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Abstract

For broad classes of selection and genetic operators, the dynamics of evolution
can be completely characterized by the spectra of the operators that define the
dynamics, in both infinite and finite populations. These classes include generalized
mutation, frequency-independent selection, uniparental inheritance. Several open
questions exist regarding these spectra:

1. For a given fitness function, what genetic operators and operator intensities
are optimal for finding the fittest genotype? The concept of rapid first hitting
time, an analog of Sinclair’s “rapidly mixing” Markov chains, is examined.

2. What is the relationship between the spectra of deterministic infinite popu-
lation models, and the spectra of the Markov processes derived from them in
the case of finite populations?

3. Karlin proved a fundamental relationship between selection, rates of trans-
formation under genetic operators, and the consequent asymptotic mean fit-
ness of the population. Developed to analyze the stability of polymorphisms
in subdivided populations, the theorem has been applied to unify the reduc-
tion principle for self-adaptation, and has other applications as well. Many
other problems could be solved if it were generalized to account for the in-
teraction of different genetic operators. Can Karlin’s theorem on operator
intensity be extended to account for mixed genetic operators?

Introduction

A general theory for the performance and design of evolutionary algorithms has proven
difficult to achieve. This difficulty sets in even before we delve into search spaces with
great complexity, or search operators with great complexity. We find it in the simplest

*Copyright (©2004 by Lee Altenberg. Chapter 4 in Frontiers of Evolutionary Computation, ed. Anil
Menon, pp. 73-102. Genetic Algorithms And Evolutionary Computation Series, Vol. 11, Kluwer Academic
Publishers, Boston, MA, 2004.
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“canonical” models of evolutionary algorithms owing to their nonlinear structure and
stochastic dynamics.

Nonlinearity and stochasticity can be eliminated by making a variety of simplifying
assumptions—in essence, exploring a subspace on the boundaries of the general prob-
lem. Linearity is produced by assuming constant selection and uniparental transmission
(i.e. where the offspring type is determined by the type of its one parent). Determinism
can be produced by assuming an infinite population size. These assumptions produce
a linear dynamical system whose trajectory and attractors can be described in closed
form, and decomposed in terms of its spectrum of eigenvalues and eigenvectors.

Actual evolutionary algorithms depart from this boundary in two important ways:
finite populations, and recombination between two (or more) parents.

Recombination, a central innovation of genetic algorithms, is aimed at allowing
combinations of partial solutions to be assembled. Recombination between two parents
changes the dynamics of the infinite population model from linear to quadratic. In a
quadratic system, we can no longer obtain a spectrum of eigenvalues and eigenvectors;
the methods of nonlinear analysis must be employed, such as characterization of fixed
points and their stability, domains of attraction, and Lyapunov functions.

A great deal of work has been on the dynamics of recombination and selection for
models at various points on the boundaries of the general problem. A recent com-
pendium can be found in Christiansen (2000). For more on quadratic dynamical sys-
tems see Rabinovich et al. (1992) and Arora et al. (1994). Progress has been made in
the dynamics of recombination in the absence of selection, in both infinite and finite
population models, by Rabani et al. (1995), and for simple selection, by Rabinovich
and Wigderson (1999). Numerous analyses for other models on the boundary of the
general problem can be found in the evolutionary computation and population genetics
literature.

Evolutionary algorithms employ finite populations of a size considerably less than
the cardinality of the search space, since a primary goal of the algorithms is to locate
desired elements of the search space without exhaustive search.

Finite population algorithms typically use Bernoulli sampling to generate new sam-
ples of the search space. This changes the model of the algorithm from deterministic to
stochastic, a Markov chain which has a linear state transition matrix, but whose dimen-
sions are exponentially increased beyond the number of elements in the search space.
The first model of finite population dynamics was developed based on Bernoulli sam-
pling by Wright (1931) and Fisher (1930). In the Wright-Fisher model, the number of
states in the Markov chain for the finite population model is O(N ‘5|), compared to a
dimension of |S| for the infinite population model, where |S]| is the number of different
genotypes, and N is the population size. Hence, the dimensionality of the state space
is vastly increased in the finite population model over the infinite population model.

This comparison can be made more concrete by describing the difference in terms
of points in the |S| — 1 dimensional simplex. In the infinite population model, the sys-
tem state is represented as a single point in the simplex which moves deterministically
one generation to the next. In the finite population model, the state is represented as
a probability distribution over a cloud points in the simplex, restricted to the lattice of
coordinates {z : Nx; € {0,1,...,N},> I, x; = 1}. The distribution of the cloud
of points is what changes every generation.
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Because the uniparental, infinite population model has a complete solution, in terms
of the spectrum of the linear operators, it presents the logical starting point to try to un-
derstand a number of unanswered questions in the design and dynamics of evolutionary
algorithms. So I begin with the uniparental, infinite population modelThere are three
primary open questions I want to discuss:

1. What are the optimal transmission matrices for finding global optima of a search
space?

2. What is the relationship between the spectrum of the infinite population model
and the spectrum of the finite population model?

3. Can a key theorem of Karlin on the effects of operator intensity be generalized?

The Canonical Model

The ‘canonical’ model I shall be referring to throughout is the model of an infinite
population evolving with discrete, non-overlapping generations, under constant fitness
coefficients and generalized uniparental transmission. Let & be the n-dimensional vec-
tor of frequencies of different types in the population, so z; > 0, and Y . x; = 1,
which is to say that x € A,,, the n — 1-dimensional simplex. Then the recursion on x
is:

x = éTch, (1)
w

where @’ is the vector of frequencies in the next time step; W is the diagonal matrix
of fitness coefficients, w; > 0;
n
w = Z W; Ty
i=1

is the mean fitness of the population, used as a normalizer to maintain the system state

as frequencies; and
n

T= {TZ—]} _

7,j=1
is the n-by-n matrix of transmission probabilities, T5;, the probability that type j pro-
duces an offspring of type ¢, so

n
> Ty =1Vj, Ti; >0.
i=1
In vector form, these identities are:
1"z=1, 1"T=1,and w=1"We,

where



4 L. Altenberg

The trajectory of the system is:

1 t
#(1) = 5 (TW)' (0) @)

where v(t) = 1T (TW)! z(0) is the normalizer.

1 Optimal Evolutionary Dynamics for Optimization

For an optimization problem, we assume that an objective function f : § — R+ is
defined on each element of the search space; here, I assume that the goal is to find the
element with maximum objective function value. Exhaustive search or random search
of such a space will require on the average n/2 samples to have sampled an optimum
if it is unique (which will be by assumption throughout unless specified otherwise).
If an algorithm can find the optimum in an average of en/2 samples, for some small
constant € < 1, then it is clearly doing better than “blind search”.

However, evolutionary algorithms can perform much better than O(n). The canon-
ical example for an “evolutionary algorithm-easy” problem is the ONEMAX problem,
where the fitness increases with the number of loci that have 1 as their allelic value
(Ackley, 1987). The number of samples required by a simple mutation-selection al-
gorithm to find the global optimum in the ONEMAX problem is O(L) = O(log(n)),
where L the number of loci, n = |A|” is the size of the search space, A is the set of
alleles for each locus, |.4] the cardinality of A (for binary strings, |.A| = 2) .

So, as a performance goal, we would like the time complexity our evolutionary
search to be on the order of the ONEMAX problem, taking O(log(n)) samples in order
to find the global optimum. To be a little more lenient with the performance require-
ments, we can relax the condition for “EA-easy” to polylogarithmic time, meaning that
it takes O(P(log(n))) samples to find the optimum, where P(log(n)) is a polynomial
in log(n).

So, we wish to know what conditions on an evolutionary algorithm will allow it to
find the global optimum in O(P(log(n))) samples.

Evolutionary algorithms often have multiple domains of attraction (at least in the
metastable sense (van Nimwegen et al., 1999)), which imposes a secondary search
problem: finding the initial conditions that are in the domain of attraction containing
the global optimum. The multiple-attractor problem is usually described as “multi-
modality” of the fitness function, but it must be understood that the fitness function
by itself does not determine whether the EA has multiple domains of attraction—it is
only the relationship of the fitness function to the variation-producing operators that
produces multiple-attractors (Altenberg, 1995).

In order to preclude this secondary search problem, we desire that the algorithm
exhibit a single, global attractor that contains the global optimum.

So, we wish to find what spectral properties give rise to the following characteristics
of an evolutionary algorithm:

1. Rapid First Hitting Time: It finds the global optimum using a number of sam-
ples that are O(P(log(n))) where n, is the cardinality of the search space. I will
call this the rapid first hitting time property.
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2. Global Attraction: It finds the global optimum regardless of the initial samples
taken, i.e. the simplex must have one global attractor containing the optimum.

Search problem that present obstacles to 1. include long path problems, and the
needle-in-a-haystack. Search problem that present obstacles to 2. include deception,
rugged adaptive landscapes, and multimodal objective functions.

1.1 Spectral Conditions for Global Attraction

For the canonical model Eq. (1), the global attraction condition, 2. above, can be
stated precisely as:
lim L(TW)‘%][,-(O) =, andm >0, Vz(0) € A, 3)
5 U (t)
where we index the global optimum type as 1, so 7 is its stationary frequency.
Condition (3) is guaranteed if and only if T is primitive (irreducible and acyclic),
i.e. there is some k£ > 0 such that T* > 0. From the Perron-Frobenius theorem (Gant-
macher, 1959), primitiveness guarantees that there be a strictly positive eigenvector 7
corresponding to the leading eigenvalue of T'W. This eigenvector 7, normalized so
(1,7) = >, m = 1, is the global attractor, since the composition of the population
converges to it regardless of the initial composition x(0).
Primitiveness in the transmission matrix corresponds to the property of ergodicity.
It should be noted that when some types have a fitness of 0, then their frequency
becomes irrelevant to the dynamics, so the transmission probabilities {7, : j € N},
where N' = {7 : w; = 0}, are also irrelevant. Hence, primitiveness is required only for
the restriction of T" to T, where

T+ = [Tj] .
LiEN
For simplicity, I will henceforth assume all fitnesses are positive.

It should be noted that ergodicity in the infinite population model gives us little
guarantee that the system in the finite population model will exhibit a global attractor,
due to the phenomenon of metastability or broken ergodicity (Palmer, 1982). While
ergodicity in the infinite population model is necessary for ergodicity in the finite pop-
ulation model, it is not sufficient. The Markov chain for the finite population model

must in addition be rapidly mixing (Sinclair, 1992) to avoid broken ergodicity, as will
be discussed later.

1.2 Spectral Conditions for Rapid First Hitting Times

What properties of T and W —which here completely define the canonical evolution-
ary algorithm—Iead to rapid first hitting times? W incorporates the map between the
objective function and the fitness values, w;, and we could certainly focus on the prop-
erties of this map. I can pose the following (without belaboring its precise details):

Open Question 1.1 For a given transmission matrix, T, what is the optimum selection
scheme to find the global optimum with a rapid first hitting time?
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Here, however, since the canonical model assumes that W is fixed, we wish to
consider the problem for arbitrary W. This leaves only T, the transmission matrix, to
be explored.

We can, without loss of generality, label the unique optimal point in the search
space with 7 = 1, so

n
w1 = Mmaxw;.
i=1

We can trivially guarantee a hitting time of 1 by simply constructing a transmission
matrix that produces the optimum by mutation:

T =

Transmission in this case is biased to find the optimum without any help from selection.
Clearly, such a priori knowledge does not capture the nature of the implicit knowledge
that an evolutionary algorithm must contain to have rapid first hitting times (Altenberg,
1995). The essence of evolutionary search is that transmission in the absence of se-
lection is unable to produce adaptation or optimization. Only when selection and
transmission are combined does adaptation occur. The translation of this principle into
a condition on 7" would require that all types evolve to equal frequency in the absence

of selection, i.e.

lim (T)" x(0) = % 1, Vz(0) € A,. )

t—oo

Condition (4) for “fair” transmission implies that
1. The transmission matrix is doubly stochastic, i.e. T'1 = 1;
2. The transmission matrix is primitive, i.e. irreducible and acyclic.

So, our question about the optimal characteristics of T" can be posed thus:

Open Question 1.2 Given a fitness function on a points in a search space, what “fair”
transmission matrix is optimal for finding the global optimum with rapid first hitting
time?

A rapid first hitting time refers to the number of samples that need to be taken
before finding the global optimum. But in an infinite population, an infinite number of
samples are taken each generation. So clearly, to adapt the infinite population model to
the problem of rapid first hitting time, we need a proper translation.

In a finite population, with discrete, non-overlapping generations, the number of
samples, s*, until the optimum is found is:

s*=NrT1pu,

where IV is the population size, 7 is the first hitting time (in generations), and p is
the fraction of the population each generation that comprise new samples. Hence, to
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achieve rapid first hitting times, the population size and the first hitting time itself must
each be polylogarithmic in n = |S|, the size of the search space, since O(P(log(n))) *

O(P(log(n))) = O(P(log(n))).

1.3 Rapid Mixing and Rapid First Hitting Times

Vitanyi (2000) has investigated the problem of rapid first hitting time in the finite pop-
ulation model, and proposes two criteria that will ensure rapid first hitting time:

1. the second-largest eigenvalue of the matrix representing the Markov process is
bounded away far enough from 1 so that the Markov chain is rapidly mixing, as
defined by Sinclair (1992).

2. the stationary distribution 7 gives probability greater than 1/ P (log(n)) to the set
of states that contain the global optima, where P(log(n)) is a polynomial in the
log of the size of the search space.

The identification of the second-largest eigenvalue as a measure of the speed of
convergence of the Markov chain in evolutionary dynamics goes all the way back to
Wright (1931) and Fisher (1930), who solved the second-largest eigenvalue for the
Markov process representing the finite population model. This eigenvalue is A3 =
1—1/N (since Ay = Ao = 1), where N is haplotype population size. It gives the rate
of convergence to fixation on a single haplotype due to genetic drift, and is also the rate
of decrease in the frequency of heterozygotes in the population. See Ewens (1979, pp.
17,76, 79, 82, 85-90, 105-107, and Appendix B).

Other more recent work investigating the second-largest eigenvalue includes Suzuki
(1995), Rudolph (1997), and Schmitt and Rothlauf (2001a,b)

The condition defined by Sinclair (1992) to produce what he calls rapid mixing in
a Markov chain is as follows. Sinclair lays out his concept of rapid mixing by first
defining the relative pointwise distance (r.p.d.) on a Markov process with transition
matrix P as:

\ P =
ij

d(t,n) = max ———
i,j€{1,...,n} T

where 7 is the cardinality of the state space for the chain. Additionally, one defines
r(e) =min{t € ZT : d(t',n) <e, V' >t}.

The Markov chain is said to be rapidly mixing if there exists a polynomial P(log(n),log(1/¢))
such that:

max 7(€) < P(log(n),log(1/€))

e€(0,1]
(Sinclair, 1992, p. 56).

Rapid mixing concerns the rate of convergence of a Markov chain to its limiting
probability distribution. The second-largest eigenvalue determines the rate at which the
components of the probability distribution that are orthogonal to the limiting distribu-
tion die away. The definition of fast optimization which depends on rapid mixing I call
rapid first hitting time by analogy.
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I propose a slightly different set of criteria from Vitanyi (2000) to allow rapid first
hitting time to be defined in the infinite population model. We can translate the above
discussion into a condition for rapid first hitting time in the deterministic model thus:

Definition: Rapid First Hitting Time. Consider a deterministic evolutionary algo-
rithm with a unique global optimum, which we set to be type 1, so wy > w; for all
i€{2,...,n}. Let

7(€) = m(%l)égzn min{t € Z% : x1(t) > €}

The evolutionary algorithm is said to possess a rapid first hitting time if there exist
polynomials P (log(n)) and Py(log(n)) inlog(n), such that

€= piogiy @9 7(€) < Pallogn))) ©)

‘)—‘

(TW )t x(0), this requires
and Py (log(n)) such that:

For the canonical evolutionary algorithm, x(t) = e

that for all £(0) € A,,, there exist polynomials P (log(n)

~—

>t
~ Pi(log(n))

Of course, it must be emphasized that this ‘translation’ carries with it no presump-
tion that the infinite population model adequately approximates the behavior the first
hitting time in the finite population model. The first hitting time is a concept that
properly belongs to stochastic processes; it is a random variable. The use of the in-
finite population model to approximate the first hitting time has been taken before in
the “takeover time” models (Goldberg and Deb, 1991), where a deterministic, infinite
population model is used to approximate the time to fixation of a genotype in a finite
population. It is clear that this approximation will be inadequate and misleading un-
der the very circumstances in which an evolutionary algorithm is of interest, namely,
when it can find the fittest elements of the search space by sampling only a fraction
of the search space. This circumstances will be discussed in Section 2.1. I claim only
that this use of the infinite population model may lead us to results that may be worth
investigating more rigorously in the finite population model.

21(Pa(log(n) = ——=[10--- 0] (TW)720o5) ()

1
v(t) ©)

1.4 Some Analysis

We can assume without significant loss of generality that "W permits a Jordan canon-
ical representation as
TW = QAQ", (7)

where the matrix ) consists of columns that are the eigenvectors of TW, QQ'" =
QTQ = I, and A is the diagonal matrix A;; = \; of the eigenvalues of TW. This
assumption will simplify the analysis.

The condition applies if we assume that transition probabilities are symmetric, i.e.
T;; = T};, which is typical of the mutation operators used on data structures in evolu-
tionary computation. This is verified by noting that since any symmetric matrix S has
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Jordan form S = PAP", so we can take S = w2 Twl/? = PAPT hence
T™W — (W’l/QP) A (PTWW‘) .

We must assume here that all fitnesses are non-zero, w; > 0.
With this assumption we can then represent the trajectory of the population as:

1 t
x(t) = EQA Q" x(0).

We can arbitrarily permute the indices so that Ay > Ay > --- > A\, > —\q, and so
that wy; > wy > -+ > wy. Then for Q;;, 7 follows the order of the fitnesses, while j
follows the order of the eigenvalues. In particular,

g, =cm>0
is the strictly positive leading eigenvector of TW, with ¢ = (1,q,) (note that by

definition (g;, g;) = 1). Thus:
TWr = M.

The trajectory of the frequency of the optimal type is:

x1(t) = %un )\f [ql—rm(o)}
- <qu a2 +un< :) qz,w<o>>>. ®)

Further evaluation of v(t) yields:

v(t) = > 17gMq]x(0)
=1

= Al -zn:<1,qi> (i—i)tmi,w(())ﬁ

Li=1

= AN |(1,q,) (g, +Z (1,q;) ( l) <qi7m(0)>]

- elan s +Z L (3 )t<qi,w<o>>],

using ¢ = (1, q;). So we obtain:

q11(q1,z(0)) + >0 5 qus (i—l)t (q;,x(0))

¢ ar, 2(0)) + Xisy(La,) (3£) (@, 2(0))

X1 (t) =
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Substituting the above into (6), setting t = P»(log(n)), and rearranging, we obtain the
condition:

[P1(log(n)) g1 — ] (g, =(0)) > ©)
n )Pz(log(n))

> (%

=2

[(1,q;) — Pr(log(n)) qui] {g;, (0))
Since q; = cm, we substitute Pi(log(n)) g1 — ¢ = ¢[Pi(log(n))m — 1], and
(g1, 2(0)) = c(m, z(0)), to get:

¢ [Py(log(n))my — 1](m, 2(0)) > (10)

"\ P (log(n))
: ()\_1) ((1,q;) — Pi(log(n)) q14) (g; x(0)),

>

=2

Vx(0) € A,
At this point, we take interest in the second-largest eigenvalue A2. Let us define
T = )\2/)\1 . (1 1)

For any § > 0, if r is small enough, then

5> ZTPz(log(n)) ((1,q;) — P1(log(n)) q14) {q;, :B(O))‘
=2
n_ oy N Pa(log(n)
2 (;_> ((14,) — Pi(108(n)) q1:) (g, (0))| > 0.

In this case, condition (10) is met provided
[P1 (log(n))m — 1] {m, x(0)) > §/c?
or

)
L+ = zoy 1
Py (log(n)) Py (log(n))’

Hence, for small enough r, the only condition for rapid first hitting time is that the
frequency of the optimum at equilibrium be on the order of Py (log(n))~". We know

that selection is required in order for m; > m since the principle eigenvector of

T hasm = % by the fairness assumption. Thus:

T >

12)

Theorem 1 [f the system x(t) = ﬁ(TW)t x(0) exhibits rapid first hitting time,
then there exists a critical value o € [0, 1) such that the system x(t) = - (TW?7)! x(0)

0]
no longer exhibits rapid first hitting time for all o < ox.

Characterizing the dependence of o on T' and W remains an open question.
Now, it remains to be asked, what transmission matrices 1" minimize r = )‘—f ?
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1.5 Transmission Matrices Minimizing \;/)\;

If we find a transmission matrix that gives r = A3 /A; = 0, then the only condition we
require for rapid first hitting time is (12). The rank-1 matrix yields = 0:

1 1 --- 1
1 1111 1
T=U=-11"=—
n n : :
1 1 --- 1
We have A1 (U) = 1,and Ao (U) = - -+ = A\, (U) = 0. When we include selection:
w1 Wo PN Wp,
w1 Wo PN Wp,

1 1 1
n n n

w1 Wo “ee Wn,

is also a rank-1 matrix, with eigenvalues \(UW) = 13" w;, and Ao (UW) =
=2 UW) =0.

Thus, it would appear that the rank-1 matrix would be a candidate transmission
matrix to achieve rapid first hitting times. However, this hope is instantly dashed by
noting that for UW, m; = 1/n, which is not greater than 1/ P; (log(n)). We might ask
if we can find another rank- 1 matrix where 71 > 1/P;(log(n)), but this is precluded by
the condition that T" be “fair’, and thus doubly stochastic, requiring that m; = 1/n for all
1. This result is not unexpected, when we consider that the rank-1 matrix corresponds
to random search.

So, we are left with the following:

Open Question 1.3 For a given set of fitnesses, W, what classes of fair transmission
matrices maximize m while minimizing v = X2/ A1 so as to satisfy the conditions for
rapid first hitting time?

One step we may take in defining the notion of classes of transmission matrices is
to note that the fopology of transmission may be separated from the operator intensity
by the following parameterization:

Tpw)=1-wI+pP, (13)

where £ € [0, 1] is the mutation rate, and P is a transmission matrix in which at least
one value P;; = 0 (Altenberg and Feldman, 1987). For those genetic operators that
can be represented as graphs, where a vertex represents a type, and an edge represents
an operator transformation from one type to another, then P naturally corresponds to a
normalized adjacency matrix for the graph.

We can see immediately that if ¢ = 0, the matrix T'(1)W becomes reducible, so
if 21(0) = 0, then z1(t) = O for all ¢. For small p, the following should be readily
shown:
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Conjecture 1.1 Ifthe system x(t) = ﬁ (T W)t z(0) exhibits rapid first hitting time,
then the system
2(t) =
v(t)
will exhibit rapid first hitting time for |, € [m, 1], for some polynomial in log(n),
P(log(n)), and will not exhibit rapid first hitting time for j1 € [0, 1].

(A= I +pTIW)" 2(0)

Let us return to the example of the ONEMAX problem as the paradigmatic EA-
easy problem. The transmission matrix for the ONEMAX problem is simple bit-flip
mutation, which produces an L-dimensional binary hypercube when represented as a
graph between genotypes that mutate to one another. When fitnesses are permuted to
the proper order (which Liepins and Vose (1990) prove can always be done), the prob-
lem becomes the ONEMAX problem. Hence, one can conjecture that a transmission
matrix representing the binary hypercube would be a primary candidate for rapid first
hitting time. However, it is clear that W can be designed for which no rapid first hitting
time can be achieved:

Conjecture 1.2 It is possible to choose € small enough so that if
|{Z LES> W — Wi > O}| ~~ (’)(n),
then there exists no fair transmission matrix that can produce rapid first hitting time.

With the proper constraints on W, however, we may find the following:

Conjecture 1.3 Consider a search space, S, with |S| = n = 2L. Let the fitness values
be w; = e~ . Consider a binary encoding of the indices, B(i), such that w; > w;
if and only if the Hamming distances, H|[ , |, between the binary encodings satisfies
H[B(1),B(i)] < H[B(1),B(j)]. Lt T = (1 — p)I + pu P, 0 < px < 1, where P
is the normalized adjacency matrix for the L-dimensional binary hypercube Q) 1, under
this encoding. Then for some o+ > 0, if 0 > o, then there exists (o) such that the
system x(t) = (TW)! x(0)/v(t) has rapid first hitting time.

Other examples of evolutionary systems that attain rapid first hitting times can be
found in Vitanyi (2000).

We may also consider a class of transmission matrices which can never achieve

rapid first hitting time for any set of fitnesses, namely, the “long path” (Horn et al.,
1994) matrices:

Conjecture 1.4 Let T = (1 — p)I + p P, where Pyj = Pi,, = Py = 1/2 for
li — j| = 1, P;j = 0 otherwise:

[0 1 0 0 0 1|
1 1 0
01 0 1 0
1
P:— T
5 .
0 1 0 10
0 1 0 1
10 0 0 1 0
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Then, there are no fitnesses W, nor values u, such that the system

1 t
#(t) = 45 W) 2(0)

has rapid first hitting time.

1.6 Rapid First Hitting Time and No Free Lunch Theorems

It should be noted that the concept of rapid first hitting times allows us to distinguish
between transmission matrices in a way that the No-Free-Lunch Theorem (Wolpert and
Macready, 1995, 1997) cannot.

The No-Free-Lunch Theorem, as applied to the current context, states that all trans-
mission matrices have the same performance when averaged over all permutations of
a set of fitnesses. However, Wolpert and Macready (1995) point out that search algo-
rithms can be distinguished using minimax properties. In this case, an example of a
minimax property is whether permutations of fitnesses exist for a given transmission
matrix that produce rapid first hitting times.

So, while a long-path operator and a binary hypercube operator will have the same
average performance in locating the global optimum over all permutations of fitnesses,
they can be distinguished by their potential for rapid first hitting time. With an adequate
distribution of fitness values, the binary hypercube makes possible permutations that
produce ONEMAX problems having a rapid first hitting time. The long-path operator,
on the other hand, allows no permutation, for any distribution of fitnesses, that can
produce a rapid first hitting time. In this way, we can make a definite judgement that
the binary hypercube is superior to the long-path operator for optimization.

Numerous possible directions exist for further investigation into these open ques-
tions about rapid first hitting time. I will leave these to forthcoming work.

2 Spectra for Finite Population Dynamics

One of the important open questions in evolutionary computation is the relationship
between the dynamics of the infinite and the finite population models. The Wright-
Fisher model of finite populations (Wright, 1931; Fisher, 1930)! is derived from the
canonical model of an infinite population by the addition of only one free parameter—
the population size. It thus provides the ideal model in which pose this question.

2.1 Wright-Fisher Model of Finite Populations

In the Wright-Fisher model of a finite population, selection and genetic operators act
on the current members of the population to produce a probability distribution from
which each member of the population for the next generation is drawn independently.

IThe Markov model by Wright and Fisher is known in the genetic algorithms community as the “Nix
and Vose model” (Nix and Vose, 1991). Other work on Markov chains in genetic algorithms includes Gold-
berg and Segrest (1987), and (Davis and Principe, 1993), since this community developed largely without
awareness of prior work in mathematical population genetics.
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It is as if an infinite zygote pool was created, weighted by selection, from which only
finite many can survive, each with equal probability.

The elements of the Wright-Fisher model are mostly the same as for the infinite
population model. Let:

N be the population size;

x be the vector of frequencies of each type ¢ in the population, corresponding to N z;
individuals of type ¢;

x’ be the vector of the frequencies of each type 4 in the population in the next gener-
ation, corresponding to N z; individuals of type ¢, produced by taking N inde-
pendent samples from the distribution y(x);

y(x) = %T Wz be the vector representing the probability distribution for drawing an
individual of type ¢ to compose the population in the next generation. T"and W
again represent the transmission matrix and fitness matrix, respectively.

Since the population consists of discrete individuals, the frequency vectors are now
restricted to a lattice of discrete points on the simplex A,,, namely

Ap(N)={x:Nuz; € {0,1,...,N},ixi:1}.

The Wright-Fisher model forms a Markov chain, whose transition matrix on frequency
vectors is:

M = [Mcc/m}
Tlaaren, )

with entries

n Nz n T Nz!,
Y N! e TWax
Mg = N! g = 1 14
x',T E (Nzj)! H?Zl(Nx;)l };11: ( 1TWaz (14)

where e/ = [00 ---1---0 0] has the 1 in the ith position.
If we make the assumption that T' is primitive, and T;; = T);, then we may employ
the Jordan form (7):

i(a; ) e

ng i

Mg o = || =t J . 15
T H NSC ! < j—1 Wi ) >

i=1

Wright and Fisher analyzed some simple cases for this Markov system and derived
a number of their properties, including rates of convergence, probabilities of fixation,
time to fixation, and stationary distributions of allele frequencies.

In the special case of T' = W = I, and n = 2, the solution for all the eigenvalues
of M was found by Feller (1951), and by Cannings (1974) through his method of
“exchangeable processes” (see Ewens 1979, pp. 77-79). The solution is:

i

=1 andxi—H<1—]%2>, ie{2,...,N+1},

j=2
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where )\; refers to the eigenvalues of M, not of TW.

Regrettably, the method of exchangeable processes can not be applied when differ-
ent individuals have different offspring probability distributions. We are therefore left
with the following:

Open Question 2.1 What is the relationship between the eigenvalues and eigenvectors
of TW and those of M ?

Since M is defined explicitly in terms of the eigenvalues and eigenvectors of
TWin (15), establishing their relationship with the eigenvalues of M is simply a mat-
ter of algebra. The complexity of the algebra, however, obscures the relationship. One
may be able to simplify the sums in (15) by making assumptions that cause one term to
dominate the sum, for example, if As,---, A, = 0. But the utility of such an approach
has yet to be demonstrated.

One can nevertheless make the following observations. Because the state space of
the system is restricted to the lattice A, (N) C A,, and the situation of interest is
when N ~ O(log(n)) < n, the vast majority of the entries of any € A,,(N) must
be 0. Thus, A, (N) has no points on the interior of A,,, and is in fact restricted to the
low-dimensional boundaries of A,,.

Thus, the indices of the non-zero components of  make up a sparse set. Let us
define the sparse set:

U(x)={i:z; >0} (16)

Then we may rewrite (14) as:

N! D jm1 4N Dokew(x) GikTh
Mgz = w7 H (17)
[licw@)(Nz))! ) Djev(m) Wit

The trajectory of points in the finite population model will be radically different
from the trajectory in the infinite population model. In the finite population model, a
probability distribution will move over the surface of A,,, while in the infinite popu-
lation model, the system will immediately enter the interior of A, since TW > 0.
Evolution in the finite population model can be views as transitions between one k-
dimensional (k < N) edge of A,, and another, with the probability of transition being
highest for types ¢ where the terms Z;;l qij\j{q;,x) are the largest.

My earlier discussion of the transmission matrix representing the binary hypercube
took place in the context of the infinite population model. I conjectured that in the
infinite population dynamics it will exhibit rapid first hitting time properties. However,
it seems apparent that in the finite population model, the binary hypercube mutation
will be especially advantageous in traversing the low-dimensional boundaries of the
simplex.

I suspect that methods which can analyze (15) as a flow along the low-dimensional
boundaries of the simplex may prove to be most helpful in understanding finite popu-
lation dynamics. In the work of van Nimwegen (1999) we find this approach applied
to specific models of mutation and selection, with a nice harvest of analytical results.
Answers to the general spectral problem, however, await discovery.
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2.2 Rapid First Hitting Time in a Finite Population

For a Wright-Fisher model, we can define the criteria for rapid first hitting time in terms
of the actual first hitting time for the Markov chain. Here I depart only slightly from
Vitanyi (2000).

Let us refer to the set of populations that contain the global optimum as:

Bt ={x e Ap(N):z; >0},
and conversely, the set of populations that do not contain the global optimum as:
B~ ={x € A,(N) : 2z, =0},
Suppose that the population always begins fixed on one type other than the optimum,
sox(0) =e;, 1 €{2,...,n}.
We cannot use M itself to calculate the probability that the first transition from B~
to BT occurs at time ¢, because in calculating [M t} . wherez™ € Bt andz™ €
Ttx-
B, we can’t know whether this transition is the first transition. However, by setting all
the elements of M 1~ 2+ to 0, where ™~ € B~ and x T € BT, we generate a Markov
process in which B is an absorbing set, hence transition probabilities within B~ after
t iterations include the probability that the first hitting time has not yet occurred.

___This modified matrix is equivalent to restriction of M to B T, which we shall call
M . Then the probability that the global optimum first appears after generation 7 is:

Git)= > {Mt] =(1,M'e;)
Tr-eB- ZT.e;
We can define the criteria for rapid first hitting time in terms of the speed at which
G, (1) declines with 7.
As a basis for comparison, we can consider how G;(7) behaves for random search,

ie. M = 2117, where i = |An(N)|. Then G;(t) = Y p-cp- + = (1 - %)N for

all 7. So
1 TN
=(1-— .
G(7) ( n>

In order for G(7) to be reduced to O(1), to be specific, say G(7) < 1, we have:

log|G()] = 7N log (1 - %) <1,

thus for large n, log (1 — 1) ~ —1, hence TN > n, which is what we expect. The
essential idea for rapid first hitting time is that we would like 7N < P(log(n)). The
the obvious candidate for a condition to define rapid first hitting time would be:

Definition: Rapid First Hitting Time in a Finite Population. The evolutionary algo-
rithm is said to possess a rapid first hitting time if there exist polynomials in log(n),
Py (log(n)) and Py(log(n)), such that N < Pj(log(n)), and

S 1
max (1, M e;) < -, forall 7> Py(log(n)), (18)
i€EB~ €
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Clearly, the smaller the spectral radius of M, the more easily that rapid first hitting
time is achieved. We are then ready to pose the main open question regarding the
spectrum of evolutionary systems:

Open Question 2.2 What conditions on the eigenvalues and eigenvectors of TW sat-
isfy condition (18) for rapid first hitting time?

3 Karlin’s Spectral Theorem for
Genetic Operator Intensity

Samuel Karlin derived theorem of fundamental significance for evolutionary dynamics
in an article that examines the role of population subdivision in maintaining genetic
diversity (Karlin, 1982). The problem at hand was to understand whether migration
would enhance or inhibit the maintenance of genetic diversity. Karlin took the ap-
proach of finding the conditions that would prevent an allele from becoming extinct,
i.e. which would cause it to increase when rare. To this end, he proved a general the-
orem on the spectral radius of the stability matrix, which solved his problem for the
case of any number of demes, any migration pattern, and any selection regime—quite
extraordinary in its generality. The theorem is presented below. The square matrix P
represents the migration pattern, £ represents the overall migration rate, and the diago-
nal matrix W represents the average (or ‘marginal’) selection coefficients of an allele
when rare.

Theorem 2 (Karlin, 1982)
Let

M(&) = (1 =4I +EP,

where P is an irreducible Markov matrix, and let W be a diagonal matrix with strictly
positive diagonal elements, where W # al, for any scalar a. Then the spectral radius

p(M ()W) is strictly decreasing in &:

EPMEW) <0, foro<e <

The matrix M ()W represents the stability matrix for the introduction of an allele
into this multi-deme system. The allele goes extinct when rare if p(M ()W) < 1, and
is protected from extinction if p(M (§)W') > 1. Since p(M (§)W') decreases with &,
the consequence of Karlin’s result is that more migration makes it more difficult to
maintain genetic diversity.

Karlin’s result, obtained to answer a question about migration, proves to have much
deeper significance for evolutionary dynamics. It reveals a basic property of the relation
between selection and genetic operators. Its first application outside of the migration
question was by Altenberg (Altenberg, 1984; Altenberg and Feldman, 1987) in mod-
ifier gene theory. A number of studies in the theory of modifier genes — genes that
control the genetic system, such as rates of mutation (Karlin and McGregor, 1974),
recombination (Feldman, 1972; Feldman and Balkau, 1973; Teague, 1976; Feldman
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et al., 1980), and migration (Teague, 1977)— all found same result: new alleles which
reduced these rates could always invade a population, suggesting a general “reduction
principle”. Altenberg (1984) showed that all of these models could be unified with
a common representation, M ()W . With this unified representation, the application
of Karlin’s theorem immediately proves the reduction principle: when an allele that
modifies rates of mutation, recombination, migration, or any other transformation of
type is introduced into a population near equilibrium, it will increase in frequency if it
uniformly reduces the rates of transformation, and go extinct if it uniformly increases
the rates of transformation.

Another immediate result from Karlin’s theorem regards the mean fitness under
a mutation-selection balance. The mean fitness of haploid system decreases with in-
creasing mutation rates:

Corollary 1 Consider an evolutionary system consisting of
e constant selection,
e asexual genetic operators, and
e discrete, non-overlapping generations.

The mean fitness of the population at an attractor is a decreasing function of the prob-
ability of the genetic operator acting.

Proof. Let the asexual genetic operator be represented by the Markov matrix
M, and let u is the probability of applying the operator. Then the transmission matrix
for the algorithm is:

and the recursion for discrete, non-overlapping generations is:
wx' =[1-wWI+uMW z
For the global attractor, &, which is the leading eigenvector of TW (whose ex-
istence and positive value are established by the Perron-Frobenius Theorem (Gant-
macher, 1959), we have:
(- I+pM|We=TWax=2p(TW)=2w.
Hence the mean fitness of the global attractor,

W = p(T()W),

is a decreasing function of the operator probability ;. B
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Figure 1: The Deceptive Trap fitness landscape for three loci with two alleles.
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Figure 2: There is only one attractor at each value y, but an ‘error catastrophe’ is
evident for u =~ 0.5.

3.1 Karlin’s Theorem illustrated with the Deceptive Trap Function

Suppose a mutation operator is ergodic: i.e. repeated application of the operator can
mutate any genotype into any other genotype. Then, under an algorithm of constant
selection and mutation, the Perron-Frobenius Theorem shows that there is only one
domain of attraction of the system—i.e. one ‘fitness peak’, as discussed in Section
1.1. This may seem contradictory to intuition about ‘multi-modal’ fitness landscapes,
in which one would expect multiple domains of attraction. But multiple domains do
not occur in haploid, infinite population models under ergodic mutation; finite popu-
lations are required to produce quasi-stability of multiple attractors. The global nature
of the attractor for ergodic mutation under infinite population size is illustrated with
the Deceptive Trap fitness landscape (Ackley, 1987), shown in Figure 1. In terms of
the hypercube topology of the graph representing mutation, this is a bimodal fitness
function. The frequency vector of the global attractor is shown as a function of the
mutation rate, for a simple point mutation model, in Figure 2. The mean fitness of the
attractor is seen to decrease as a function of the mutation rate, as the Karlin theorem
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Figure 3: The mean fitness of the population at the global attractor as a function of
mutation rate. It decreases in accord with Karlin’s theorem.

proves. This is shown in Figure 3.

3.2 Applications for an Extended Karlin Theorem

Several problems are encountered for which an extended Karlin theorem would allow
solution, but which are currently unsolved. One of these is in modifier theory. This
has been called ‘self-adaptation’ (Schwefel, 1987; Bick, 1996) in the Evolutionary
Computation literature as. In Altenberg (1984) and Altenberg and Feldman (1987) it
is proven that the Reduction Principle for linear variation in transmission holds for
modifiers that are tightly linked to haplotypes under viability selection (Altenberg and
Feldman, 1987, Result 3, p. 565). It is conjectured that the result would also hold for
looser linkage to the modifier locus. The analysis requires that we show for » > 0 that
the spectral radius of M (u, )W decreases in u, where:

M(p,r) = (1= [ = I +rQ]+pul(l —r)S + 78],

with Q, S, and S being Markov matrices (see Altenberg and Feldman (1987) for de-
tails). The proof awaits an extension of Karlin’s theorem for r > 0.

The other context of unsolved problems occurs when several transformation pro-
cesses act on types in the population, such as the simultaneous action of mutation,
recombination, and migration. This can result in recursions of the form:

wz' = M(u, 0,7 )We
(1= I + pA][(1 - B)I + B][(1 —v)I +~+C|We,

where A, B, and C are Markov matrices representing different transformation pro-
cesses, and i, (3, and ~y are the overall rates of those processes. We wish to know how
the spectral radius of M (p, 3,v)W changes as a function of each parameter y, 3, and
7. Such a result would allow understanding of genetic recombination can evolve in
the presence of mutation under certain circumstances (Altenberg, 1984; Kondrashov,
1988). It is clear that for certain cases of A, B, C, and W, the spectral radius is not
monotonically decreasing in each of p, 3, and . However, specifying the conditions
that produce an increase in the spectral radius with respect to u, 0, v, etc. requires an
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extension of Karlin’s theorem. The existence of cases of increase led to the “Principle
of Partial Control” for the evolution of genetic modifiers:

Conjecture 3.1 (Altenberg, 1984, p. 149) When a modifier gene has only partial con-
trol over the transformations occurring at selected loci, then it is possible for this part
of the transformation to evolve an increase.

3.3 Extending Karlin’s Theorem
We need to extend Karlin’s theorem on linear variation from products of the form
(1 = I+ uB]W
to products of the more general form
[(1—p)A+ puB]W.
Open Question 3.1 Let
M(p) =[(1 - p)A+ pB],

where A and B are irreducible Markov matrices, and W is a diagonal matrix with
strictly positive diagonal elements not similar to the identity matrix. For what condi-
tions on A, B, and W is the spectral radius p(M (u)W) strictly decreasing in .

%p(M(u)W) <0, for0<pu<1?

Karlin proved that the spectral radius p ([(1 — p)I + pB]W) is decreasing in .
Clearly each matrix pair { B, W'} determines a class of matrices A for which the spec-
tral radius p ([(1 — u) A + uB]W) is decreasing in p. Explicit characterization of this
class is not immediately obvious. However, one can follow Karlin‘s proof to produce
a condition which would provide the answer if it could be solved.

Suppose that

M (p, ) = [(1 = I + pAJ[(1 —r)I +rB],

where A and B are Markov matrices.
I retrace the analysis of Karlin (1982, pp. 195-196). Define

Zq

¢(P=,U77°) = ;‘;%;Pi log (W) . (19)

Let @ (u, ) be the vector for which the supremum is attained. The Donsker-Varadhan
(1975) variational formula for the spectral radius gives:

log p (M (p,7)D) = zs;i% [(p,log(D 1)) — ¢(p, p1,7)] (20)
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where D = diag {wi /E}, 1 is the vector of ones, log(v) stands for the vector of
components log(v;),
log(D 1) = |(logw; — 1ogﬁ)},

and we set ), p; = 1. Let p(y, ) be the vector at which this supremum is attained.
Since both &, r) and p(p, r) are unique critical points as implicitly defined,

al’(/b?")i _ ap(/j/a r)i

= = O
ou o
for all 5. Hence 9 9
p —_— —_—
o0 pausb(p,u,r)

with p = p(u, r) fixed. Further evaluation paralleling Karlin (1982) yields the condi-
tion
%)
P e @1)
o
[, )],
po )2 (1, 7)];

For r = 0, Karlin uses Jensen’s inequality to give:

ZT; ,O
ot 30O e

xi(:u70)

> ¢(p.p,0) = Zpi(u,()) log 777

By using the principal eigenvector
z=M(u0)z,

the supremum definition of ¢ gives:

T;
(2100 2 2008 (77, Gy
Thus was it is proved that for » = 0, 9p/Op < 0. The analysis of (21) for » > 0 does
not allow us to use (22), and is unsolved. This leaves us with:

Open Question 3.2 What conditions on the matrices A and B, and scalars r and p,
produce

[w(ﬂ7r)]i
1= ;Pi(% A= T + 1A =)L + Bl a(u )],

K3

where x(p, ) and p(u, 1) are the vectors producing the suprema of expressions (19)
and (20)?
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Another direction to extend Karlin’s theorem, which would be quite relevant to the
issue of rapidly mixing Markov chains and rapid first hitting times, is to say something
about the second-largest eigenvalue. I would offer (without claiming undue certitude)
the following:

Conjecture 3.2
Let

M) =(1-&I+EP,

where P is an irreducible Markov matrix, and let W be a diagonal matrix with strictly
positive diagonal elements not similar to the identity matrix. Then the ratio of the
second-largest eigenvalue \o( M ()W), to the spectral radius p(M ()W), is strictly
increasing in £:

d (M(EW)

d§W>O7 f0r0§§§1

3.4 Discussion

Karlin’s theorem, because it holds for arbitrary Markov and fitness matrices, captures a
fundamental property of Darwinian dynamics, the interaction of selection and transfor-
mation caused by genetic operators. What is not generally understood is how multiple
genetic operators interact with one another. Theories that depend on the interaction
of recombination, mutation, migration, selection, and drift, such as Wright’s Shifting
Balance Theory (Wright, 1931), pose formidable analytical difficulties. Attempting to
understand the interaction of multiple genetic operators brings us to the need to extend
Karlin’s theorem.

4 Conclusion

I hope that the reader, having followed the lines of discussion through this chapter,
may come away with the conclusion that the spectra of evolutionary systems provide
a useful means to pose, and occasionally to solve, problems in evolutionary dynamics.
I have used the spectral representation of the generalized mutation-selection system
to address the question of when an evolutionary algorithm is useful for function op-
timization. I have described an analog to “rapidly mixing Markov chains” (Sinclair,
1992) that is appropriate for optimization, “rapid first hitting time”. The conditions
needed for an evolutionary algorithm to exhibit rapid first hitting time can be described
in terms of the spectra of the linear systems that, under broad circumstances, can be
used to represent them.

I have also posed questions on the dynamics of finite populations in terms of the
spectra of the underlying operators. Tying together the spectra of infinite population
models with the spectra of the finite population models into which they are embedded
remains a major open question in the theory of evolutionary dynamics. Progress may
result if flows over the low-dimensional boundaries of the simplex can be modeled.
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Lastly, I have reviewed an important theorem by Karlin (1982) on the spectral prop-
erties of genetic operator intensity. Extensions of this theorem would find immediate
application.

Since these are spectral problems, there may indeed already be analytic techniques
that could be applied to their solution. It is hoped that this chapter may bring attention
to these problems and thus hasten their solution.
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