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Abstract

Gene expression in eukaryotic cells is regulated by a complex network of interac-
tions, in which transcription factors and their binding sites on the genomic DNA
play a determining role. As transcriptions factor rarely, if ever, act in isolation,
binding sites of interacting factors are typically arranged in close proximity forming
so-called cis-regulatory modules. Even when the individual binding sites are known,
module discovery remains a hard combinatorial problem, which we formalize here
as the Best Barbecue Problem. It asks for simultaneously stabbing a maximum num-
ber of differently colored intervals from K arrangements of colored intervals. This
geometric problem turns out to be an elementary, yet previously unstudied combina-
torial optimization problem of detecting common edges in a family of hypergraphs,
a decision version of which we show here to be NP-complete. Due to its relevance in
biological applications, we propose algorithmic variations that are suitable for the

Preprint submitted to Elsevier Science 14 August 2007



analysis of real data sets comprising either many sequences or many binding sites.
Being based on set systems induced by interval arrangements, our problem setting
generalizes to discovering patterns of co-localized itemsets in non-sequential objects
that consist of corresponding arrangements or induce set systems of co-localized
items. In fact, our optimization problem is a generalization of the popular concept
of frequent itemset mining.

Key words: gene regulation, cis-regulatory modules (CRMs), Best Barbecue
Problem, NP-completeness, branch-and-bound algorithms, itemset mining

1 Introduction and Biological Background

A comprehensive understanding of the mechanism of eukaryotic gene expres-
sion is a major challenge in current research in molecular biology. The regu-
lation of transcription by means of DNA-binding transcription factors forms
a key component of gene regulation networks. In general, the binding of mul-
tiple transcription factors in specific combinations is required for proper reg-
ulation. The corresponding transcription factor binding sites (TFBS) on the
DNA sequence thus form so-called cis-regulatory modules (CRMs) [24]. From
a biological point of view, CRMs are defined as independent DNA elements
that exert specific regulatory functions on a nearby gene due the binding of
activating and/or repressing transcription factors [3]. From a hands-on com-
putational biology point of view, CRMs are DNA sequences of limited length
(in the range of a few hundred nucleotides) that contain a number of short
DNA motifs which correspond to binding sites of individual transcription fac-
tors [6,12,14,36,37]. The functional importance of CRMs is highlighted for in-
stance by the observation that a significant fraction of the tissue-specific gene
expression can be explained by a limited number of CRMs in the proximal
promoters of mammalian genes [33].

Although there are extensive databases of individual transcription factors and
their corresponding binding sites [15,28], it is still a hard problem to distin-
guish bona fide CRMs from spurious combinations of TFBSs [7]. A major
complication is the fact that the DNA patterns bound by most transcrip-
tion factors are very short and promiscuous [35]. As a consequence, predicted
TFBSs cover the genome almost completely. This makes the computational
discovery of CRMs from genomic sequence data a challenging task. Typically,
this issue is approached by comparing the promoter regions (which range up
to several thousand nucleotides upstream or in some cases even downstream
of the transcription start site) flanking the coding regions of sets of genes.
Typically, one either considers the promoter regions of evolutionarily related
genes across different species (so-called “phylogenetic footprinting”), or one
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attempts to detect common sequence motifs in genes with similar expression
profiles within one species. In recent studies, the two approaches are often com-
bined to increase the specificity of the procedures, e.g. [18]. Although some
insight has been gained on conservation and loss of regulatory sequences, the
mechanisms underlying their evolution still remain largely enigmatic. While
sequence conservation is a suitable indicator of conserved regulatory function,
the absence of sequence conservation does not imply loss of regulatory function
[34,11,13,22]. This phenomenon has first been documented in the Drosophila
even skipped stripe 2 enhancer [19], and is usually referred to as binding-site
turnover; we will return to this point in Section 6.1.

Recent observations [10,29] indicate explicitly that shuffling of the relative po-
sitions of conserved elements is a major mode of evolution for cis-regulatory
elements. In other words, CRMs conserve their types of TFBSs but not nec-
essarily their order along the genomic DNA sequence. Note that due to these
shuffling effects, traditional edit-distance-based alignment procedures are not
appropriate tools for unveiling regulatory modules. Novel approaches are thus
required for such “non-order-preserving” alignments.

The Best Barbecue (BBQ) approach explored in this contribution is based
on discovering sets of binding sites that occur close to each other in several
promoter sequences, where the notion of “close to each other” is made precise
by requiring that the TFBSs occur within an interval of fixed length. In [8],
the problem of CRM discovery is described in a way that is similar to our
approach. Instead of attempting a provably optimal solution, a heuristic al-
gorithm is used for module discovery, however. Genetic Algorithms are used
in [1] and [25]. CREME [30], which is also conceptually related to our BBQ
approach, is probably the most widely used method. This program seeks to
identify motif clusters of limited length that occur more than once in a set
of genomic sequences. In contrast to BBQ, the modules discovered by CREME

contain precisely the same set of binding sites and may not contain addi-
tional binding sites. This restriction is not realistic for both biological and
methodological reasons. It is plausible that a functional regulatory module
may contain a putative binding site for a transcription factor that is not in-
volved in the module’s function: the additional transcription factor could be
down-regulated while the regulatory module is active, relative locations of the
binding sites might not allow the additional factor to become part of the pro-
tein complex, and binding site profiles with low sequence specificity frequently
produce false positive matches.

Several other approaches to discovering regulatory modules have been investi-
gated. Kel-Margoulis et al. [17] propose a method based on identifying clusters
with the property that pairwise distances between occurrences of TFBSs fall
within certain bounds; sets of binding sites that maximize a certain cluster
score are searched by the means of a genetic algorithm. Recently, Schones et al.
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studied the statistics of binding site co-occurrences to obtain probabilities for
observing regulatory modules that satisfy different constraints regarding either
the order and orientation of binding sites or the gaps in-between them. Noto
et al. [23] train HMMs that reflect certain logical and spatial relationships
between the binding sites of the regulatory modules to be detected. Other
methods are based on probabilistic methods [26] or require (only sparsely
available) knowledge about interactions between transcription factors such as
the algorithm presented in [32].

Given the practical importance of CRM discovery it seems natural to raise
the question how complex regulatory module discovery is. A major goal of our
contribution is therefore to put the increasingly important task of regulatory
module discovery on a formal basis, provide insights into issues which make the
problem difficult, and suggest how algorithms can be devised that yield prov-
ably optimal results under certain relaxed problem specifications. We show
that our abstract and very general way of looking at regulatory module dis-
covery leads to a natural combinatorial and geometric optimization problem
that is NP-complete in general. As a practical variant, we propose a slightly
modified problem that can be solved with algorithms whose time complexity
is exponential in the maximum number of binding sites that are not shared
among the regulatory modules to be discovered. Furthermore, our approach
can be equipped with different scoring schemes, which are relevant for practi-
cal use. As an example, we demonstrate the feasibility of the BBQ approach
on intergenic regions of Hox gene clusters.

The outline of this paper is as follows: we start with a formal description of
regulatory module discovery; although our starting point is a string matching
problem, it turns out that taking a geometric point of view is much more
convenient in this setting. Our geometric characterization leads to the Best
Barbecue Problem, which, to the best of the authors’ knowledge, has not been
studied previously. The Best Barbecue Problem deals with simultaneously
stabbing intervals of the same color from several interval arrangements and
can be rephrased as a combinatorial optimization problem. In Section 4.1,
we show that the Best Barbecue Problem and its variants are NP-complete.
We then provide branch-and-bound-like algorithms, with some results from a
biological application demonstrating the practical relevance of the problem.
Furthermore, we provide an algorithm that is exponential in an additional
input parameter that can be assumed to be small in practice, but yields correct
solutions only for certain (well characterized) instances. Each of the algorithms
we present is exponential in a different input parameter, hence the algorithms
are useful for different types of instances. As a final contribution, we show
that a slight extension of our problem setting leads to a natural generalization
of the well known concept of frequent itemset mining.
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Fig. 1. Examples of an L-occurrence of S = {s1, s2, s3} with s1 = CCCC, s2 = CGTG,
and s3 = TTT in the sequences T1 and T2, respectively. For T1, we have an
L-occurrence for any L ≥ 20, in case of T2 for L ≥ 15.

2 L-occurrences and Interval Arrangements

Throughout this paper, let Σ denote some finite alphabet. When dealing with
genome sequences, we usually have Σ = {A, C, G, T} denoting the four types
of nucleotides occurring in DNA. As a notational convention, let [a : b] :=
{a, a + 1, . . . , b} denote the integer interval from a to b for any two integers
a, b if a ≤ b. Given an integer µ and an integer interval [a : b], we say that
µ stabs [a : b] iff µ ∈ [a : b]. Furthermore, given a string T = τ1 . . . τn, let
|T | denote its length, and for any two integers a, b we write T |a,b for the
substring τaτa+1 . . . τb. We say that a string U occurs in T at position x iff
1 ≤ x ≤ x+ |U |−1 ≤ n and T |x,x+|U |−1 = U . Due to the combinatorial nature
of our original problem, all our considerations will refer to integer intervals.
Many results that we obtain, however, hold for intervals over the reals as well.

As mentioned above, cis-regulatory modules are clustered occurrences of TF-
BSs along a genome. We formally grasp the notion of clustered occurrences,
Fig. 1, by introducing a cluster length L and say that binding site occurrences
are L-clustered if the occurrences are contained within an interval of size L
along the genome:

Definition 1 Let S = {s1, . . . , sm} ⊆ Σ∗, T ∈ Σ∗, L ∈ N and A ⊆ S. We
say that A is an L-occurrence in T w.r.t. S if there is a mapping x: A → N

associating an index xs (indicating a position in T where s occurs) with each
s ∈ A such that

(O1) s occurs in T at position xs for each s ∈ A and
(O2) max(xs + |s|, xt + |t|) − min(xs, xt) ≤ L for all s, t ∈ A.

Correspondingly, we refer to A together with the mapping x satisfying the
above conditions as an L-occurrence of A in T w.r.t. S.

Note that in the above definition, the complete sequences in A – not just their
starting positions – occur within a range of L nucleotides in T . In the case
of two sequences, L-occurrences are somewhat related to gene teams [5], the
two differences being that (a) the occurrences of “binding sites” are rather
positions of genes on chromosomes and (b) gene teams require constraints on
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distances between each consecutively occurring pair of genes s and t rather
than between all pairs of genes. In the first simplistic scenario to be consid-
ered here, we are interested in finding L-occurrences of maximum cardinality.
Moreover, we are interested in finding L-occurrences that can be observed
simultaneously in several sequences T1, . . . , TK . This leads to the following
optimization and decision problems:

Problem 1 Maximum Simultaneous L-Occurrence (MSLO)
INSTANCE: Integer L; T1, . . . , TK and s1, . . . , sm denoting strings over an al-
phabet Σ.
TASK: Determine the maximum cardinality of a set A ⊆ {s1, . . . , sm} such
that A is an L-occurrence w.r.t. {s1, . . . , sm} in each of the sequences T1, . . . , TK .

Later on, we will be particularly interested in the decision version of the prob-
lem: Rephrased as a decision problem, we are given an additional thresh-
old parameter θ and ask whether the maximum cardinality simultaneous L-
occurrence exceeds θ. We will refer to the decision version as DSLO.

For the biological application of regulatory module discovery, we are interested
in the “most surprising” rather than the largest cardinality L-occurrence. This
is, in fact, achieved through weighting schemes discussed in Section 6.3. For
the sake of clarity, however, the following considerations on algorithms and
complexity refer to the unweighted scenario.

Before dealing with the complexity of MSLO and DSLO, we step back and
study the scenario involving a single sequence T in more detail. A building
block of the algorithms we develop in the sequel is a certain set of colored
intervals. We write colored intervals as pairs, i.e., ([h : i], c) denotes the interval
[h : i] with color c ∈ [1 : m]. Given S = {s1, . . . , sm} as in Definition 1, we
obtain a set of colored intervals in the following way: first, identify each binding
site s ∈ S with a color cs by means of a bijective mapping c: S → [1 : m].
Now, introduce an interval [p + |s|−L : p] with color cs whenever some s ∈ S
occurs at position p in T . We will also refer to the set of colored intervals

{([p + |s|− L : p], cs) | s occurs at position p in T}

as the set of intervals induced by S in T with cluster length L. These intervals
are in fact closely related to L-occurrences in T :

Lemma 1 Let I denote the set of intervals induced by S = {s1, . . . , sm} in T
with cluster length L. Furthermore, let A ⊆ S. Then, the following statements
are equivalent:

(1) There is an integer x such that for all s ∈ A, x stabs an interval in I with
color cs.
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(2) A is an L-occurrence in T w.r.t. S.

Proof.
(1)⇒(2): Since x stabs one interval of each color contained in A, x is contained
in at least one interval with color cs, for each s ∈ A. Let [hs : is] denote the
corresponding interval with color cs stabbed by x for s ∈ A. Note that by
construction of I, we have hs = is + |s|−L for s ∈ A. Since, by construction of
I, sa occurs at position is for each s ∈ A, condition (O1) of an L-occurrence
is satisfied, and it remains to prove that condition (O2) holds.

Note that due to x ∈ [hs : is] for all s ∈ A, we particularly have, for all s ∈ A,

x ≤ is

Now, pick s, t ∈ A arbitrarily. Then x ∈ [is + |s| − L : is] implies x ≥
is + |s|−L, and we correspondingly obtain x ≥ it + |t|−L. Putting the latter
two inequalities together, we get

x ≥ max(is + |s|, it + |t|) − L. (1)

Correspondingly, x ∈ [it + |t|− L : it] implies x ≤ it. In an analogous way, we
obtain x ≤ is. Putting together the latter two inequalities, we get

x ≤ min(is, it). (2)

Add Eqns. (1) and (2), we obtain

L ≥ max(is + |s|, it + |t|) − min(is, it).

Since we picked s and t arbitrarily, this proves that condition (O2) is satisfied.
(2)⇒(1): Let A be an L-occurrence in T . Then, by condition (O1), for each
s ∈ A, there is an index is such that s occurs at position is in T . Without loss
of generality, let

x = min{is | s ∈ A}. (3)

Then, applying (O2), we get

|is + |s|− x| ≤ L.

Dropping the absolute value due to x ≤ is, we get x ≥ is + |s|− L. Together
with Eq. (3), this yields x ∈ [is + |s| − L : is] for all s ∈ A. Since for each s,
the latter interval is contained in I with color cs and is stabbed by x, we are
done. !
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Fig. 2. Example of (I1,I2,I3)-barbecues: The arrows labeled by x1, x2, x3 stab
the barbecue A = {3, 4}, while the arrows labeled by y1, y2, y3 stab the barbecue
B = {1, 4}; both barbecues are best barbecues for this instance.

Given a set of TFBS profiles and a genomic (promoter) sequence, we are
particularly interested in L-occurrences of maximum cardinality. Using the
above lemma, we can rephrase this problem as maximizing the number of
colors that one can stab in an interval arrangement. In fact, this is better
illustrated if we assign one of m different barbecue ingredients instead of a
color to each interval and identify the string T with a barbecue plate. Then, in
order to have a tasty barbecue, our goal is to stab as many different features
as possible with a skewer by stabbing only once into the plate. If only one
barbecue plate is involved, this constitutes the single person Best Barbecue
Problem, which can be solved in a straightforward manner.

3 The Best Barbecue Problem

3.1 Interval Barbecues

The Best Barbecue Problem becomes a much more delicate problem if more
than one barbecue plate is involved. The idea behind the generalization to K
barbecue plates is as follows: suppose we have K guests invited to a barbecue,
for each of whom we have prepared one plate with a selection of our m different
barbecue ingredients randomly placed on the plate (where the same type of
ingredient may be contained an arbitrary number of times on the plate). Now,
we want to prepare one skewer for each each guest by stabbing once into each
barbecue plate. In order to treat all our guests as equally as possible, the set
of ingredients that is contained on all skewers is to be maximized. Note that in
addition to the ingredients stabbed on each skewer, some skewers may contain
additional features. For an example of the formal definition below, see Fig. 2.

Definition 2 Let I1, . . . , IK denote K sets of intervals, each interval being
assigned a color from [1 : m]. We say that a set A ⊆ [1 : m] is an (I1, . . . , IK)-
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Fig. 3. Obtaining a set system from an interval arrangement, with C1 = {2},
C2 = {1, 2}, C3 = {1, 2, 3}, C4 = {2, 3}, and C5 = {3}.

barbecue if for each i ∈ [1 : K], there is an integer νi such that for each color
a ∈ A, νi stabs at least one interval of color a in Ii.

A barbecue of maximum cardinality will also be referred to as a best barbecue
of I1, . . . , IK .

This definition immediately suggests to state the following optimization prob-
lem, together with the naturally associated decision problem:

Problem 2 Best Barbecue Problem (BBQ)
INSTANCE: Integers m, K; I1, . . . , IK denoting K sets of intervals, with each
interval being assigned a color from [1 : m].
TASK: Determine the maximum cardinality barbecue of I1, . . . , IK.

As for MSLO, we will also be interested in the decision version of the problem,
asking whether the best barbecue exceeds a given threshold θ; we will refer
to this decision problem as DBBQ. Now, the equivalence of arrangements of
colored intervals and L-occurrences stated in Lemma 1 tells us that BBQ in
fact solves our original problem MSLO.

Beyond our biological problem setting, note that the definition of the Best
Barbecue Problem naturally generalizes to colored arrangements of arbitrary
geometric objects (such as discs or balls in higher dimension or neighborhoods
of vertices in graphs) rather than intervals in one dimension.

3.2 Combinatorial Barbecues

Given a set of colored intervals I, we canonically obtain an equivalence relation
between integers – each integer x stabs a certain set of colors in I; we define
x ∼ y (w.r.t. I) iff x stabs the same set of colors in I as y does. We refer to the
equivalence class of I as the cells induced by I (since, in fact, the equivalence
classes result from cells of an interval arrangement [31]).

Given K sets of colored intervals I1, . . . , IK , the cells induced by each Ii yield
a set of subsets of [1 : m]. Instead of our original geometric setting, we are
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now in a purely combinatorial situation: we only need to work with the sets
C1, . . . , CK , where Ci denotes the set of cells induced by Ii. As shown in Figure
3, each C ∈ Ci is a set of colors, and we have gotten rid of any interval positions.
Corresponding to the geometric setting, we say that a set A is a (C1, . . . , CK)-
barbecue iff for each i ∈ [1 : K], there is a Ci ∈ Ci such that A ⊆ Ci. It is
easy to see that every (I1, . . . , IK)-barbecue is a (C1, . . . , CK)-barbecue and
vice versa.

Hence, computing the induced cells for each Ii leaves us with the following
problem:

Problem 3 Combinatorial Best Barbecue Problem (CBBQ)
INSTANCE: Integers m, K; C1, . . . , CK denoting K sets of subsets of [1 : m],
with λi := |Ci| and Ci = {Ci,1, . . . , Ci,λi

}.
TASK: Maximize

|
⋂

i∈[1:K]

Ci,νi
|,

with (ν1, . . . , νK) ∈ [1 : λ1] × · · ·× [1 : λK ].

Corresponding to the decision versions of MSLO and BBQ, we refer to the
decision version of CBBQ as DCBBQ. CBBQ has an interesting interpretation
in terms of hypergraphs. To establish this connection, we say that a hyper-
graph with vertices V supports a set Y ⊆ V if there is an edge X such that
Y ⊆ X. Since a each of the K set systems canonically represents a hyper-
graph, CBBQ simply asks for the largest cardinality edge that is supported in
all K hypergraphs.

There are two naive strategies to solve CBBQ (and, correspondingly, DCBBQ):

(A1) Enumerate all (ν1, . . . , νK) ∈ [1 : λ1] × · · ·× [1 : λK ] and, for each of these
vectors, compute |

⋂

i∈[1:K] Ci,νi
|, and keep track of the vector (ν̃1, . . . , ν̃K)

that yields the largest cardinality intersection.
(A2) Enumerate all subsets of [1 : m], and, for each subset A ⊆ [1 : m], check

whether there are suitable indices ν1, . . . , νK such that A ⊆
⋂

i∈[1:K] Ci,νi
.

Keep track of the largest cardinality subset Ã for which suitable indices
were found.

Both of these approaches unfortunately lead to exponential time algorithms
– the first algorithm is exponential in K, the second one exponential in m. In
fact, we will prove in the next section that DCBBQ is NP-complete. However,
since the problem is of practical relevance, we provide branch-and-bound ap-
proaches in Section 4.2, implementations of which demonstrate to be useful
in some real world instances with limited values for m and K. These will be
presented in Section 5. Finally, we provide an algorithm that is exponential in
another, rather subtly hidden parameter, which is done in Section 6.
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4 Complexity and Algorithms

4.1 NP-completeness Results

Our goal in this section is to prove the following:

Theorem 1

(1) DCBBQ is NP-complete.
(2) DBBQ is NP-complete.
(3) DSLO is NP-complete.

First of all, note that DCBBQ obviously is in NP: given a solution (ν1, . . . , νK),
this solution can be trivially verified by computing the cardinality of the inter-
section |

⋂

i Ci,νi
| in O(mK) time. An analogous argument shows that DBBQ

and also DSLO is in NP.

Our proof of NP-completeness works by reducing the problem of deciding
whether a K-partite graph contains a K-clique to DCBBQ. Let G = (V, E)
denote an undirected K-partite graph, i.e., we have V = V1 ∪ · · · ∪ VK as the
disjoint union of the layers Vi and |Vi ∩ e| ≤ 1 for any i ∈ [1 : K] and e ∈ E
(writing edges of G as two-element subsets of V ). A K-clique in G is a set
of vertices v1, . . . , vk with vi ∈ Vi and {vi, vj} ∈ E for all i, j. As has been
noted by several authors and formally proved by Azarenok et al., the following
holds:

Lemma 2 ([4]) Deciding whether a K-partite graph has a K-clique is NP-
complete.

Given a K-partite graph G, we now construct a collection C1, . . . , CK of subsets
of [1 : m] such that there is a barbecue of cardinality K iff G has a K-clique.
We start with defining the neighborhood set of a vertex v as

N(v) := {w ∈ V | {v, w} ∈ E }

for v ∈ V . Furthermore, for v ∈ V , define Cv := N(v) ∪ {v}. The following
Lemma establishes close connections between the graph G and intersections
of the sets Cv (i.e., edges shared by the K hypergraphs):

Lemma 3 For a K-partite graph G = (V, E), let v1 ∈ V1, . . . , vK ∈ VK , where
V is the disjoint union of V1, . . . , VK. The following holds:

(1) {u, v} ∈ E ⇐⇒ {u, v} ⊆ Cu
⋂

Cv,
(2)

⋂

i∈[1:K] Cvi
⊆ {v1, . . . , vK},

(3) |
⋂

i∈[1:K] Cvi
| = K ⇐⇒ G has a K-clique.
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Proof. (1): Let {u, v} ∈ E. Then, by construction, we have u ∈ Cu and
u ∈ N(v), and hence also u ∈ Cv. Analogously, v ∈ Cv and v ∈ N(u) yields
v ∈ Cu, so that we have {u, v} ⊆ Cu ∩ Cv.
Conversely, let {u, v} ⊆ Cu ∩ Cv. Then, v ∈ Cu implies v ∈ N(u), and hence
{u, v} ∈ E.
(2): Let x ∈

⋂

i∈[1:K] Cvi
, and assume that x -∈ {v1, . . . , vK}. Furthermore,

w.l.o.g, assume that x ∈ V1. Then, in particular, we have x ∈ Cv1
. Now, by

construction, the only vertex from V1 contained in Cv1
is v1 itself. However,

we assumed that v1 -= x ∈ Cv1
, which is a contradiction.

(3): Let |
⋂

i∈[1:K] Cvi
| = K. Then claim (2) implies that

⋂

i∈[1:K] Cvi
= {v1, . . . , vK}.

It remains to be shown that {vi, vj} ∈ E for all i, j ∈ [1 : K]. To this end,
observe that we have {vi, vj} ∈ Cv1

∩ Cv2
. Using part (1) of this Lemma, this

implies {vi, vj} ∈ E.
Conversely, let {v1, . . . , vK} be a K-clique in G. Then, for arbitrary i, j ∈
[1 : K], we have vi ∈ N(vj), and hence vi ∈ Cvj

. By construction, we also
have vi ∈ Cvi

. Altogether, we obtain {v1, . . . , vK} ⊆
⋂

i∈[1:K] Cvi
, implying

|
⋂

i∈[1:K] Cvi
| ≥ K. Claim (2) immediately implies |

⋂

i∈[1:K] Cvi
| ≤ K, so that

we have |
⋂

i∈[1:K] Cvi
| = K. !

Proof of Theorem 1. We start with the proof of (1).

Since choosing Ci := {Cvi
| vi ∈ Vi} for all i ∈ [1 : K] together with θ := K

gives us an instance of the combinatorial barbecue decision problem, part (3)
of Lemma 3 reduces the decision problem whether a K-partite graph has a K-
clique to the combinatorial barbecue decision problem. Since the construction
can be performed in polynomial time, this immediately yields the desired NP-
completeness proof.

Proof of (2): Our proof works by reducing DCBBQ to DBBQ. Let C =
{C1, . . . , CK} denote the sets of subsets corresponding to an instance of DCBBQ.
Given {C1, . . . , CK}, we construct a set of interval sets I = {I1, . . . , IK} that
constitute an instance of DBBQ satisfying

A is a C-barbecue ⇐⇒ A is an I-barbecue (4)

for any A ⊆ [1 : m]. To this end, let Ci = {Ci,1, . . . , Ci,λi
}. For each µ ∈ [1 : λi],

we a set of colored intervals Ii,µ as follows:

Ii,µ := {([µ, µ], j) | j ∈ Ci,µ}. (5)

Now, choosing

Ii :=
⋃

1≤µ≤λi

Ii,µ (6)
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for each i ∈ [1 : K] yields an instance of DBBQ. It remains to show that
this instance satisfies the equivalence from Eq. (4). Let A be a C-barbecue.
By Definition 2, there are indices ν1, . . . , νK such that A ⊆ Ci,νi

. Looking at
Eq. (5), νi stabs each j ∈ Ci,νi

in Ii,νi
, so that in particular, νi stabs each

j ∈ A in Ii,νi
. Now, Eq. (6) implies Ii,νi

⊆ Ii, so that νi stabs each j ∈ A in
Ii. Hence, A is an I-barbecue.

Conversely, let A be an I-barbecue, and let ν1, . . . , νK denote the correspond-
ing indices such that νi stabs A in Ii. Note that the intervals stabbed by νi

in Ii are precisely those that are contained in Ii,νi
. By construction, Ii,νi

con-
tains one an interval of each color contained in Ci,νi

, so that each color that
is stabbed by νi in Ii is contained in Ci,νi

, in other words, we have A ⊆ Ci,νi

for each 1 ≤ i ≤ K, so that A is a (combinatorial) C-barbecue.

Eq. (4) obviously reduces CBBQ to BBQ. Furthermore our construction can
clearly be performed in polynomial time. Thus the proof of claim (2) is com-
plete.

Proof of (3): Analogous to the proof of claim (2), we reduce DCBBQ to DSLO
and start with constructing a string Ti,µ ∈ Σ∗ from each Ci,µ, with Σ :=
{α0, . . . ,αm}. To this end, let Ci,µ = {j1, . . . , jp}, so that we can write

Ti,µ := α2m−p
0 αj1 . . .αjp.

This allows us to define Ti as the concatenation of all Ti,µ, i.e.,

Ti := Ti,1 . . . Ti,λi
.

Now, choosing L := m + 1 and S := {α1, . . . ,αm}, it remains to be shown
that for any A = {j1, . . . , jp} ⊆ [1 : m] and A′ = {αj1 , . . . ,αjp} ⊆ [1 : m]

A is a C-barbecue ⇐⇒ A′ is an L-occurrence of S in T1, . . . , TK . (7)

To see this, let A be a C-barbecue with corresponding indices ν1, . . . , νK . If we
write Ci,νi

= {j1, . . . , jp}, then by construction each Ti,νi
contains the string

αj1 . . .αjp, which constitutes an (m + 1)-occurrence of {αj1, . . . ,αjp}. Since A
is a subset of Ci,µi

, in particular Ti,νi
contains an (m + 1)-occurrence of A′.

Finally, Ti,νi
is a substring of Ti, so that in particular Ti contains an (m + 1)-

occurrence of A′.

Conversely, let A′ be an (m + 1)-occurrence of A′ in T1, . . . , TK . Since each of
the blocks Ti,µ starts with αm

0 , the (m + 1)-occurrence of A′ in Ti is contained
within one single block, there is a unique index νi such that A′ is an (m + 1)-
occurrence in Ti,νi

. The corresponding set Ci,νi
that Ti,νi

was constructed from
hence contains A as a subset, such that A is a C-barbecue. !
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4.2 Branch-and-Bound Algorithms

Studying the algorithm specified in the last paragraph of Section 3.2 in more
detail, one realizes that the branch-and-bound principle can be applied in
the following way: Suppose we have already found a vector (ν̃1, . . . , ν̃K) such
that |

⋂

i∈[1:K] Ci,ν̃i
| = θ. Now, when enumerating index vectors (ν1, . . . , νK),

we start with picking ν1, then we pick ν2, and so on. If at some point, we
have picked ν1, . . . , νa (with a < K), and we find that

⋂

i∈[1:a] Ci,νi
≤ θ, we

know that no matter how we choose νa+1, . . . , νK , the cardinality of the in-
tersection

⋂

i∈[1:K] Ci,νi
cannot exceed θ. In terms of a branch-and-bound al-

gorithm, this means that if t denotes the cardinality of the best barbecue so
far, then |

⋂

i∈[1:a] Ci,νi
| ≤ t is an upper-bound-criterion for the set of all in-

stances {(ν1, . . . , νa, µa+1, . . . , µK) | µi ∈ [1 : λ1]}. Whenever the upper bound
is smaller than the best solution so far, this set of instances can be ignored by
the algorithm.

Concerning time complexity, note that computing the intersection of K subsets
of [1 : m] can be done in O(Km) time. Hence, it can be seen easily that
Algorithm (A1) (as well as the branch-and-bound version) takes O(KmλK)
time, where λ denotes the maximum of all of all λi. In practice, the branch-
and-bound version of Algorithm (A1) applied to the phylogenetic footprinting
problem can be observed to yield a significant speed-up.

We now turn to algorithm (A2), which can also be improved using a branch-
and-bound-like approach. Observe that if A ⊆ [1 : m] is not an (I1, . . . , IK)-
barbecue, then all sets A′ with A ⊆ A′ are not barbecues either. In particular,
sets that are not barbecues cannot be best barbecues. In terms of a branch-
and-bound algorithm, this means that if we encounter a set A that is not a
barbecue, we do not need to examine the set of instances

{A′ ⊆ [1 : m] | A ⊆ A′}.

As another improvement for Algorithm (A2), note that not necessarily all
subsets of [1 : m] need to be enumerated – one can limit the algorithm to
consider only sets A ⊆ [1 : m] such that some set A′ with A′ ⊇ A is contained
in at least one Ci. Finally, it is easy to see that, with Λ := |C1| + · · · + |CK |,
the running time of Algorithm (A2) is O(2mΛm).

5 Computational Example

As an illustrative example for the application of the BBQ approach to bio-
logical data we consider here a short region selected from the Hox clusters.
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common labels: { , , , }
weight: 88.8204

HsA_13-11

977 1177

MmA_13-11

1008 1208

RnA_13-11

923 1123

common labels: { , }
weight: 59.7469

HfM_13-11

1031 1231

PsA_13-11

7686 7886

LmA_13-11

427 627 Brn-2

Cdx

GATA

XFD-1

Sry

Fig. 4. A significant cluster of binding sites among evolutionary closely related
species (placental mammals: Hs Human, Mm Mouse, and Rn Rat) (upper panel).
Searching for the same set of candidate binding sites in evolutionary more distant
vertebrates (Hf shark, Ps bichir, Lm coelacanth), one obtains a smaller and hence
less significant — probably non-functional — cluster (lower panel). Both clusters
were obtained with the weighted version of Algorithm (A2).

The Hox genes form a class of homeodomain transcription factors and have a
crucial role in early embryonic development [20]. In vertebrates, these genes
are located within tightly linked gene clusters. We focus here on the inter-
genic region between HoxA13 and HoxA11, which has a length between 12000
and 15000 nucleotides. The particular locus includes the promoter region of
HoxA11 and is important for the development of the limb bud, see e.g. [38].

In order to select binding motifs, we can either use databases of known tran-
scription factor binding sites such as TRANSFAC [15] or JASPAR [28] or
derive the motifs from phylogenetic footprinting [27,9] or statistical local align-
ment procedures [16]. For our example, we used a comparatively small selec-
tion of m = 15 binding site profiles predicted to match a conserved non-coding
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region in tetrapods using tfsearch and TRANSFAC, release 3.3.

A C++-implementation of Algorithm (A2) took only a few seconds of compu-
tation time on a standard desktop computer with a 2.8 MHz processor 1 to
produce the results in Fig. 4 for K = 3, m = 15, L = 200, and genomic input
sequences with a length between 12000 and 15000.

The best CRM within the HoxA13 -HoxA11 region hits the selected conserved
non-coding region and contains five common labels. Three of these are ex-
clusively shared among the selected tetrapods, here only placental mammals
(upper panel in Fig. 4).

The “fishes”, which branch off before the origin of tetrapods, neither share the
conserved non-coding region nor this CRM, i.e., these five binding sites do not
appear together in these species, not even in a different order. Conceivably,
this CRM could be associated with one of the major innovations involving the
adjacent genes, e.g. the fin-limb transition or emergence of the placenta.

Using the bounded difference method from Section 6 with δ = 2 as bound,
even instances with K = 5 and m = 300 can be computed in less than one
minute. Note that the implementation supports several features that are useful
in practise. For instance, highly correlated binding site profiles can be treated
as a group of binding sites (so that overlapping occurrences are counted as a
single occurrence). The current implementation also supports the weighting
schemes proposed in Section 6.3.

6 Variants of the Best Barbecue Problem

The mostly theoretical results presented in the previous sections should rather
be seen as a foundation for practically relevant variations and extensions. The
implementations and results indicate that the approach is principally suited
for practical applications; yet the basic problem setting needs to be adapted
so that the discovery procedure takes into account common effects such as
binding-site turnover discussed above.

6.1 Barbecues with Limited Support

In the problem setting as discussed so far, regulatory modules are expected
to occur in all sequences involved. While this is useful when comparing few

1 The source code of our implementation is available for download at
http://www.bioinf.uni-leipzig.de/Software/bbq/
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evolutionarily related promoter sequences, this is eventually not a reasonable
model when dealing with promoters of many co-expressed genes from one
species. In this scenario, regulatory modules are rather expected to occur in
few of the promoter sequences under consideration. Also, binding-site turnover
may impose limitations even in the case of evolutionarily related sequences.

Consequently, it makes sense to introduce an extra support parameter σ to
the best barbecue problem (which carries canonically to MSLO): we seek a
binding site set B of maximum cardinality that occurs in at least σ of the K set
systems. Since this is a more general problem than the best barbecue problem,
the NP-completeness results still hold for this problem; branch-and-bound
algorithms for this extended problem can eventually be derived from the ones
discussed in Section 4.2. The support parameter provides a very interesting
link to frequent itemset mining [2], which certainly is one of the most important
concepts from data mining: if all K set systems consist of one set only, then the
best barbecue with support σ is a maximum frequent itemset with support σ.
Hence, the best barbecue problem with limited support is a – quite natural –
generalization of frequent itemset mining: while in frequent itemset mining, we
are given K sets of items, the best barbecue problem deals with K sets of sets
of items. If the sets in each of the K set systems represent co-localized items,
we obtain a notion of “frequent co-localized itemsets”, where co-localization
can be derived from a suitable “topology” of the space in which the items
occur – in the case of regulatory modules, this topology is given by distances
between occurrences of binding sites.

In a conceptually similar approach, one may introduce a scoring function that
measures the similarity between CRMs in terms of their constituent TFBS. A
natural choice for this purpose is the so-called Tanimoto score for measuring
the (dis)similarity between sets of objects, in our case occurrences of binding
sites. One then searches the input sequences for collections of TFBS that
are sufficiently similar. A major advantage of using Tanimoto scores is that
they not require the specification of an additional support parameter. This
approach is explored in detail in [21].

6.2 Bounded Differences

In the barbecue-party illustration of our optimization problem, the optimal
solution may sometimes appear rather unfair: although all guests share a max-
imum number of equal ingredients, some guests might get a large number of
extra ingredients, while others get no extra ingredients at all. To treat our
guests more equally, we might consider to limit the number of extra features.
This limitation, in fact, has further advantages: first of all, the computational
complexity of the problem is reduced – the algorithms we obtain will turn
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out to be exponential in the maximum number of extra features rather than
the overall number of features. Secondly, bounding the number of extra fea-
tures makes sense in our biological problem setting: if there is a large number
of extra features within a cis-regulatory module, this means that within one
footprint cluster, a large number of “foreign” binding sites is present, so that
the function of the relevant binding sites might well be disturbed.

In our formal problem setting, we restrict ourselves to considering combi-
natorial best barbecues with a bounded number of extra features; our con-
siderations, however, carry naturally to geometric barbecues as well as to
L-occurrences.

Suppose we are given an instance of the combinatorial best barbecue prob-
lem, together with a barbecue B =

⋂

i Ci,νi
. The number of “extra” features

occurring in Ci,νi
now reads as |Ci,νi

\ B|. Correspondingly, we say that B
is a δ-bounded barbecue if there are indices ν1, . . . , νK such that, for each i,
|Ci,νi

\B| ≤ δ. We now consider δ as an additional input parameter and want
to compute the largest cardinality δ-bounded barbecue. Observe that for δ = 0
and given an arbitrary B ⊆ [1 : k], we can check in O(Km logΛ) time whether
B is a 0-bounded barbecue. To see this, note that we merely need to check
whether B ∈ Ci for each i. Clearly, this can be done using binary search by
canonically identifying a subset X of [1 : m] with a number between 0 and
2m − 1 (where the j-th bit is 1 iff j ∈ X). Since each comparison during our
binary search takes O(m) time, we obtain the running time claimed above.

Now, computing the largest cardinality 0-bounded barbecue is easy: we test
for each B ∈ C1 and for each i ∈ [1 : K] whether B ∈ Ci. If for some B, we have
B ∈ Ci for all i ∈ [1 : K], we check whether |B| exceeds the largest solution
found so far. Doing so for all B ∈ C yields the largest cardinality 0-bounded
barbecue. Since we test |C| = Λ many sets B whether B is a 0-bounded
barbecue, so that the overall running time amounts to O(ΛKm logΛ).

This idea carries to finding largest cardinality δ-bounded barbecues. Each of
the sets Ci needs to be supplemented as follows:

C′
i :=

⋃

A∈Ci

⋃

D∈Pδ(A)

A \ D.

Here, Pδ(A) denotes the set of all subsets of A whose cardinality is at most δ.
The algorithm for finding largest cardinality δ-bounded barbecues now works
the same way as the algorithm for 0-bounded barbecues, with C1, . . . , CK sub-
stituted by C′

1, . . . , C
′
K and C substituted by C′ := C′

1, . . . , C
′
K . Since each |C′

i|
is bounded by mδ|Ci|, we obtain a running time of O(mδΛKmδ log(mΛ)).
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6.3 Weighted Versions

As a final useful and practically relevant extension, we provide a basis to find
maximum weighted barbecues. Given a (finite) set M , we define a weighted
subset of M as a mapping A: M → R≥0. Now, given A, B: M → R≥0, we define
A ∩ B: M → R≥0 by

(A ∩ B)(i) :=











A(i) + B(i) if A(i)B(i) -= 0

0 otherwise.

The algorithms discussed naturally generalize to the weighted version of the
best barbecue problem resulting canonically from weighted subsets and their
intersections. In fact, the practical results discussed in the following sec-
tion were obtained with an implementation of such a weighted version. The
weighted version is particularly useful in practice if the candidate binding sites
are given in the form of so-called position weight matrices, which are available
in typical binding site databases [15,28]. Using position weight matrices, each
occurrence of binding site sj is associated with a weight between 0 and 1.

7 Concluding Remarks

Summarizing our results, we have shown that a natural approach to the discov-
ery of cis-regulatory modules leads to an elementary optimization problem,
which we have shown to be computationally hard in general. Also, a slight
and still natural generalization of this setting leads to a problem that also is
a generalization of the well-established concept of frequent itemset mining.

We provide an illustrative example of regulatory modules in Hox gene promot-
ers, obtained using an implementation of the branch-and-bound algorithms we
propose. The results pose a good perspective for a systematic study compar-
ing our results with the outcome of related or alternative approaches. Such an
endeavour, however, requires the careful preparation of both real and artifi-
cial benchmark data sets and the design of clear rules how different programs
with different requirements on their input data can be fairly compared. Such
a benchmark study thus goes beyond the purpose of this contribution.
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