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Starting with a group of reinforcement-learning agents we derive coupled replicator equations that
describe the dynamics of collective learning in multiagent systems. We show that, although agents
model their environment in a self-interested way without sharing knowledge, a game dynamics
emerges naturally through the environment. As an application, with a rock-scissors-paper game
interaction between agents, the collective learning dynamics exhibits a diversity of competitive
and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and
deterministic chaos—behaviors that are to be expected in the multiagent, heterogeneous setting
described by the general replicator equations.
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Adaptive behavior in multiagent systems is an impor-
tant interdisciplinary topic that appears in various guises
in many fields, including biology [1], computer science [2],
economics [3], and cognitive science [4]. One of the key
common questions is how and whether a group of intelli-
gent agents truly engages in collective behaviors that are
more functional than individuals acting alone.

Suppose that many agents interact with an environ-
ment and each independently builds a model from its sen-
sory stimuli. In this simple type of coupled multiagent
system, collective learning (if it occurs) is a dynamical
behavior driven by agents’ environment-mediated inter-
action [5, 6]. Here we show that the collective dynam-
ics in multiagent systems, in which agents use reinforce-
ment learning [7], can be modeled using coupled repli-
cator equations. While replicator dynamics were given
originally in terms of evolutionary game theory [8], re-
cently the relationship between reinforcement learning
and replicator equations has been discussed [9]. Here, we
show that game dynamics is introduced as a continuous-
time limit in a multiagent reinforcement learning system.

Notably, in learning with memory, our model reduces
to the form of a multipopulation replicator equation [10].
With memory loss, however, the dynamics become dis-
sipative. As an application, we note that the dynamics
of learning with memory in the rock-scissors-paper game
exhibits Hamiltonian chaos, if it is a zero-sum interaction
between two agents. With memory decay, the multiagent
system becomes dissipative and displays the full range of
nonlinear dynamical behaviors, including limit cycles, in-
termittency, and deterministic chaos.

Our multiagent model begins with standard reinforce-
ment learning agents [7]. For simplicity, here we as-
sume that there are two such agents X and Y and
that at each time step each agent takes one of N ac-
tions: i = 1, 2, . . . , N . Let the probability for X to
chose action i be xi(n) and yi(n) for Y , where n is
the number of the learning iterations from the initial

state xi(0) and yi(0). The agents’ state vectors at
time n are x(n) = (x1(n), x2(n), . . . , xN (n)) and y(n) =
(y1(n), y2(n), . . . , yN (n)), where Σixi(n) = Σiyi(n) = 1.
Let RX

i (n) and RY
i (n) denote the reward for X or Y

taking action i at step n, respectively. Then X ’s and
Y ’s memories—denoted QX

i (n) and QY
i (n), resp.—of the

past benefits for action i are governed by

∆QX
i (n + 1) = RX

i (n) − αXQX
i (n) and (1)

∆QY
i (n + 1) = RY

i (n) − αY QY
i (n) ,

where αx, αy ∈ [0, 1) control each agent’s memory decay
rate.

The agents chose their next actions based on their
memory and update their choice distributions—i.e., x

and y—as follows:

xi(n) =
eβXQX

i (n)

Σje
βXQX

j
(n)

and yi(n) =
eβY QY

i (n)

Σje
βY QY

j
(n)

, (2)

where βx, βy ∈ [0,∞] control the learning sensitivity:
how much the current choice distributions are affected
by past rewards. Using Eq. (2), the dynamic governing
the change in state is given by:

xi(n + 1) =
xi(n)eβX∆QX

i (n)

Σkxj(n)eβX∆QX
k

(n)
, (3)

where ∆QX
i (n) = QX

i (n + 1) − QX
i (n) and similarly for

yi(n + 1).

Next, we consider the continuous-time limit of this sys-
tem, which corresponds to the agents performing a large
number of learning updates—iterations of Eqs. (3)—for
each memory update—iteration of Eqs. (2). Thus, in the
continuous-time limit X behaves as if it knows y (the dis-
tribution of Y’s choices) and Y behaves similarly. Going
from time step nδ to nδ + δ the continuous-learning rule
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for agent X is

xi(nδ + δ) − xi(nδ) =
xi(nδ)

Σjxj(nδ)eβX(QX
j

(nδ+δ)−QX
j

(nδ))

×
[

eβX(QX
i (nδ+δ)−QX

i (nδ)) (4)

− Σjxj(nδ)eβX(QX
j (nδ+δ)−QX

j (nδ))
]

,

based on Eq. (3). In the limit δ → 0 with t = nδ, Eq.
(4) reduces to

ẋi = βXxi(Q̇
X
i − ΣjQ̇

X
j xj). (5)

For the dynamic governing memory updates, we have

Q̇X
i = RX

i − αXQX
i . (6)

Putting together Eqs. (2), (5), and (6) one obtains

ẋi

xi

= βX [RX
i − ΣjxijR

X
j ] + αXI(xi) , (7)

where I(xi) = Σjxj log(xj/xi). The continuous-time dy-
namics of Y follows in a similar manner.

Simplifying again, consider a fixed linear relationship
between rewards and actions:

RX
i = Σjaijyj and RY

i = Σjbijxj . (8)

In this special case, the continuous dynamics is given by:

ẋi

xi

= βX [(Ay)i − x · Ay] + αXI(xi) ,

ẏi

yi

= βY [(Bx)i − y · Bx] + αY I(yi) , (9)

where (A)ij = aij and (B)ij = bij ; (Ax)i is the ith ele-
ment of the vector Ax; and I(xi) and I(yi) represent the
effect of memory with decay parameters αX and αY . βX

and βY control the time-scale of each agent’s learning.
We can regard A and B as X ’s and Y ’s game-theoretic
payoff matrices for action i against opponent’s action j
[18]. Note that the development of our model begins with
selfish-learning agents with no knowledge of a “game” in
which they are playing. Nonetheless, a game dynamics
emerges—via RX and RY in Eq. (7)—as a description
of the collective’s global behavior. That is, the agents’
mutual adaptation induces a game at the collective level.

Given the basic equations of motion for the
reinforcement-learning multiagent system (Eq. (9)), one
becomes interested in, on the one hand, the time evolu-
tion of each agent’s state vector in the simplices x ∈ ∆x

and y ∈ ∆y and, on the other, the dynamics in the
higher-dimensional simplex (x,y) ∈ ∆x × ∆y of the
collective. Transforming from (x,y) ∈ ∆x × ∆y to
U = (u,v) ∈ R2(N−1) with u = (u1, u2, . . . , uN−1) and
v = (v1, v2, . . . , vN−1) where ui = log xi+1

x1
and vi =

log yi+1

y1
, (i = 1, 2, . . . , N − 1) , we have a simplified

version of our model (Eqs. (9))

u̇i = βX

Σj ãije
vj + ãi1

1 + Σjevj
− αXui and

v̇i = βY

Σj b̃ije
uj + b̃i1

1 + Σjeuj
− αY vi , (10)

where ãij = ai+1,j−a1,j and b̃ij = bi+1,j−b1,j [11]. Since
the dissipation rate γ in U is

γ = Σi

∂u̇i

∂ui

+ Σj

∂v̇j

∂vj

= −(N − 1)(αX + αY ), (11)

Eqs. (9) are conservative when αX = αY = 0 and the
time average of a trajectory is the Nash equilibrium of
the game specified by (A, B), if a limit set exists in the
interior of simplex [19]. Moreover, if the game is zero-
sum, the dynamics are Hamiltonian in U with

H = −(Σjx
∗
j uj +Σjy

∗
j vj)+log(1+Σje

uj )+log(1+Σje
vj )

(12)
where (x∗,y∗) is an interior Nash equilibrium [11].

To illustrate the dynamics of learning in multiagent
systems using the above developments, we now analyze
the behavior of the two-person rock-scissors-paper inter-
action. This familiar game describes a three-sided com-
petition: rock beats scissors, scissors beats paper, and
paper beats rock. The payoff matrices are:

A =





εX 1 −1
−1 εX 1
1 −1 εX



 and B =





εY 1 −1
−1 εY 1
1 −1 εY



 , (13)

where εX , εY ∈ [−1.0, 1.0] are the payoffs for ties. The
mixed Nash equilibrium is x∗

i = y∗
i = 1/3, (i = 1, 2, 3)—

the center of the simplices. Note that if εX = −εY , the
game is zero-sum.

In the special case without memory loss (αX = αY =
0) and with large and equal learning sensitivity (βX =
βY = 1), the linear version (Eqs. (9)) of our model (Eqs.
(7)) reduces to a multipopulation replicator equation [10]:

ẋi

xi

= [(Ay)i − x · Ay] and
ẏi

yi

= [(Bx)i − y · Bx] . (14)

The game-theoretic behavior in the case with rock-
scissors-paper interactions (Eqs. (13)) was investigated
in [13]. In the zero-sum case (εX = −εY ), it was noted
there that a Hamiltonian form of the equations of motion
exists. Here, by way of contrast to our more general set-
ting, we briefly recall the behavior in these special cases,
noting several additional results.

Figure 1 shows Poincaré sections of Eqs. (14)’s trajec-
tories on the hyperplane u̇1 = 0, v̇1 > 0 and represen-
tative trajectories in the individual agent simplices ∆X

and ∆Y . When εX = −εY = 0.0, we expect the system
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FIG. 1: Quasiperiodic tori and chaos: εX = −εY = 0.5,
αX = αY = 0, and βX = βY = 1. We give a Poincaré section
(top) on the hyperplane defined by u̇1 = 0 and v̇1 > 0; that
is, in the (x,y) space: (3 + εX)y1 + (3 − εX)y2 − 2 = 0 and
(3 + εY )x1 + (3 − εY )x2 − 2 < 0. There are 23 randomly
selected initial conditions with energies H = −1/3(u1 + u2 +
v1 + v2) + log(1 + eu1 + eu2) + log(1 + ev1 + ev2 ) = 2.941693,
which surface forms the outer border of H ≤ 2.941693. Two
rows (bottom): Representative trajectories, simulated with
a 4th-order symplectic integrator [12], starting from initial
conditions within the Poincaré section. The upper simplices
show a torus in the section’s upper right corner; see the en-
larged section at the upper right. The initial condition is
(x,y) = (0.3, 0.054196, 0.645804, 0.1, 0.2, 0.7). The lower sim-
plices are an example of a chaotic trajectory passing through
the regions in the section that are a scatter of dots; the initial
condition is (x,y) = (0.05, 0.35, 0.6, 0.1, 0.2, 0.7).

to be integrable and only quasiperiodic tori would exist.
Otherwise, εX = −εY > 0.0, Hamiltonian chaos can oc-
cur with positive-negative pairwise Lyapunov exponents
[13]. The dynamics is very rich, there are infinitely many
distinct behaviors near the unstable fixed point at the
center—the classical Nash equilibrium—and a periodic
orbit arbitrarily close to any chaotic one. Moreover, when
the game is not zero-sum (εX 6= εY ), transients to hete-
roclinic cycles are observed [13]: On the one hand, there
are intermittent behaviors in which the time spent near
pure strategies (the simplicial vertices) linearly increases
with εX + εY < 0 and, on the other hand, εX + εY > 0,
for which chaotic transients persist [14].

Our model goes beyond these special cases and, gen-

FIG. 2: Limit cycle (top: εY = 0.025) and chaotic attractors
(bottom: εY = −0.365), with εX = 0.5, αX = αy = 0.01, and
βX = βY = 1.0.

erally, beyond the standard multipopulation replicator
equations (Eqs. (14)) due to its accounting for the ef-
fects of individual and collective learning. For example,
if the memory decay rates (αX and αY ) are positive, the
system becomes dissipative and exhibits limit cycles and
chaotic attractors; see Fig. 2. Figure 3 (top) shows a
diverse range of bifurcations as a function of εY : dynam-
ics on the hyperplane (u̇1 = 0, v̇1 > 0) projected onto
y1. When the game is nearly zero-sum, agents can reach
the stable Nash equilibrium, but chaos can also occur,
when εX + εY > 0. Figure 3 (bottom) shows that the
largest Lyapunov exponent is positive across a signifi-
cant fraction of parameter space; indicating that chaos
is common. The dual aspects of chaos, irregularity and
coherence, imply that agents may behave cooperatively
or competitively (or dynamically switch between both)
in the collective dynamics. As noted above, this derives
directly from individual self-interested learning.

Within this framework a number of extensions suggest
themselves as ways to investigate the emergence of collec-
tive behaviors in multiagent systems. The most obvious
is the generalization to an arbitrary number of agents
with an arbitrary number of strategies and the analy-
sis of behaviors in thermodynamic limit. It is relatively
straightforward to develop an extension to the linear-
reward version (Eqs. (9)) of our model. For example,
in the case of three agents X , Y , and Z, one obtains for
the learning dynamics in ∆X × ∆Y × ∆Z :

ẋi

xi

= βX [Σj,kaijkyjzk − Σj,k,lajklxjykzl] − αXI(xi) ,

(15)
with tensor (A)ijk = aijk , and similarly for Y and Z.
Not surprisingly, this is also a conservative system when
αX = αY = αZ = 0. However, the extension to multiple
agents for the full nonlinear collective learning equations
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FIG. 3: Bifurcation diagram (top) of dissipative (learning
with memory loss) dynamics projected onto coordinate y1

from the Poincaré section hyperplane (u̇1 = 0, v̇1 > 0) and the
largest two Lyapunov exponents λ1 and λ2 (bottom) as a func-
tion of εY ∈ [−1, 1]. Here with εX = 0.5, αX = αY = 0.01,
and βX = βY = 1.0. Simulations show that λ3 and λ4 are
always negative.

(Eqs. (7)) is more challenging.
Another key generalization will be to go beyond the

limited adaptive dynamics of reinforcement learning
agents to agents that actively build and interpret struc-
tural models of their environment; using, for example,
online ε-machine reconstruction [15]. To be relevant to
applications, one will also need to develop a statistical dy-
namics generalization [16] of the deterministic equations
of motion to account for finite and fluctuating numbers
of agents and also finite histories used in learning.

Finally, another direction, especially useful if one at-
tempts to quantify collective function in large multiagent
systems, will be structural and information-theoretic
analyses [17] of local and global learning behaviors and,
importantly, their differences. Analyzing the stored in-
formation in each agent versus that in the collective, the
causal architecture of information flow between an in-
dividual agent and the group, and how individual and
global memories are processed to sustain collective func-
tion are projects for the future.

We presented a dynamical-systems model of collective
learning in multiagent systems, which starts with rein-
forcement learning agents and reduces to coupled replica-
tor equations, demonstrated that individual-agent learn-
ing induces a global game dynamics, and investigated
some of the resulting periodic, intermittent, and chaotic

behaviors in the rock-scissors-papers game interaction.
Our model gives a macroscopic description of a net-
work of learning agents that can be straightforwardly ex-
tended to model a large number of heterogeneous agents
in fluctuating environments. Since deterministic chaos
occurs even in this simple setting, one expects that in
high-dimensional and heterogeneous populations typical
of multiagent systems intrinsic unpredictability will be-
come a dominant collective behavior. Sustaining use-
ful collective function in multiagent systems becomes an
even more compelling question in light of these results.
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