120µL/L).
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The above analysis clearly shows that the model we present in this work is stable against
perturbations in the key parameters values, i.e., there are no instabilities for a wide range of
parameter values of the system, or bifurcation points that could lead the system to an unexpected
qualitative behavior not considered during the formulation of the model.

The particular set of parameter values that we chose for our model is included in the
above analyses and this makes us more confident that the model thoughtfully reflects the real
molecular dynamics of the ethylene response in the Arabidopsis root cell, in spite of the
uncertainty on the estimates of the parameters. These results suggest that more precise estimates
of the parameter will not affect our results in a significant way.
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