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Stability and diversity are two key properties that living entities share with spin glasses, where
they are manifested through the breaking of the phase space into many valleys or local minima
connected by saddle points. The topology of the phase space can be conveniently condensed into
a tree structure, akin to the biological phylogenetic trees, whose tips are the local minima and
internal nodes are the lowest-energy saddles connecting those minima. For the infinite-range
Ising spin glass with p-spin interactions, we show that the average size-frequency distribution
of saddles obeys a power law 〈ψ(w)〉 ∼ w−D, where w = w(s) is the number of minima that
can be connected through saddle s, and D is the fractal dimension of the phase space.
PACS 75.10.Nr (principal), 87.23.Kg

The resemblance between models of adaptive evolution
[1] and disordered spin systems [2] is certainly not coin-
cidental. In fact, two key features that any successful
model of biological evolution ought to possess are stabil-
ity and diversity, i.e., exactly the properties responsible
for the complex thermodynamics of spin glasses [3]. It
is not a surprise therefore, that many of the tools and
concepts of the statistical mechanics of disordered sys-
tems have been applied to the study of the evolutionary
process. In this contribution we show that such inter-
change can be profitable to statistical mechanics too, in
that a great deal of information about the phase space of
spin-glass models can be condensed into a tree structure,
in a standard procedure widely used in taxonomy and
molecular phylogenetics [4]. As in the biological case,
the geometric properties of this tree can be used to char-
acterize the disordered system quantitatively.

The main unifying concept in the investigations of the
physics of disordered systems and evolutionary change
is probably the notion of fitness or energy landscape.
The concept of neighborhood among genotypes (config-
urations), typically defined such that point mutations
interconvert neighbors, allows us to view the set of all
genotypes as the vertices of a graph with edges connect-
ing neighboring configurations. A fitness landscape is
then obtained by assigning a fitness value to each ver-
tex. An explicit connection between those two research
fields is obtained in the case of populations of asexually
reproducing haploid organisms evolving on rugged fitness
landscapes. In this case the genotypes are often modeled
by configurations of N Ising spins s = (s1, . . . , sN ) with
si = ±1 so that a point mutation corresponds to a single
spin flip. In the simplest case, evolutionary adaptation

is described as an “adaptive walk” on the fitness land-
scape [1], whose statistical mechanics equivalent is the
zero-temperature Glauber dynamics. The fitness func-
tion assigns a random numerical value to each one of the
2N spin configurations. In this work we consider the p-
spin landscapes [5]:

Hp(s) = −
∑

1≤i1≤i2...≤iN≤N

Ji1i2...iN
si1si2 . . . siN

(1)

where the Ji1i2...iN
are statistically independent Gaus-

sian distributed random variables with mean zero and
variance p !/(2N p−1). The p-spin models form a class
of tunably rugged landscapes similar to Kauffman’s Nk-
model [1], which is not only more appealing to statistical
mechanics but also is a more natural basis of landscape
theory [6]. In fact, for p = 2 the Hamiltonian Hp reduces
to the SK model [7] which exhibits a large number of
highly correlated local minima, while the limit p → ∞
corresponds to the random energy model (REM) [5] and
yields an extremely rugged, uncorrelated landscape. Like
the Nk-model, p-spin landscapes have been used repeat-
edly to model evolutionary processes, see e.g. [3, 8].

The scenario that emerges from the replica approach
to disordered spin systems is that the phase space com-
posed of the 2N spin configurations is broken into many
valleys [2]. The ease with which one valley can be reached
from another one depends on the saddle points connect-
ing them. More specifically, the energy of the lowest
saddle point separating two local minima x and y is

E[x, y] = min
p∈Pxy

max
z∈p

Hp(z) (2)
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FIG. 1: Barrier tree for a 3-spin model with N = 7. The
9 minima (tips) and 8 connecting saddle points (internal
nodes) are labeled by their spin configurations.

where Pxy is the set of all paths p connecting x and y
by a series of subsequent spin-flips (or point mutations).
The saddle-point energy E[ . , . ] is an ultrametric dis-
tance measure on the set of local minima, see e.g. [9].

Let us assume for a moment that the energy function
is non-degenerate, i.e., Hp(x) 6= Hp(y) whenever x 6= y.
This is true for generic p-spin models with odd interaction
order p. Then there is a unique saddle point s = s(x, y)
connecting x and y characterized by Hp(s) = E[x, y].
Note that this definition of saddle point is more restric-
tive than in differential geometry where saddles are not
required to separate local optima [10]. To each saddle
point s there is a unique collection of configurations B(s)
that can be reached from s by a path along which the
energy never exceeds Hp(s). In other words, the config-
urations in B(s) are mutually connected by paths that
never go higher than Hp(s). This property warrants to
call B(s) the valley or basin below the saddle s. Fur-
thermore, suppose that Hp(s) < Hp(s

′). Then there are
two possibilities: if s ∈ B(s′) then B(s) ⊆ B(s′), i.e., the
basin of s is a “sub-basin” of B(s′), or s /∈ B(s′) in which
case B(s) ∩ B(s′) = ∅, i.e., the valleys are disjoint. This
property arranges the local minima and the saddle points
in a unique hierarchical structure which is conveniently
represented as a tree, termed barrier tree (see Fig. 1).

In principle, barrier trees can be computed by means
of the following simple recursive procedure: The tips of
the tree are the local minima. The parent of tip x is the
lowest-energy saddle point s that connects x to another
local minimum. Analogously, the parent of a saddle point
s is another saddle point s′ that connects s to a local min-
imum z that is not contained in the basin below s, i.e.,
z /∈ B(s). The “root” of the resulting tree is the saddle
point s∗ with the highest energy, since by definition all
local minima are contained in B(s∗). Note that the sub-
tree T(s) that has the saddle s as its root has exactly the
local minima in B(s) as its tips. The exact calculation
of the barrier tree is a highly challenging computational

A

B

FIG. 2: Unrooted phylogenetic tree of extant species
(white dots) obtained from the minimum fitness paths,
shown by thin lines with saddle points (ancestors) indi-
cated by black dots, does not necessarily coincide with
the tree obtained from clustering methods that are based
on sequence similarity, shown here with thick lines. The
gray intensity is proportional to the fitness value.

problem and only recently some progress in that direc-
tion has been achieved, mainly in the context of RNA and
protein folding [11, 12] (see also [13]). The reason is that,
unless one has sufficient a priori knowledge on the land-
scape, it is necessary to generate the complete landscape
in order to find all local minima. Even for very small sys-
tem sizes a simple-minded exhaustive search approach to
evaluating Eq. (2) would be hopeless as one must cal-
culate all paths connecting all pairs of minima. In this
contribution we use the program package barriers-0.9

to construct the barrier tree from an energy sorted list of
spin configurations in linear time. The algorithm explic-
itly constructs the basins B(s) and subtrees T(s) [11].

The barrier tree can be viewed as a phylogenetic tree
with a single common ancestor at the root. The evo-
lutionary process leading to the extant species (i.e., the
tips of the tree) is an adaptive walk on the rugged fitness
landscape (1). Interestingly, according to definition (2) a
subtree connecting two tips corresponds to the evolution-
ary path of minimum fitness cost which could be regarded
as a generalization of the maximum parsimony princi-
ple [4] to rugged fitness landscapes. This differs from
the usual approach in molecular biology, where a flat fit-
ness landscape and a diffusive behavior in sequence space
is assumed to justify the reconstruction of phylogenetic
trees based solely on sequence similarity, i.e., configura-
tional overlap. In Fig. 2 we give an example in which
the distance-based tree and the barrier tree have differ-
ent topologies. In particular, the species labeled A and B
are much closer in the barrier tree than in the maximum
parsimony tree. It is interesting to note that barrier trees
can be defined in a meaningful way also for continuous
energy surfaces. Their nodes are the local minima and



3

the saddle points satisfying Eq. (2), while the edges can
be associated with saddle connections along which the
energy varies monotonically.

The definition of barrier trees becomes more compli-
cated if the energy function is degenerate as in the case
of p-spin models with even p, where Hp(s) = Hp(−s).
The appropriate definition of the barrier tree is obtained
by identifying the saddle points s and s′ with the same
interior node of the tree provided (i) they have the same
energy and (ii) they are connected by a path along which
the energy does not exceed Hp(s) = Hp(s

′). In the non-
degenerate case the trees are almost always binary. De-
generacies can occur also for geometric reasons since the
same saddle point can connect more than two basins.
One may, however, “expand” a non-binary interior node
into a sequence of binary nodes at the same height. We
use this technical trick here to simplify the computations.
This procedure is justified because it affects only the sad-
dle points above the saddle s̃ that connects the ground-
state and its mirror image, i.e., it affects only the nodes
with large basins, far beyond the regime where the tree
exhibits self-similarity.

One important aggregate characteristic of a tree is
the size-frequency distribution of its saddles or subtrees
ψ(w), where the size w = w(s) is, in the simplest case,
just the number of local minima or tips in B(s). It is in-
structive to consider first a few examples of simple ideal
trees for which ψ(w) can be calculated analytically. E.g.,
a symmetric binary tree of depth m ≥ 1 has 2m−1 nodes,
of which 2m−1 are tips and the remaining 2m−1 − 1 are
saddles. It can be easily shown that there are 2m−k−1

saddles with sizes w = 2k; k = 1, . . . ,m− 1, so that

ψ(w) =

{

1

w

(

1 − 21−m
)

if log
2
w ∈ N

0 if log
2
w /∈ N.

(3)

The other extreme is the asymmetric binary tree in which
every left child is a tip. There are 2m− 1 nodes: m tips
and one saddle with size w, 1 ≤ w ≤ m− 1. Hence

ψ(w) =
1

m− 1
for 2 ≤ w ≤ m. (4)

We turn now to the analysis of the complex trees as-
sociated to the random energy function (1) as produced
by the program barriers-0.9. In this case the average
number of tips increases exponentially with the number
of spins eαpN , where αp increases from α2 = 0.199 to
α∞ = ln 2 [2]. Log-log plots of the average size-frequency
distributions of subtrees for particular p-spin models and
the REM are shown in Fig. 3. In all cases the data are
very well fitted by straight lines with negative slopes in
the regime of high frequencies, suggesting then a power
law form

〈ψ(w)〉 ∼ w−D (5)
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FIG. 3: Log-log plots of the average frequency of subtrees
(saddle points) with different numbers of tips (minima)
for the p-spin landscapes with N = 18, and the REM
with N = 16, averaged over 300 landscapes each. For the
REM, a size-frequency distribution for a single landscape
is shown as gray squares to demonstrate the scatter.

where D can be viewed as the fractal dimension of the
barrier tree and hence of the phase space of the disor-
dered system. This result points out a very large num-
ber of subtrees with a few tips and a very small number
of subtrees with many tips. Moreover, it implies that
there is no characteristic number of tips within subtrees.
As illustrated by the gray data points in the panel for
the REM, the same scaling law seems to hold true for
the size-frequency distribution of a single instance of the
landscape as well. The asymmetric scattering of points
observed in the low frequency regime, i.e., 〈ψ(w)〉 � 1,
is due to the few high energy sadddle points near the
root of the tree. It is interesting to note that many fre-
quency distributions of taxonomic units containing var-
ious numbers of subunits (e.g., species per genus) were
found to be well described by power laws [14]. It should
be stressed that the scaling law (5) is by no means a
mere consequence of the existence of an underlying tree
structure, as it is clear from the asymmetric binary tree
example discussed before as well as from the study of dis-
crete branching processes which generate different forms
of size-frequency distributions [15].

The average size-frequency distribution for the SK
model displays a rather distinct behavior pattern which
seems to indicate the existence of two different types of
self-similar structures at different levels of the tree. These
structures are characterized by straight lines with dis-
tinct slopes, being joined by a short, almost flat curve
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FIG. 4: Dependence of the exponentsD on the reciprocal
of the number of spinsN . The data for p = 2 do not allow
for the unambiguous estimate of an exponent D.

corresponding to a crossover regime between the dom-
inant structures. The first slope appears to be around
D1 ≈ 1.4, the second slope isD2 ≈ 2. These results, how-
ever, must be taken with caution since the size-frequency
statistics is greatly impaired by the fact that the trees
are typically very small in this model. For instance, for
N = 18 the average number of tips is about 50 in the SK
model as compared to the ∼ 105 tips in the REM.

In addition to being a global measure for the character-
ization of rugged landscapes, to be contrasted with local
measures such as the correlation length [6, 16], the pa-
rameter D also yields a measure of diversity since D is
higher in systems where subtrees with one or a few tips
are more numerous. An attempt to estimate the frac-
tal dimension D for infinite system sizes is presented in
Fig. 4. From these data one cannot discard the possibility
that for very large systems the exponents will converge
to D = 2 independently of p, in which case the value
of D might be seen as an index that characterizes the
universality class of the p-spin landscapes. Since the ex-
act construction of barrier trees is at present feasible for
systems of sizes up to N = 24 only, the estimate of D
for larger systems must resort to a stochastic approach,
probably in the spirit of the coalescent theory of popula-
tion genetics [4], which focuses on the genealogy of a few
sampled individuals rather than on the family tree of the
entire population.

The replica theory predicts a similar hierarchical struc-
ture for the space of pure states, consisting of clusters
within clusters. In particular, the probability density
that a cluster has weight W (roughly the fraction of pure
states within it) is [2]

f(W ) =
W y−2 (1 −W )−y

Γ(y)Γ(1 − y)
(6)

which for small weights reduces to a power law f(W ) ∼

W y−2. Here y ∈ (0, 1) is a complicated function of
the physical parameters p and the temperature T . For
instance, for the REM one has y = 1 − T/Tc where

Tc = (4 ln 2)
−1/2

. As the replica pure states space is
a rather abstract construct (e.g., only a few low-energy
local minima are pure states and the definition of clus-
ters does not involve the notion of saddle points) a direct
comparison with our results is not evident; albeit it is
highly desirable since we are not aware of any attempt
to verify Eq. (6) via numerical simulations.
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[2] M. Mézard, G. Parisi and M. A. Virasoro, Spin

Glass Theory and Beyond (World Scientific, Singa-
pore, 1987).

[3] P. W. Anderson, Proc. Natl. Acad. Sci. USA 80,
3386 (1983).

[4] M. Nei, S. Kumar, Molecular Evolution and Phyloge-

netics (Oxford University Press, Oxford 1999). R. D.
M. Page, E. C. Holmes, Molecular Evolution: A Phy-

logenetic Approach (Blackwell Science Inc, 1998).
[5] B. Derrida, Phys. Rev. B 24, 2613 (1981).
[6] P. F. Stadler, J. Math. Chem. 20, 1 (1996).
[7] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett.

35, 1792 (1975).
[8] C. Amitrano, L. Peliti and M. Saber, J. Mol. Evol.

29, 513 (1989). D. S. Rokhsar, P. W. Anderson and
D. L. Stein, J. Mol. Evol. 23, 119 (1986).

[9] R. Rammal, G. Toulouse and M. A. Virasoro, Rev.
Mod. Phys. 58, 765 (1986).

[10] A. M. Vertechi, M. A. Virasoro, J. Phys. France, 50,
2325 (1989).

[11] C. Flamm, W. Fontana, I. Hofacker and P. Schuster,
RNA 6, 325 (2000).

[12] P. Garstecki, T. X. Hoang and M. Cieplak, Phys.
Rev. E 60, 3219 (1999).

[13] O. M. Becker and M. Karplus, J. Chem. Phys. 106,
1495 (1997). F. F. Ferreira, J. F. Fontanari and P.
F. Stadler, J. Phys. A 33, 8635 (2000). T. Klotz and
S. Kobe, J. Phys. A 27, L95 (1994).

[14] J. C. Willis, Age and Area (Cambridge University
Press, Cambridge 1922). B. Burlando, J. Theor. Biol.
146, 99 (1990); 163, 161 (1993).

[15] J. Chu, C. Adami, Proc. Natl. Acad. Sci. USA 96,
15017 (1999).

[16] E. D. Weinberger Biol. Cybern. 63, 325 (1990). W.
Fontana, T. Griesmacher, W. Schnabl, P. F. Stadler,
P. Schuster, Monatsh. Chem. 122, 795 (1991). E. D.
Weinberger and P. F. Stadler, J. Theor. Biol. 163,
255 (1993).


